Y. Yi, P. Lagniton, S. Ye, E. Li, and X. , COVID-19: what has been learned and to be learned about the novel coronavirus disease, Int J Biol Sci, vol.16, issue.10, pp.1753-1766, 2020.

A. Rismanbaf, Potential Treatments for COVID-19; a Narrative Literature Review, Arch Acad Emerg Med, vol.8, issue.1, p.29, 2020.

P. Zhou, X. Yang, X. Wang, B. Hu, L. Zhang et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, vol.579, issue.7798, pp.270-273, 2020.

, World Health Organization, 2020.

W. Guan, Clinical Characteristics of Coronavirus Disease 2019 in China, N Engl J Med, 2020.

S. A. Lauer, K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng et al., The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application, Ann Intern Med, 2020.

A. E. Gorbalenya, S. C. Baker, R. S. Baric, R. J. Groot, . De et al., The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2, Nat Microbiol, vol.5, pp.536-544, 2020.

N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong et al., Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study, Lancet Lond Engl, vol.395, pp.507-513, 2020.

L. Ren, Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study, Chin Med J (Engl), 2020.

T. P. Velavan and M. Cg, The COVID-19 epidemic, Trop Med Int Health, vol.25, issue.3, pp.278-280, 2020.

D. Schoeman and F. Bc, Coronavirus envelope protein: current knowledge, Virol J, vol.16, issue.1, p.69, 2019.

D. Forni, R. Cagliani, M. Clerici, and M. Sironi, Molecular Evolution of Human Coronavirus Genomes, Trends Microbiol, vol.25, issue.1, pp.35-48, 2017.

S. Su, G. Wong, W. Shi, J. Liu, A. Lai et al., Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses, Trends Microbiol, vol.24, issue.6, pp.490-502, 2016.

D. Raoult, A. Zumla, F. Locatelli, G. Ippolito, and G. Kroemer, Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses, Cell Stress, vol.4, issue.4, pp.66-75, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-02545522

E. De-wit, N. Van-doremalen, D. Falzarano, and M. Vj, SARS and MERS: recent insights into emerging coronaviruses, Nat Rev Microbiol, vol.14, issue.8, pp.523-534, 2016.

Z. Ye, S. Yuan, K. Yuen, S. Fung, C. Chan et al., , 2020.

, Zoonotic origins of human coronaviruses, Int J Biol Sci, vol.16, issue.10, pp.1686-1697

Z. Yin, C. Pascual, and K. Dj, Autophagy: machinery and regulation, Microb Cell, vol.3, issue.12, pp.588-596, 2016.

T. Eisenberg, H. Knauer, A. Schauer, S. Büttner, C. Ruckenstuhl et al., Induction of autophagy by spermidine promotes longevity, Nat Cell Biol, vol.11, issue.11, pp.1305-1314, 2009.

B. Levine and G. Kroemer, Autophagy in the Pathogenesis of Disease, Cell, vol.132, issue.1, pp.27-42, 2008.

V. Kirkin and R. Vv, A Diversity of Selective Autophagy Receptors Determines the Specificity of the Autophagy Pathway, Mol Cell, vol.76, issue.2, pp.268-285, 2019.

A. Stolz, A. Ernst, and I. Dikic, Cargo recognition and trafficking in selective autophagy, Nat Cell Biol, vol.16, issue.6, pp.495-501, 2014.

D. Gatica, V. Lahiri, and K. Dj, Cargo recognition and degradation by selective autophagy, Nat Cell Biol, vol.20, issue.3, pp.233-242, 2018.

V. Sharma, S. Verma, E. Seranova, S. Sarkar, and D. Kumar, , 2018.

, Selective Autophagy and Xenophagy in Infection and Disease. Front Cell Dev Biol, vol.6, p.147

S. Sagnier, C. F. Daussy, S. Borel, V. Robert-hebmann, M. Faure et al., , 2015.

, Autophagy restricts HIV-1 infection by selectively degrading Tat in CD4+ T lymphocytes, J Virol, vol.89, issue.1, pp.615-625

R. Nardacci, A. Amendola, F. Ciccosanti, M. Corazzari, V. Esposito et al., Autophagy plays an important role in the containment of HIV-1 in nonprogressor-infected patients, Autophagy, vol.10, issue.7, pp.1167-1178, 2014.

