S. Akilesh, H. Suleiman, H. Yu, M. C. Stander, P. Lavin et al., Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis, J Clin Invest, vol.121, pp.4127-4137, 2011.

C. Arrondel, S. Missoury, R. Snoek, J. Patat, G. Menara et al., Defects in t6A tRNA modification due to GON7 and YRDC mutations lead to Galloway-Mowat syndrome, Nat Commun, vol.10, p.3967, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02322309

C. Badenas, M. Praga, B. Tazón, L. Heidet, C. Arrondel et al., Mutations in theCOL4A4 and COL4A3 Genes Cause Familial Benign Hematuria, JASN, vol.13, pp.1248-1254, 2002.

Y. Bao, Y. Yuan, J. Chen, and W. Lin, Kidney disease models: tools to identify mechanisms and potential therapeutic targets, Zool Res, vol.39, pp.72-86, 2018.

L. Barisoni, H. W. Schnaper, and J. B. Kopp, A Proposed Taxonomy for the Podocytopathies: A Reassessment of the Primary Nephrotic Diseases, vol.2, pp.529-542, 2007.

D. Barker, S. Hostikka, J. Zhou, L. Chow, A. Oliphant et al., Identification of mutations in the COL4A5 collagen gene in Alport syndrome, Science, vol.248, pp.1224-1227, 1990.

M. Barua, E. J. Brown, V. T. Charoonratana, G. Genovese, H. Sun et al., , 2013.

M. Barua, E. Stellacci, L. Stella, A. Weins, G. Genovese et al., Mutations in PAX2 Associate with Adult-Onset FSGS, J Am Soc Nephrol, vol.25, pp.1942-1953, 2014.

T. Ben-omran, S. Fahiminiya, and N. Sorfazlian, Nonsense mutation in the WDR73 gene is associated with Galloway-Mowat syndrome, Journal of Medical Genetics, 2015.

A. Bierzynska, K. Soderquest, P. Dean, E. Colby, R. Rollason et al., MAGI2 Mutations Cause Congenital Nephrotic Syndrome, J Am Soc Nephrol, vol.28, pp.1614-1621, 2017.

C. F. Boerkoel, H. Takashima, J. John, J. Yan, P. Stankiewicz et al., Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia, Nat Genet, vol.30, pp.215-220, 2002.

M. Boerries, F. Grahammer, S. Eiselein, M. Buck, C. Meyer et al., Molecular fingerprinting of the podocyte reveals novel gene and protein regulatory networks, Kidney International, vol.83, pp.1052-1064, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01001262

N. Boute, O. Gribouval, S. Roselli, F. Benessy, H. Lee et al., NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome, Nat Genet, vol.24, pp.349-354, 2000.

O. Boyer, INF2 Mutations in Charcot-Marie-Tooth Disease with Glomerulopathy | NEJM

O. Boyer, F. Nevo, E. Plaisier, B. Funalot, O. Gribouval et al., INF2 Mutations in Charcot-Marie-Tooth Disease with Glomerulopathy, vol.365, pp.2377-2388, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00919173

A. H. Brand and N. Perrimon, , 1993.

D. A. Braun, J. Rao, G. Mollet, D. Schapiro, M. Daugeron et al., Mutations in the evolutionarily highly conserved KEOPS complex genes cause nephrotic syndrome with microcephaly, Nat Genet, vol.49, pp.1529-1538, 2017.

E. J. Brown, J. S. Schlöndorff, D. J. Becker, H. Tsukaguchi, S. J. Tonna et al., Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis, Nat Genet, vol.42, pp.72-76, 2010.

C. Carré, D. Szymczak, J. Pidoux, A. , and C. , The Histone H3 Acetylase dGcn5 Is a Key Player in Drosophila melanogaster Metamorphosis, Molecular and Cellular Biology, vol.25, pp.8228-8238, 2005.

B. B. Chen, C. Prasad, M. Kobrzynski, C. Campbell, and G. Filler, Seizures Related to Hypomagnesemia, Child Neurol Open, vol.3, 2016.

V. Y. Chung and B. W. Turney, A Drosophila genetic model of nephrolithiasis: transcriptional changes in response to diet induced stone formation, BMC Urol, vol.17, p.109, 2017.

E. Colin, E. Huynh-cong, G. Mollet, A. Guichet, O. Gribouval et al., Loss-of-Function Mutations in WDR73 Are Responsible for Microcephaly and Steroid-Resistant Nephrotic Syndrome: Galloway-Mowat Syndrome, Am J Hum Genet, vol.95, pp.637-648, 2014.

A. Costessi, N. Mahrour, V. Sharma, R. Stunnenberg, M. A. Stoel et al., The Human EKC/KEOPS Complex Is Recruited to Cullin2 Ubiquitin Ligases by the Human Tumour Antigen PRAME, PLoS One, vol.7, 2012.

B. Denholm and H. Skaer, Bringing together components of the fly renal system, Curr Opin Genet Dev, vol.19, pp.526-532, 2009.

C. Dossier, A. Jamin, and G. Deschênes, Idiopathic Nephrotic Syndrome: The EBV Hypothesis -PubMed, 2017.

M. Downey, R. Houlsworth, L. Maringele, A. Rollie, M. Brehme et al., A Genome-Wide Screen Identifies the Evolutionarily Conserved KEOPS Complex as a Telomere Regulator, Cell, vol.124, pp.1155-1168, 2006.

S. D. Dreyer, G. Zhou, A. Baldini, A. Winterpacht, B. Zabel et al., Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome, Nat Genet, vol.19, pp.47-50, 1998.

S. Edvardson, L. Prunetti, A. Arraf, D. Haas, J. M. Bacusmo et al., tRNA N6-adenosine threonylcarbamoyltransferase defect due to KAE1/TCS3 (OSGEP) mutation manifest by neurodegeneration and renal tubulopathy, Eur J Hum Genet, vol.25, pp.545-551, 2017.

B. El-yacoubi, I. Hatin, C. Deutsch, T. Kahveci, J. Rousset et al., A role for the universal Kae1/Qri7/YgjD (COG0533) family in tRNA modification, EMBO J, vol.30, pp.882-893, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00593551

H. V. Esch, P. Groenen, M. A. Nesbit, S. Schuffenhauer, P. Lichtner et al., GATA3 haplo-insufficiency causes human HDR syndrome, Nature, vol.406, pp.419-422, 2000.