K. Sparrer, S. Gableske, M. A. Zurenski, Z. M. Parker, F. Full et al., TRIM23 mediates virus-induced autophagy via activation of TBK1, Nat Microbiol, vol.2, issue.11, pp.1543-1557, 2017.

B. Yordy, N. Iijima, A. Huttner, D. Leib, and A. Iwasaki, A neuron-specific role for autophagy in antiviral defense against herpes simplex virus, Cell Host Microbe, vol.12, issue.3, pp.334-345, 2012.

Y. Choi, J. W. Bowman, and J. Ju, Autophagy during viral infection -a double-edged sword, Nat Rev Microbiol, vol.16, issue.6, pp.341-354, 2018.

Y. Cong, P. Verlhac, and F. Reggiori, The Interaction between Nidovirales and Autophagy Components, Viruses, vol.9, issue.7, p.182, 2017.

C. Shi, N. R. Nabar, and N. Huang, SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes, Cell Death Discov, vol.5, p.101, 2019.

Y. Yue, N. R. Nabar, C. Shi, O. Kamenyeva, X. Xiao et al., SARS-Coronavirus Open Reading Frame-3a drives multimodal necrotic cell death, Cell Death Dis, vol.9, issue.9, p.904, 2018.

N. C. Gassen, D. Niemeyer, D. Muth, V. M. Corman, S. Martinelli et al., SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection, vol.10, 2019.

W. T. Jackson, Viruses and the Autophagy Pathway, Virology, vol.479, pp.450-456, 2015.

M. Papandreou and N. Tavernarakis, Autophagy and the endo/exosomal pathways in health and disease, Biotechnol J, vol.12, issue.1, p.1600175, 2017.

R. Gosert, A. Kanjanahaluethai, D. Egger, K. Bienz, and S. C. Baker, RNA replication of mouse hepatitis virus takes place at doublemembrane vesicles, J Virol, vol.76, issue.8, pp.3697-3708, 2002.

A. Lundin, R. Dijkman, T. Bergström, N. Kann, B. Adamiak et al., Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus, PLoS Pathog, vol.10, issue.5, p.1004166, 2014.

K. Knoops, M. Kikkert, . Worm-she-van-den, J. C. Zevenhoven-dobbe, Y. Van-der-meer et al., SARScoronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum, PLoS Biol, vol.6, issue.9, p.226, 2008.

E. Prentice, W. G. Jerome, T. Yoshimori, N. Mizushima, and M. R. Denison, Coronavirus replication complex formation utilizes components of cellular autophagy, J Biol Chem, vol.279, issue.11, pp.10136-10141, 2004.

E. Prentice, J. Mcauliffe, X. Lu, K. Subbarao, and M. R. Denison, Identification and Characterization of Severe Acute Respiratory Syndrome Coronavirus Replicase Proteins, J Virol, vol.78, issue.18, pp.9977-9986, 2004.

L. Zhu, C. Mou, X. Yang, J. Lin, and Y. Q. , Mitophagy in TGEV infection counteracts oxidative stress and apoptosis, Oncotarget, vol.7, issue.19, pp.27122-27141, 2016.

X. Guo, M. Zhang, X. Zhang, X. Tan, H. Guo et al., Porcine Epidemic Diarrhea Virus Induces Autophagy to Benefit Its Replication, Viruses, vol.9, issue.3, p.53, 2017.

F. Reggiori, I. Monastyrska, M. H. Verheije, T. Calì, M. Ulasli et al., Coronaviruses Hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication, Cell Host Microbe, vol.7, issue.6, pp.500-508, 2010.

Z. Zhao, L. B. Thackray, B. C. Miller, T. M. Lynn, M. M. Becker et al., Coronavirus replication does not require the autophagy gene ATG5, Autophagy, vol.3, issue.6, pp.581-585, 2007.

M. Schneider, K. Ackermann, M. Stuart, C. Wex, U. Protzer et al., Severe acute respiratory syndrome coronavirus replication is severely impaired by MG132 due to proteasomeindependent inhibition of M-calpain, J Virol, vol.86, issue.18, pp.10112-10122, 2012.

E. J. Snijder, Y. Van-der-meer, J. Zevenhoven-dobbe, J. Onderwater, J. Van-der-meulen et al., Ultrastructure and Origin of Membrane Vesicles Associated with the Severe Acute Respiratory Syndrome Coronavirus Replication Complex, J Virol, vol.80, issue.12, pp.5927-5940, 2006.

L. Guo, H. Yu, W. Gu, X. Luo, R. Li et al., Autophagy Negatively Regulates Transmissible Gastroenteritis Virus Replication. Sci Rep, vol.6, p.23864, 2016.

S. Ko, M. J. Gu, C. G. Kim, Y. C. Kye, Y. Lim et al., Rapamycin-induced autophagy restricts porcine epidemic diarrhea virus infectivity in porcine intestinal epithelial cells, 2017.

, Antiviral Res, vol.146, pp.86-95

X. Dong and B. Levine, Autophagy and viruses: adversaries or allies?, J Innate Immun, vol.5, issue.5, pp.480-493, 2013.

B. L. Heckmann and D. R. Green, LC3-associated phagocytosis at a glance, J Cell Sci, vol.132, issue.5, 2019.

C. Grose and K. Dj, Alternative autophagy, brefeldin A and viral trafficking pathways, Autophagy, vol.12, issue.9, pp.1429-1430, 2016.

Y. Nishida, S. Arakawa, K. Fujitani, H. Yamaguchi, T. Mizuta et al., Discovery of Atg5/Atg7-independent alternative macroautophagy, Nature, vol.461, issue.7264, pp.654-658, 2009.

M. Niso-santano, S. A. Malik, F. Pietrocola, J. M. Bravo-san-pedro, G. Mariño et al., Unsaturated fatty acids induce non-canonical autophagy, EMBO J, vol.34, issue.8, pp.1025-1041, 2015.

J. Kindrachuk, B. Ork, B. J. Hart, S. Mazur, M. R. Holbrook et al., Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis, Antimicrob Agents Chemother, vol.59, issue.2, pp.1088-1099, 2015.

E. M. Cottam, H. J. Maier, M. Manifava, L. C. Vaux, P. Chandra-schoenfelder et al., Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate, Autophagy, vol.7, issue.11, pp.1335-1347, 2011.

E. M. Cottam, M. C. Whelband, and T. Wileman, Coronavirus NSP6 restricts autophagosome expansion, Autophagy, vol.10, issue.8, pp.1426-1441, 2014.

J. Chan, K. Kok, Z. Zhu, H. Chu, K. To et al., Genomic characterization of the 2019 novel humanpathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan, Emerg Microbes Infect, vol.9, issue.1, pp.221-236, 2020.

X. Chen, K. Wang, Y. Xing, J. Tu, X. Yang et al., Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity, Protein Cell, vol.5, issue.12, pp.912-927, 2014.

E. Gusho, D. Baskar, and S. Banerjee, New advances in our understanding of the "unique" RNase L in host pathogen interaction and immune signaling, Cytokine, 2016.

Y. Yang, L. Zhang, H. Geng, Y. Deng, B. Huang et al., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists, Protein Cell, vol.4, issue.12, pp.951-961, 2013.

M. Ambjørn, P. Ejlerskov, Y. Liu, M. Lees, M. Jäättelä et al., IFNB1/interferon-?-induced autophagy in MCF-7 breast cancer cells counteracts its proapoptotic function, Autophagy, vol.9, issue.3, pp.287-302, 2013.

D. Muth, V. M. Corman, H. Roth, T. Binger, R. Dijkman et al., Attenuation of replication by a 29 nucleotide deletion in SARScoronavirus acquired during the early stages of human-to-human transmission, Sci Rep, vol.8, issue.1, p.15177, 2018.

D. X. Liu, T. S. Fung, K. Chong, A. Shukla, and R. Hilgenfeld, Accessory proteins of SARS-CoV and other coronaviruses, Antiviral Res, vol.109, pp.97-109, 2014.

M. J. Vincent, E. Bergeron, S. Benjannet, B. R. Erickson, P. E. Rollin et al., Chloroquine is a potent inhibitor of SARS coronavirus infection and spread, Virol J, vol.2, p.69, 2005.