M. Fournier, M. Orpinell, C. Grauffel, E. Scheer, J. Garnier et al., KAT2A/KAT2B-targeted acetylome reveals a role for PLK4 acetylation in preventing centrosome amplification, Nat Commun, vol.7, p.13227, 2016.

A. Fujita, H. Tsukaguchi, E. Koshimizu, H. Nakazato, K. Itoh et al., Homozygous splicing mutation in NUP133 causes Galloway-Mowat syndrome, Annals of Neurology, vol.84, pp.814-828, 2018.

W. H. Galloway and A. P. Mowat, Congenital microcephaly with hiatus hernia and nephrotic syndrome in two sibs, Journal of Medical Genetics, vol.5, pp.319-321, 1968.

C. Gamberi, D. R. Hipfner, M. Trudel, and W. D. Lubell, Bicaudal C mutation causes myc and TOR pathway up-regulation and polycystic kidney disease-like phenotypes in Drosophila, PLoS Genet, vol.13, 2017.

P. Garg, A Review of Podocyte Biology, AJN, vol.47, pp.3-13, 2018.

J. Gargano, I. Martin, P. Bhandari, and M. Grotewiel, Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in, Experimental Gerontology, vol.40, pp.386-395, 2005.

R. A. Gbadegesin, G. Hall, A. Adeyemo, N. Hanke, I. Tossidou et al., Mutations in the Gene That Encodes the F-Actin Binding Protein Anillin Cause FSGS, J Am Soc Nephrol, vol.25, 1991.

H. Y. Gee, S. Ashraf, X. Wan, V. Vega-warner, J. Esteve-rudd et al., Mutations in EMP2 Cause Childhood-Onset Nephrotic Syndrome, Am J Hum Genet, vol.94, pp.884-890, 2014.

H. Y. Gee, F. Zhang, S. Ashraf, S. Kohl, C. E. Sadowski et al., KANK deficiency leads to podocyte dysfunction and nephrotic syndrome, J Clin Invest, vol.125, pp.2375-2384, 2015.

H. Y. Gee, C. E. Sadowski, P. K. Aggarwal, J. D. Porath, T. A. Yakulov et al., FAT1 mutations cause a glomerulotubular nephropathy, Nat Commun, vol.7, 2016.

M. Golay, A. Douillard, N. Nagot, M. Fila, L. Ichay et al.,

, Syndrome néphrotique idiopathique corticodépendant de l'enfant : facteurs prédictifs de recours à un traitement immunosuppresseur, Archives de Pédiatrie, vol.24, pp.1096-1102

I. R. Gupta, C. Baldwin, D. Auguste, K. C. Ha, J. El-andalousi et al., ARHGDIA: a novel gene implicated in nephrotic syndrome, J Med Genet, vol.50, pp.330-338, 2013.

T. Hart, M. Chandrashekhar, M. Aregger, Z. Steinhart, K. R. Brown et al., High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities, Cell, vol.163, pp.1515-1526, 2015.

C. Has, G. Spartà, D. Kiritsi, L. Weibel, A. Moeller et al., Integrin ?3 Mutations with Kidney, Lung, and Skin Disease, N Engl J Med, vol.366, pp.1508-1514, 2012.

A. Hecker, R. Lopreiato, M. Graille, B. Collinet, P. Forterre et al., Structure of the archaeal Kae1/Bud32 fusion protein MJ1130: a model for the eukaryotic EKC/KEOPS subcomplex, EMBO J, vol.27, pp.2340-2351, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00357948

S. F. Heeringa, G. Chernin, M. Chaki, W. Zhou, A. J. Sloan et al., COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness, J Clin Invest, vol.121, pp.2013-2024, 2011.

M. Helmstädter and M. Simons, Using <Emphasis Type="Italic">Drosophila</Emphasis> nephrocytes in genetic kidney disease, Cell Tissue Res, vol.369, pp.119-126, 2017.

M. Helmstädter, K. Lüthy, M. Gödel, M. Simons, . Ashish et al., Functional Study of Mammalian Neph Proteins in Drosophila melanogaster, PLoS One, vol.7, 2012.

M. Helmstädter, T. B. Huber, and T. Hermle, Using the Drosophila Nephrocyte to Model Podocyte Function and Disease, 2017.

J. M. Henderson, S. Waheeb, A. Weins, S. V. Dandapani, and M. R. Pollak, Mice with altered ?-actinin-4 expression have distinct morphologic patterns of glomerular disease, Kidney International, vol.73, pp.741-750, 2008.

T. Hermle, D. A. Braun, M. Helmstädter, T. B. Huber, and F. Hildebrandt, Modeling Monogenic Human Nephrotic Syndrome in the Drosophila Garland Cell Nephrocyte, J Am Soc Nephrol, vol.28, pp.1521-1533, 2017.

I. Hovatta, M. A. Zapala, R. S. Broide, E. E. Schadt, O. Libiger et al., DNA variation and brain region-specific expression profiles exhibit different relationships between inbred mouse strains: implications for eQTL mapping studies, Genome Biol, vol.8, p.25, 2007.

E. Huynh-cong, A. A. Bizet, O. Boyer, S. Woerner, O. Gribouval et al., A Homozygous Missense Mutation in the Ciliary Gene TTC21B Causes Familial FSGS, J Am Soc Nephrol, vol.25, pp.2435-2443, 2014.

P. Ihalmo, T. Palmén, H. Ahola, E. Valtonen, and H. Holthöfer, Filtrin is a novel member of nephrin-like proteins, Biochemical and Biophysical Research Communications, vol.300, pp.364-370, 2003.

E. D. Javor, S. A. Moran, J. R. Young, E. K. Cochran, A. M. Depaoli et al., Proteinuric Nephropathy in Acquired and Congenital Generalized Lipodystrophy: Baseline Characteristics and Course during Recombinant Leptin Therapy, J Clin Endocrinol Metab, vol.89, pp.3199-3207, 2004.

C. Jeanpierre, E. Denamur, I. Henry, M. O. Cabanis, S. Luce et al., Identification of constitutional WT1 mutations, 1998.

C. H. Kos, T. C. Le, S. Sinha, J. M. Henderson, S. H. Kim et al., Mice deficient in ?-actinin-4 have severe glomerular disease, J Clin Invest, vol.111, pp.1683-1690, 2003.

P. Krall, C. P. Canales, P. Kairath, P. Carmona-mora, J. Molina et al., Podocyte-Specific Overexpression of Wild Type or Mutant Trpc6 in Mice Is Sufficient to Cause Glomerular Disease, PLoS ONE, vol.5, 2010.

M. C. Kruer, T. Jepperson, S. Dutta, R. D. Steiner, E. Cottenie et al., Mutations in Gamma Adducin are Associated With Inherited Cerebral Palsy, vol.74, pp.805-814, 2013.

R. J. Lemmers, R. Tawil, L. M. Petek, J. Balog, G. J. Block et al., Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2, Nat Genet, vol.44, pp.1370-1374, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00770764

L. C. López, M. Schuelke, C. M. Quinzii, T. Kanki, R. J. Rodenburg et al., Leigh Syndrome with Nephropathy and CoQ10 Deficiency Due to decaprenyl diphosphate synthase subunit 2 (PDSS2) Mutations, Am J Hum Genet, vol.79, pp.1125-1129, 2006.

E. Machuca, G. Benoit, A. , and C. , Genetics of nephrotic syndrome: connecting molecular genetics to podocyte physiology, Human Molecular Genetics, vol.18, pp.185-194, 2009.

D. Y. Mao, D. Neculai, M. Downey, S. Orlicky, Y. Z. Haffani et al., Atomic Structure of the KEOPS Complex: An Ancient Protein Kinase-Containing Molecular Machine, Molecular Cell, vol.32, pp.259-275, 2008.

Z. Marelja and M. Simons, Filling the Gap: Drosophila Nephrocytes as Model System in Kidney Research, JASN, vol.30, pp.719-720, 2019.

V. Mariot, S. Roche, C. Hourdé, D. Portilho, S. Sacconi et al., Correlation between low FAT1 expression and early affected muscle in facioscapulohumeral muscular dystrophy, Annals of Neurology, vol.78, pp.387-400, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01431338

*. Matsuoka, Y. Li, X. Bennett, and V. , Adducin: structure, function and regulation, CMLS, Cell. Mol. Life Sci, vol.57, pp.884-895, 2000.

C. Mele, P. Iatropoulos, R. Donadelli, A. Calabria, R. Maranta et al., MYO1E MUTATIONS AND CHILDHOOD FAMILIAL FOCAL SEGMENTAL GLOMERULOSCLEROSIS, N Engl J Med, vol.365, pp.295-306, 2011.

C. Millet-boureima, J. Porras-marroquin, and C. Gamberi, Modeling Renal Disease "On the Fly, Biomed Res, 2018.

G. Mollet, J. Ratelade, and O. Boyer, Podocin Inactivation in Mature Kidneys Causes Focal Segmental Glomerulosclerosis and Nephrotic Syndrome, 2009.

S. Ohler, S. Hakeda-suzuki, and T. Suzuki, Hts, the Drosophila homologue of adducin, physically interacts with the transmembrane receptor golden goal to guide photoreceptor axons, Developmental Dynamics, vol.240, pp.135-148, 2011.

S. Okamoto, Y. Amaishi, I. Maki, T. Enoki, and J. Mineno, Highly efficient genome editing for single-base substitutions using optimized ssODNs with Cas9-RNPs, 2019.

L. Perrochia, E. Crozat, A. Hecker, W. Zhang, J. Bareille et al., In vitro biosynthesis of a universal t6A tRNA modification in Archaea and Eukarya, Nucleic Acids Res, vol.41, pp.1953-1964, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00822760

L. Perrochia, D. Guetta, A. Hecker, P. Forterre, and T. Basta, Functional assignment of KEOPS/EKC complex subunits in the biosynthesis of the universal t6A tRNA modification, Nucleic Acids Res, vol.41, pp.9484-9499, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00881058

J. E. Posey, T. Harel, P. Liu, J. A. Rosenfeld, R. A. James et al., Resolution of Disease Phenotypes Resulting from Multilocus Genomic Variation, N Engl J Med, vol.376, pp.21-31, 2017.

R. Preston, H. M. Stuart, and R. Lennon, Genetic testing in steroid-resistant nephrotic syndrome: why, who, when and how?, Pediatr Nephrol, vol.34, pp.195-210, 2019.

P. L. Puri, V. Sartorelli, X. Yang, Y. Hamamori, V. V. Ogryzko et al., Differential Roles of p300 and PCAF Acetyltransferases in Muscle Differentiation, Molecular Cell, vol.1, pp.35-45, 1997.

H. Putaala, R. Soininen, P. Kilpeläinen, J. Wartiovaara, and K. Tryggvason, The murine nephrin gene is specifically expressed in kidney, brain and pancreas: inactivation of the gene leads to massive proteinuria and neonatal death, Hum Mol Genet, vol.10, pp.1-8, 2001.

C. Quinzii, A. Naini, L. Salviati, E. Trevisson, P. Navas et al., A Mutation in Para-Hydroxybenzoate-Polyprenyl Transferase (COQ2) Causes Primary Coenzyme Q10 Deficiency, Am J Hum Genet, vol.78, pp.345-349, 2006.

J. Ramos and D. Fu, The emerging impact of tRNA modifications in the brain and nervous system, Biochimica et Biophysica Acta (BBA) -Gene Regulatory Mechanisms, vol.1862, pp.412-428, 2019.

J. Reiser, F. J. Pixley, A. Hug, W. Kriz, W. E. Smoyer et al., Regulation of mouse podocyte process dynamics by protein tyrosine phosphatases, Kidney International, vol.57, pp.2035-2042, 2000.

R. Rodewald and M. J. Karnovsky, POROUS SUBSTRUCTURE OF THE GLOMERULAR SLIT DIAPHRAGM IN THE RAT AND MOUSE, The Journal of Cell Biology, vol.60, pp.423-433, 1974.

S. Roselli, L. Heidet, M. Sich, A. Henger, M. Kretzler et al., Early Glomerular Filtration Defect and Severe Renal Disease in Podocin-Deficient Mice, Molecular and Cellular Biology, vol.24, pp.550-560, 2004.