P. Gautret, J. Lagier, P. Parola, V. T. Hoang, L. Meddeb et al., Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial, Int J Antimicrob Agents, vol.105949, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02525126

M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu et al., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res, vol.30, issue.3, pp.269-271, 2020.

S. Jaffe, Regulators split on antimalarials for COVID-19, The Lancet, vol.395, p.1179, 2020.

R. E. Ferner and J. K. Aronson, Chloroquine and hydroxychloroquine in covid-19, BMJ, vol.369, p.1432, 2020.

K. Gbinigie and K. Frie, Should chloroquine and hydroxychloroquine be used to treat COVID-19? A rapid review, BJGP Open, 2020.

M. Mauthe, I. Orhon, C. Rocchi, X. Zhou, M. Luhr et al., Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion, Autophagy, vol.14, issue.8, pp.1435-1455, 2018.

M. Hoffmann, H. Kleine-weber, S. Schroeder, N. Krüger, T. Herrler et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell, vol.181, issue.2, pp.271-280, 2020.

A. Mdaa, Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases, Pharmacol Res Perspect, vol.5, issue.1, p.293, 2017.

A. C. Walls, Y. Park, M. A. Tortorici, A. Wall, A. T. Mcguire et al., Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein, Cell, vol.181, issue.2, pp.281-292, 2020.
URL : https://hal.archives-ouvertes.fr/pasteur-02546518

X. Zhao, F. Guo, M. A. Comunale, A. Mehta, M. Sehgal et al., Inhibition of endoplasmic reticulum-resident glucosidases impairs severe acute respiratory syndrome coronavirus and human coronavirus NL63 spike pro-Microbial Cell, vol.7, 2015.

, tein-mediated entry by altering the glycan processing of angiotensin Iconverting enzyme 2, Antimicrob Agents Chemother, vol.59, issue.1, pp.206-216

K. Wu, Q. Zhang, X. Wu, W. Lu, H. Tang et al., Chloroquine is a potent pulmonary vasodilator that attenuates hypoxia-induced pulmonary hypertension, Br J Pharmacol, vol.174, issue.22, pp.4155-4172, 2017.

J. A. Martina, H. I. Diab, L. Lishu, J. Patange, S. Raben et al., The Nutrient-Responsive Transcription Factor TFE3, Promotes Autophagy, Lysosomal Biogenesis, and Clearance of Cellular Debris, Sci Signal, vol.7, issue.309, p.9, 2014.

A. Roczniak-ferguson, C. S. Petit, F. Froehlich, S. Qian, J. Ky et al., The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis, Sci Signal, vol.5, issue.228, p.42, 2012.

D. E. Gordon, A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing. bioRxiv, vol.3, 2020.

L. Sage, V. Cinti, A. Amorim, R. Mouland, and A. J. , Adapting the Stress Response: Viral Subversion of the mTOR Signaling Pathway, Viruses, vol.8, issue.6, p.152, 2016.

C. Ranadheera, K. M. Coombs, and D. Kobasa, Comprehending a Killer: The Akt/mTOR Signaling Pathways Are Temporally High-Jacked by the Highly Pathogenic 1918 Influenza Virus, EBioMedicine, vol.32, pp.142-163, 2018.

N. C. Gassen, J. Papies, T. Bajaj, F. Dethloff, J. Emanuel et al., Analysis of SARS-CoV-2-controlled autophagy reveals spermidine, MK-2206, and niclosamide as putative antiviral therapeutics, 2020.

, Version 1, 2020.

A. E. Pegg, Functions of Polyamines in Mammals, J Biol Chem, vol.291, issue.29, pp.14904-14912, 2016.

F. Madeo, T. Eisenberg, F. Pietrocola, and G. Kroemer, Spermidine in health and disease, Science, vol.359, issue.6374, p.2788, 2018.

T. Eisenberg, Cardioprotection and lifespan extension by the natural polyamine spermidine, Nat Med, vol.22, issue.12, pp.1428-1438, 2016.

E. Morselli, G. Mariño, M. V. Bennetzen, T. Eisenberg, E. Megalou et al., Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome, J Cell Biol, vol.192, issue.4, pp.615-629, 2011.