R. O. Rosti, B. N. Sotak, S. L. Bielas, G. Bhat, J. L. Silhavy et al., Homozygous mutation in NUP107 leads to microcephaly with steroid-resistant nephrotic condition similar to Galloway-Mowat syndrome, Journal of Medical Genetics, vol.54, pp.399-403, 2017.

K. E. Sahr, A. J. Lambert, S. L. Ciciotte, N. Mohandas, and L. L. Peters, Targeted Deletion of the ?-Adducin Gene (Add3) in Mice Reveals Differences in ?-Adducin Interactions in Erythroid and Nonerythroid Cells, Am J Hematol, vol.84, pp.354-361, 2009.

B. Sauer, Inducible Gene Targeting in Mice Using the Cre/loxSystem, Methods, vol.14, pp.381-392, 1998.

M. Seiler, M. Venkatachalam, and R. Cotran, Glomerular epithelium: structural alterations induced by polycations, Science, vol.189, pp.390-393, 1975.

N. Shih, J. Li, V. Karpitskii, A. Nguyen, M. L. Dustin et al.,

, Congenital Nephrotic Syndrome in Mice Lacking CD2-Associated Protein. Science, vol.286, pp.312-315

A. K. Solanki, E. Widmeier, E. Arif, S. Sharma, A. Daga et al., Mutations in KIRREL1, a slit diaphragm component, cause steroid-resistant nephrotic syndrome, Kidney International, vol.96, pp.883-889, 2019.

J. O. Steiss, S. Gross, B. A. Neubauer, and A. Hahn, Late-onset nephrotic syndrome and severe cerebellar atrophy in Galloway-Mowat syndrome, Neuropediatrics, vol.36, pp.332-335, 2005.

B. Subramanian, H. Sun, P. Yan, V. T. Charoonratana, H. N. Higgs et al., Mice with mutant Inf2 show impaired podocyte and slit diaphragm integrity in response to protamine-induced kidney injury, Kidney International, vol.90, pp.363-372, 2016.

F. Terzi, M. Burtin, and G. Friedlander, Using Transgenic Mice to Analyze the Mechanisms of Progression of Chronic Renal Failure, JASN, vol.11, pp.144-148, 2000.

Y. Ueda, D. Gullipalli, and W. Song, Modeling complement-driven diseases in transgenic mice: Values and limitations, Immunobiology, vol.221, pp.1080-1090, 2016.

J. Vodopiutz, R. Seidl, D. Prayer, M. I. Khan, J. A. Mayr et al., WDR73 Mutations Cause Infantile Neurodegeneration and Variable Glomerular Kidney Disease, Human Mutation, vol.36, pp.1021-1028, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01790726

L. C. Wan, M. C. Pillon, N. Thevakumaran, Y. Sun, A. Chakrabartty et al., Structural and functional characterization of KEOPS dimerization by Pcc1 and its role in t 6 A biosynthesis, Nucleic Acids Res, vol.44, pp.6971-6980, 2016.

L. C. Wan, P. Maisonneuve, R. K. Szilard, J. Lambert, T. F. Ng et al., Proteomic analysis of the human KEOPS complex identifies C14ORF142 as a core subunit homologous to yeast Gon7, Nucleic Acids Res, vol.45, pp.805-817, 2017.

H. Wang, E. A. Oestreich, N. Maekawa, T. A. Bullard, K. L. Vikstrom et al., Phospholipase C ? Modulates ?-Adrenergic Receptor-Dependent Cardiac Contraction and Inhibits Cardiac Hypertrophy, Circulation Research, vol.97, pp.1305-1313, 2005.

P. Z. Wang, C. Prasad, C. I. Rodriguez-cuellar, and G. Filler, Nephrological and urological complications of homozygous c.974G>A (p.Arg325Gln) OSGEP mutations, Pediatric Nephrology, vol.33, pp.2201-2204, 2018.

H. Weavers, S. Prieto-sánchez, F. Grawe, A. Garcia-lópez, R. Artero et al., The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm, Nature, vol.457, pp.322-326, 2009.

B. L. Wharram, M. Goyal, P. J. Gillespie, J. E. Wiggins, D. B. Kershaw et al., Altered podocyte structure in GLEPP1 (Ptpro)-deficient mice associated with hypertension and low glomerular filtration rate, 2000.

M. P. Winn, P. J. Conlon, K. L. Lynn, M. K. Farrington, T. Creazzo et al., A Mutation in the TRPC6 Cation Channel Causes Familial, 2005.

Y. Wu, D. Liang, Y. Wang, M. Bai, W. Tang et al., Correction of a Genetic Disease in Mouse via Use of CRISPR-Cas9, Cell Stem Cell, vol.13, pp.659-662, 2013.

W. Xu, D. G. Edmondson, Y. A. Evrard, M. Wakamiya, R. R. Behringer et al., Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development, Nat Genet, vol.26, pp.229-232, 2000.

T. Yasukawa, T. Suzuki, T. Suzuki, T. Ueda, S. Ohta et al., Modification Defect at Anticodon Wobble Nucleotide of Mitochondrial tRNAsLeu(UUR) with Pathogenic Mutations of Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like Episodes, J. Biol. Chem, vol.275, pp.4251-4257, 2000.

H. Yu, M. Artomov, S. Brähler, M. C. Stander, G. Shamsan et al., A role for genetic susceptibility in sporadic focal segmental glomerulosclerosis, J Clin Invest, vol.126, pp.1067-1078, 2016.

A. Zankl, E. L. Duncan, P. J. Leo, G. R. Clark, E. A. Glazov et al., Multicentric Carpotarsal Osteolysis Is Caused by Mutations Clustering in the Amino-Terminal Transcriptional Activation Domain of MAFB, Am J Hum Genet, vol.90, pp.494-501, 2012.

M. Zenker, T. Aigner, O. Wendler, T. Tralau, H. Müntefering et al., Human laminin ?2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities, Hum Mol Genet, vol.13, pp.2625-2632, 2004.

F. Zhang, C. , and X. , The Drosophila nephrocyte has a glomerular filtration system, Nat Rev Nephrol, vol.10, pp.491-491, 2014.

F. Zhang, Y. Zhao, and Z. Han, An In Vivo Functional Analysis System for Renal Gene Discovery in Drosophila Pericardial Nephrocytes, J Am Soc Nephrol, vol.24, pp.191-197, 2013.

W. Zhang, B. Collinet, M. Graille, M. Daugeron, N. Lazar et al., Crystal structures of the Gon7/Pcc1 and Bud32/Cgi121 complexes provide a model for the complete yeast KEOPS complex, Nucleic Acids Res, vol.43, pp.3358-3372, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01220993

S. Zhuang, H. Shao, F. Guo, R. Trimble, E. Pearce et al., Sns and Kirre, the Drosophila orthologs of Nephrin and Neph1, direct adhesion, fusion and formation of a slit diaphragm-like structure in insect nephrocytes, Development, vol.136, pp.2335-2344, 2009.

J. E. Posey, T. Harel, P. Liu, J. A. Rosenfeld, R. A. James et al., Resolution of Disease Phenotypes Resulting from Multilocus Genomic Variation. The New England journal of medicine, vol.376, p.5335876, 2017.

D. H. Margolin, M. Kousi, Y. M. Chan, E. T. Lim, J. D. Schmahmann et al., Ataxia, dementia, and hypogonadotropism caused by disordered ubiquitination. The New England journal of medicine, vol.368, p.3738065, 2013.

K. Kajiwara, E. L. Berson, and T. P. Dryja, Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci, Science, vol.264, issue.5165, pp.1604-1612, 1994.

R. J. Lemmers, R. Tawil, L. M. Petek, J. Balog, G. J. Block et al., Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2, Nat Genet, vol.44, issue.12, pp.1370-1374, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00770764

P. Central and P. , , p.3671095

N. Katsanis, The oligogenic properties of Bardet-Biedl syndrome, Hum Mol Genet, vol.13, pp.65-71, 2004.

A. A. Schaffer, Digenic inheritance in medical genetics, Journal of medical genetics, vol.50, issue.10, p.3778050, 2013.

M. C. Kruer, T. Jepperson, S. Dutta, R. D. Steiner, E. Cottenie et al., Mutations in gamma adducin are associated with inherited cerebral palsy, Ann Neurol, vol.74, issue.6, pp.805-819, 2013.

F. Hildebrandt, Genetic kidney diseases, Lancet, vol.375, issue.9722, p.2898711, 2010.

Y. Matsuoka, X. Li, and V. Bennett, Adducin: structure, function and regulation. Cellular and molecular life sciences, CMLS, vol.57, issue.6, pp.884-95, 2000.

X. Li, Y. Matsuoka, and V. Bennett, Adducin preferentially recruits spectrin to the fast growing ends of actin filaments in a complex requiring the MARCKS-related domain and a newly defined oligomerization domain, J Biol Chem, vol.273, issue.30, pp.19329-19367, 1998.

P. L. Puri, V. Sartorelli, X. J. Yang, Y. Hamamori, V. V. Ogryzko et al., Differential roles of p300 and PCAF acetyltransferases in muscle differentiation, Mol Cell, vol.1, issue.1, pp.35-45, 1997.

M. A. Martinez-balbas, U. M. Bauer, S. J. Nielsen, A. Brehm, and T. Kouzarides, Regulation of E2F1 activity by acetylation, The EMBO journal, vol.19, issue.4, p.305604, 2000.

L. Liu, D. M. Scolnick, R. C. Trievel, H. B. Zhang, R. Marmorstein et al., p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage, Molecular and cellular biology, vol.19, issue.2, p.116049, 1999.

W. Xu, D. G. Edmondson, and R. Sy, Mammalian GCN5 and P/CAF acetyltransferases have homologous amino-terminal domains important for recognition of nucleosomal substrates. Molecular and cellular biology, vol.18, p.109152, 1998.

S. Ohler, S. Hakeda-suzuki, and T. Suzuki, Hts, the Drosophila homologue of Adducin, physically interacts with the transmembrane receptor Golden goal to guide photoreceptor axons. Developmental dynamics: an official publication of the American Association of Anatomists, vol.240, pp.135-183, 2011.

C. Carre, D. Szymczak, J. Pidoux, and C. Antoniewski, The histone H3 acetylase dGcn5 is a key player in Drosophila melanogaster metamorphosis, Molecular and cellular biology, vol.25, issue.18, pp.8228-8266, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00016384

S. B. Diop and R. Bodmer, Gaining Insights into Diabetic Cardiomyopathy from Drosophila. Trends in endocrinology and metabolism: TEM, vol.26, p.4638170, 2015.

R. Bodmer and M. Frasch, Development and Aging of the Drosophila Heart, p.p, 2010.

H. Weavers, S. Prieto-sanchez, F. Grawe, A. Garcia-lopez, R. Artero et al., The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm, Nature, vol.457, issue.7227, pp.322-328, 2009.

S. Zhuang, H. Shao, F. Guo, R. Trimble, E. Pearce et al., Sns and Kirre, the Drosophila orthologs of Nephrin and Neph1, direct adhesion, fusion and formation of a slit diaphragm-like structure in insect nephrocytes, Development, vol.136, issue.14, p.2729346, 2009.

M. Helmstadter and M. Simons, Using Drosophila nephrocytes in genetic kidney disease, Cell Tissue Res, vol.369, issue.1, p.28401308, 2017.

S. Lovric, S. Goncalves, H. Y. Gee, B. Oskouian, H. Srinivas et al., Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency, J Clin Invest, vol.127, issue.3, pp.912-940, 2017.

T. Hermle, D. A. Braun, M. Helmstadter, T. B. Huber, and F. Hildebrandt, Modeling Monogenic Human Nephrotic Syndrome in the Drosophila Garland Cell Nephrocyte, J Am Soc Nephrol, vol.28, issue.5, p.5407722, 2017.

M. Helmstadter, K. Luthy, M. Godel, M. Simons, A. Nihalani et al., Functional study of mammalian Neph proteins in Drosophila melanogaster, PLoS One, vol.7, issue.7, p.40300, 2012.

F. Grahammer, C. Wigge, C. Schell, O. Kretz, J. Patrakka et al., A flexible, multilayered protein scaffold maintains the slit in between glomerular podocytes, JCI Insight, vol.1, issue.9, p.4943462, 2016.