V. K. Gupta, L. Scheunemann, T. Eisenberg, S. Mertel, A. Bhukel et al., Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner, Nat Neurosci, vol.16, issue.10, pp.1453-1460, 2013.

N. D. Sonawane, F. C. Szoka, and A. S. Verkman, Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes, J Biol Chem, vol.278, issue.45, pp.44826-44831, 2003.

B. C. Mounce, M. E. Olsen, M. Vignuzzi, and C. Jh, Polyamines and Their Role in Virus Infection, Microbiol Mol Biol Rev, vol.81, issue.4, pp.29-46, 2017.

B. C. Mounce, E. Z. Poirier, G. Passoni, E. Simon-loriere, T. Cesaro et al., Interferon-Induced Spermidine-Spermine Acetyltransferase and Polyamine Depletion Restrict Zika and Chikungunya Viruses, Cell Host Microbe, vol.20, issue.2, pp.167-177, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01373232

Y. Zhu, J. Deng, M. Nan, J. Zhang, A. Okekunle et al., The Interplay Between Pattern Recognition Receptors and Autophagy in Inflammation, Adv Exp Med Biol, vol.1209, pp.79-108, 2019.

S. Akira, S. Uematsu, and O. Takeuchi, Pathogen recognition and innate immunity, Cell, vol.124, issue.4, pp.783-801, 2006.

J. Dengjel, O. Schoor, R. Fischer, M. Reich, M. Kraus et al., , 2005.

, Autophagy Promotes MHC Class II Presentation of Peptides from Intracellular Source Proteins, Proc Natl Acad Sci U S A, vol.102, issue.22, pp.7922-7927

C. Münz, Autophagy Beyond Intracellular MHC Class II Antigen Presentation, Trends Immunol, vol.37, issue.11, pp.755-763, 2016.

L. English, M. Chemali, J. Duron, C. Rondeau, A. Laplante et al., , 2009.

, Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection, Nat Immunol, vol.10, issue.5, pp.480-487

G. Jiang, Y. Tan, H. Wang, L. Peng, H. Chen et al., The relationship between autophagy and the immune system and its applications for tumor immunotherapy, Mol Cancer, vol.18, issue.1, p.17, 2019.

F. Pietrocola, Caloric Restriction Mimetics Enhance Anticancer Immunosurveillance, Cancer Cell, vol.30, issue.1, pp.147-160, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01431196

D. J. Puleston, H. Zhang, T. J. Powell, E. Lipina, S. Sims et al., , 2014.

, Autophagy is a critical regulator of memory CD8+ T cell formation

H. Zhang, G. Alsaleh, J. Feltham, Y. Sun, G. Napolitano et al., Polyamines Control eIF5A, 2019.

T. Hypusination, A. Translation, . To-reverse-b-cell, and . Senescence, Mol Cell, vol.76, issue.1, pp.110-125

J. Harris, T. Lang, J. Thomas, M. B. Sukkar, and N. R. Nabar, Autophagy and inflammasomes, Mol Immunol, vol.86, pp.10-15, 2017.

M. Ponpuak, M. A. Mandell, T. Kimura, S. Chauhan, C. Cleyrat et al., Secretory autophagy, vol.35, pp.106-116, 2015.

E. Delorme-axford, R. B. Donker, J. Mouillet, T. Chu, A. Bayer et al., Human placental trophoblasts confer viral resistance to recipient cells, Proc Natl Acad Sci U S A, vol.110, issue.29, pp.12048-12053, 2013.

L. Ahmad, B. Mashbat, C. Leung, C. Brookes, S. Hamad et al., Human TANK-binding kinase 1 is required for early autophagy induction upon herpes simplex virus 1 infection, J Allergy Clin Immunol, vol.143, issue.2, pp.765-769, 2019.

O. Kepp, G. Chen, D. Carmona-gutierrez, F. Madeo, and G. Kroemer, A discovery platform for the identification of caloric restriction mimetics with broad health-improving effects, Autophagy, vol.16, issue.1, pp.188-189, 2020.

F. Madeo, D. Carmona-gutierrez, S. J. Hofer, and G. Kroemer, , 2019.

, Caloric Restriction Mimetics against Age-Associated Disease: Targets, Mechanisms, and Therapeutic Potential, vol.29, pp.592-610