J. R. Ivy, M. Drechsler, J. H. Catterson, R. Bodmer, K. Ocorr et al., Klf15 Is Critical for the Development and Differentiation of Drosophila Nephrocytes, PLoS One, vol.10, issue.8, p.4547745, 2015.

J. Na, M. T. Sweetwyne, A. S. Park, K. Susztak, and R. L. Cagan, Diet-Induced Podocyte Dysfunction in Drosophila and Mammals, Cell reports, vol.12, issue.4, p.4532696, 2015.

E. Kruzel-davila, R. Shemer, A. Ofir, I. Bavli-kertselli, I. Darlyuk-saadon et al., APOL1-Mediated Cell Injury Involves Disruption of Conserved Trafficking Processes, J Am Soc Nephrol, vol.28, issue.4, p.5373454, 2017.

H. Y. Gee, C. E. Sadowski, P. K. Aggarwal, J. D. Porath, T. A. Yakulov et al., FAT1 mutations cause a glomerulotubular nephropathy, Nature communications, vol.7, p.4770090, 2016.

H. Y. Gee, F. Zhang, S. Ashraf, S. Kohl, C. E. Sadowski et al., KANK deficiency leads to podocyte dysfunction and nephrotic syndrome, J Clin Invest, vol.125, issue.6, pp.2375-84, 2015.

/. Pmid, , p.4497755, 25961457.

W. Xu, D. G. Edmondson, Y. A. Evrard, M. Wakamiya, R. R. Behringer et al., Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development, Nat Genet, vol.26, issue.2, pp.229-261, 2000.

H. Yu, M. Artomov, S. Brahler, M. C. Stander, G. Shamsan et al., A role for genetic susceptibility in sporadic focal segmental glomerulosclerosis, J Clin Invest, vol.126, issue.3, p.4767358, 2016.

M. Boerries, F. Grahammer, S. Eiselein, M. Buck, C. Meyer et al., Molecular fingerprinting of the podocyte reveals novel gene and protein regulatory networks, Kidney international, vol.83, issue.6, pp.1052-64, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01001262

R. Puttagunta, A. Tedeschi, M. G. Soria, A. Hervera, R. Lindner et al., PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system, Nat Commun, vol.5, p.3527, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02106619

S. Y. Park, M. J. Kim, Y. J. Kim, Y. H. Lee, D. Bae et al., Selective PCAF inhibitor ameliorates cognitive and behavioral deficits by suppressing NF-kappaB-mediated neuroinflammation induced by Abeta in a model of Alzheimer's disease, Int J Mol Med, vol.35, issue.4, pp.1109-1127, 2015.

N. Rabhi, P. D. Denechaud, X. Gromada, S. A. Hannou, H. Zhang et al., KAT2B Is Required for Pancreatic Beta Cell Adaptation to Metabolic Stress by Controlling the Unfolded Protein Response, Cell Rep, vol.15, issue.5, pp.1051-61, 2016.

A. J. Bastiaansen, M. M. Ewing, H. C. De-boer, T. C. Van-der-pouw-kraan, M. R. De-vries et al., Lysine acetyltransferase PCAF is a key regulator of arteriogenesis, Arterioscler Thromb Vasc Biol, vol.33, issue.8, p.4049097, 2013.

M. Jeitany, D. Bakhos-douaihy, D. C. Silvestre, J. R. Pineda, N. Ugolin et al., PubMed Central PMCID: PMCPMC5432255. detailed in Supplementary Methods. Human podocytes stably overexpressing 2HA-GON7 or V5-LAGE3, or transiently depleted for GON7, LAGE3, OSGEP, or YRDC were obtained by transduction with lentiviral particles and subsequent puromycin selection (2 ?g/ml). HEK293T cells (ATCC CRL-3216) were transiently, Oncotarget, vol.8, issue.16, pp.26269-80, 2017.

A. , at 1/1000), rabbit anti-GON7 (HPA 051832, used at 1:500), rabbit anti-LAGE3 (HPA 036122, used at 1/500), rabbit anti-TPRKB (HPA035712, used at 1:500), rabbit anti-OSGEP (HPA 039751, used at 1/1000), and mouse anti-GAPDH (MAB374, used at 1/2000) from Sigma-Aldrich; mouse anti-V5 (MCA1360, used at 1/1000) from Bio-Rad; rabbit anti-YRDC (PA5-56366, used at 1:500) from ThermoFisher Scientific; rabbit anti-LAGE3 (NBP2-32715, used at 1:1000) and mouse anti-OSGEP (NBP2-00823, used at 1:500) from Novus Biologicals; rabbit anti-TP53RK (AP17010b, used at 1:500) from Abgent. Secondary antibodies for immunoblotting were sheep: anti-mouse and donkey anti-rabbit HRP-conjugated antibodies (GE Healthcare, UK), and IRDye 800CW Donkey anti-rabbit (926-32213) and IRDye 680RD Donkey antimouse (926-68072) antibodies (LI-COR), The following antibodies were used in the study: mouse anti-?-tubulin (T5168, used at 1:1000), mouse anti-actin (A5316, used at 1:1000), mouse anti-HA (12CA5

, Cells were transformed using the lithium acetate method 38 . Media were supplemented with 2% agar for solid media. The S. cerevisiae W303 derived strain, ?sua5::KanMX (YCplac33-SUA5) 39 , was used as the host for the complementation assay. For each pESC-TRP plasmid derivative to be tested, three independent clones were selected after transformation and grown on GLU-TRP media. Clones were then streaked onto GAL-TRP containing 0.1% 5-fluoroorotic acid (5-FOA) to counter-select the YCplac33-SUA5 plasmid (containing URA3), Yeast culture and heterologous complementation assay. Yeast cells were grown at 28°C in standard rich medium YEPD (1% yeast extract, 2% peptone

B. El-yacoubi, M. Bailly, and V. De-crecy-lagard, Biosynthesis and function of posttranscriptional modifications of transfer RNAs, Annu. Rev. Genet, vol.46, pp.69-95, 2012.

B. El-yacoubi, A role for the universal Kae1/Qri7/YgjD (COG0533) family in tRNA modification, EMBO J, vol.30, pp.882-893, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00593551

M. Srinivasan, The highly conserved KEOPS/EKC complex is essential for a universal tRNA modification, t6A, EMBO J, vol.30, pp.873-881, 2011.

C. T. Lauhon, Mechanism of N6-threonylcarbamoyladenonsine (t(6)A) biosynthesis: isolation and characterization of the intermediate threonylcarbamoyl-AMP, Biochemistry, vol.51, pp.8950-8963, 2012.

A. Costessi, The human EKC/KEOPS complex is recruited to Cullin2 ubiquitin ligases by the human tumour antigen PRAME, PLoS One, vol.7, p.42822, 2012.

D. Y. Mao, Atomic structure of the KEOPS complex: an ancient protein kinase-containing molecular machine, Mol. Cell, vol.32, pp.259-275, 2008.

L. C. Wan, Proteomic analysis of the human KEOPS complex identifies C14ORF142 as a core subunit homologous to yeast Gon7, Nucleic Acids Res, vol.45, pp.805-817, 2017.

W. Zhang, Crystal structures of the Gon7/Pcc1 and Bud32/Cgi121 complexes provide a model for the complete yeast KEOPS complex, Nucleic Acids Res, vol.43, pp.3358-3372, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01220993

P. C. Thiaville, D. Iwata-reuyl, and V. De-crecy-lagard, Diversity of the biosynthesis pathway for threonylcarbamoyladenosine (t(6)A), a universal modification of tRNA, RNA Biol, vol.11, pp.1529-1539, 2014.

J. Ramos and D. Fu, The emerging impact of tRNA modifications in the brain and nervous system, Biochim. Biophys. Acta Gene Regul. Mech, vol.1862, pp.412-428, 2019.

W. H. Galloway and A. P. Mowat, Congenital microcephaly with hiatus hernia and nephrotic syndrome in two sibs, J. Med. Genet, vol.5, pp.319-321, 1968.

D. A. Braun, Mutations in multiple components of the nuclear pore complex cause nephrotic syndrome, J. Clin. Invest, vol.128, pp.4313-4328, 2018.

D. A. Braun, Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly, Nat. Genet, vol.49, pp.1529-1538, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02187752

D. A. Braun, Mutations in WDR4 as a new cause of Galloway-Mowat syndrome, Am. J. Med. Genet. A, vol.176, pp.2460-2465, 2018.

E. Colin, Loss-of-function mutations in WDR73 are responsible for microcephaly and steroid-resistant nephrotic syndrome: Galloway-Mowat syndrome, Am. J. Hum. Genet, vol.95, pp.637-648, 2014.

A. Fujita, Homozygous splicing mutation in NUP133 causes Galloway-Mowat syndrome, Ann. Neurol, vol.84, pp.814-828, 2018.

R. O. Rosti, Homozygous mutation in NUP107 leads to microcephaly with steroid-resistant nephrotic condition similar to Galloway-Mowat syndrome, J. Med. Genet, vol.54, pp.399-403, 2017.

J. Vodopiutz, WDR73 mutations cause infantile neurodegeneration and variable glomerular kidney disease, Hum. Mutat, vol.36, pp.1021-1028, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01790726

C. Parthier, The O-carbamoyltransferase TobZ catalyzes an ancient enzymatic reaction, Angew. Chem. Int. Ed. Engl, vol.51, pp.4046-4052, 2012.

B. El-yacoubi, The universal YrdC/Sua5 family is required for the formation of threonylcarbamoyladenosine in tRNA, Nucleic Acids Res, vol.37, pp.2894-2909, 2009.

E. Kisseleva-romanova, Yeast homolog of a cancer-testis antigen defines a new transcription complex, EMBO J, vol.25, pp.3576-3585, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00133495

M. Downey, A genome-wide screen identifies the evolutionarily conserved KEOPS complex as a telomere regulator, Cell, vol.124, pp.1155-1168, 2006.

A. Hecker, Structure of the archaeal Kae1/Bud32 fusion protein MJ1130: a model for the eukaryotic EKC/KEOPS subcomplex, EMBO J, vol.27, pp.2340-2351, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00357948

Y. Y. Liu, Yeast KEOPS complex regulates telomere length independently of its t(6)A modification function, J. Genet. Genomics, vol.45, pp.247-257, 2018.

M. A. Saleem, A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression, J. Am. Soc. Nephrol, vol.13, pp.630-638, 2002.

P. C. Thiaville, Global translational impacts of the loss of the tRNA modification t(6)A in yeast, Micro Cell, vol.3, pp.29-45, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01412631

T. Bizien, A brief survey of state-of-the-art BioSAXS, Protein Pept. Lett, vol.23, pp.217-231, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01461929

V. A. Blomen, Gene essentiality and synthetic lethality in haploid human cells, Science, vol.350, pp.1092-1096, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02337430

L. C. Wan, Structural and functional characterization of KEOPS dimerization by Pcc1 and its role in t6A biosynthesis, Nucleic Acids Res, vol.44, pp.6971-6980, 2016.

R. Shaheen, Mutation in WDR4 impairs tRNA m(7)G46 methylation and causes a distinct form of microcephalic primordial dwarfism, Genome Biol, vol.16, p.210, 2015.

A. Trimouille, Further delineation of the phenotype caused by biallelic variants in the WDR4 gene, Clin. Genet, vol.93, pp.374-377, 2018.

A. Alexandrov, M. R. Martzen, and E. M. Phizicky, Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA, RNA, vol.8, pp.1253-1266, 2002.

N. Leulliot, Structure of the yeast tRNA m7G methylation complex, Structure, vol.16, pp.52-61, 2008.

S. Lin, Mettl1/Wdr4-Mediated m(7)G tRNA methylome is required for normal mRNA translation and embryonic stem cell self-renewal and differentiation, Mol. Cell, vol.71, p.245, 2018.

D. Rojas-benitez, C. Eggers, and A. Glavic, Modulation of the proteostasis machinery to overcome stress caused by diminished levels of t6A-modified tRNAs in Drosophila, Biomolecules, vol.7, 2017.

V. De-crecy-lagard, Matching tRNA modifications in humans to their known and predicted enzymes, Nucleic Acids Res, vol.47, pp.2143-2159, 2019.

M. Uhlen, Proteomics. Tissue-based map of the human proteome, Science, vol.347, p.1260419, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01479709

R. D. Gietz and R. H. Schiestl, High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method, Nat. Protoc, vol.2, pp.31-34, 2007.

A. Pichard-kostuch, Structure-function analysis of Sua5 protein reveals novel functional motifs required for the biosynthesis of the universal t(6)A tRNA modification, RNA, vol.24, pp.926-938, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02183256

K. Thuring, K. Schmid, P. Keller, and M. Helm, Analysis of RNA modifications by liquid chromatography-tandem mass spectrometry, Methods, vol.107, pp.48-56, 2016.

M. C. Serrano-perez, Endoplasmic reticulum-retained podocin mutants are massively degraded by the proteasome, J. Biol. Chem, vol.293, pp.4122-4133, 2018.

F. Touzot, Function of Apollo (SNM1B) at telomere highlighted by a splice variant identified in a patient with Hoyeraal-Hreidarsson syndrome, Proc. Natl. Acad. Sci. USA, vol.107, pp.10097-10102, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00484901

A. Sali, L. Potterton, F. Yuan, H. Van-vlijmen, and M. Karplus, Evaluation of comparative protein modeling by MODELLER, Proteins, vol.23, pp.318-326, 1995.

W. Kabsch and . Xds, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.125-132, 2010.

A. J. Mccoy, Phaser crystallographic software, J. Appl. Crystallogr, vol.40, pp.658-674, 2007.

M. D. Winn, Overview of the CCP4 suite and current developments, Acta Crystallogr. D Biol. Crystallogr, vol.67, pp.235-242, 2011.

G. Bricogne, BUSTER version 2.10.3 (Global Phasing Ltd, 2017.

P. Emsley and K. Cowtan, Coot: model-building tools for molecular graphics, Acta Crystallogr. D Biol. Crystallogr, vol.60, pp.2126-2132, 2004.

T. C. Terwilliger, Using prime-and-switch phasing to reduce model bias in molecular replacement, Acta Crystallogr. D Biol. Crystallogr, vol.60, pp.2144-2149, 2004.

G. David and J. Perez, Combined sampler robot and high-performance liquid chromatography: a fully automated system for biological small-angle X-ray scattering experiments at the Synchrotron SOLEIL SWING beamline, J. Appl. Cryst, vol.42, pp.892-900, 2009.

D. Franke, ATSAS 2.8: a comprehensive data analysis suite for smallangle scattering from macromolecular solutions, J. Appl. Crystallogr, vol.50, pp.1212-1225, 2017.

M. V. Petoukhov and D. I. Svergun, Global rigid body modeling of macromolecular complexes against small-angle scattering data, Biophys. J, vol.89, pp.1237-1250, 2005.

G. G. Krivov, M. V. Shapovalov, and R. L. Dunbrack, Improved prediction of protein side-chain conformations with SCWRL4, Proteins, vol.77, pp.778-795, 2009.

D. Svergun, C. Barberato, and M. H. Koch, CRYSOL-a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates, J. Appl. Cryst, vol.28, pp.768-773, 1995.

E. Valentini, A. G. Kikhney, G. Previtali, C. M. Jeffries, and D. I. Svergun, SASBDB, a repository for biological small-angle scattering data, Nucleic Acids Res, vol.43, pp.357-363, 2015.

R. S. Author, O. G. , O. B. , E. M. , F. N. et al., Antignac recruited patients and collected detailed clinical information for the study. N.B. provided MRI from control individuals and critically interpreted MRI images from patients, and A.M.v.E. provided and analyzed images of renal histology and electron microscopy

J. P. Arrondel, B. C. , D. L. , G. Martin, E. M. et al., performed cell experiments (co-immunoprecipitation, cycloheximide chase, cell culture), qPCR, and western blot experiments. S.M. performed proteins expression and purifications, cristallogenesis trials, diffraction data collection, 3D structure resolution, SAXS data collection, and analysis. B.C. performed OSGEP/ LAGE3/GON7-his expression and purification, and nucleosides preparation from tRNA samples and YRDC WT and mutant enzymatic assay. D.L. performed yeast complementation studies, expression, and purification of yeast tRNAs. D.D. performed SAXS data collection and analysis. E.L. collected and analyzed NMR experiments. A.-C.B. and S.S. performed HPLC MS/MS t 6 A modification analysis. G. Mollet, G. Martin, and I.C.G. performed proteomic studies in human podocyte cell lines. P.R. performed telomere restriction-fragment assays

G. Mollet, H. V. , C. C. , D. L. , S. M. et al., Antignac conceived and coordinated the study, and wrote the manuscript with the input of

, Laurine Buscara 1 , Gaëlle Martin 1 , Eduardo Machuca 1 , Fabien Nevo 1, Sophie Collardeau-Frachon, vol.6

C. Cnrs and U. Paris-sud, 13 Inserm UMR1163, Laboratory of Genome Dynamics in the Immune System, Rhumatologie et Dermatologie pédiatriques, Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Centre de référence de maladies rénales rares, vol.4

, L'étude de formes familiales rares de SN a permis d'identifier des mutations dans de nombreux gènes codant des protéines exprimées par le podocyte. Cependant, dans environ la moitié des cas familiaux de SN, le gène impliqué dans la maladie reste inconnu, et il n'existe à ce jour aucun traitement

. Au-cours-de-ce-travail and . De-recherche, Pour la première partie de mon travail, j'ai travaillé sur deux variants homozygotes identifiés dans les gènes ADD3 et KAT2B chez des enfants présentant un SN associé à une microcéphalie et une cardiomyopathie. Le premier gène code l'adducine-?, un important régulateur du cytosquelette d'actine, et le second pour la lysine acétyltransférase KAT2B responsable de l'acétylation des histones. Mon projet avait pour but d'évaluer la pathogénicité des mutations pour définir leur contribution au phénotype des patients en utilisant le modèle de la Drosophile. J'ai réalisé des expériences d'extinction de l'expression de ces deux gènes, séparément puis simultanément, suivi par des expériences de « sauvetage » pour étudier le phénotype des néphrocytes, équivalents chez la Drosophile des podocytes. Les résultats obtenus ont montré que la mutation d'ADD3 seule n'affecte pas les néphrocytes

. Pour, Le but de ce projet est de comprendre le rôle de la nouvelle sous-unité GON7, une protéine intrinsèquement désordonnée, sur la stabilité du complexe KEOPS, en particulier sur la sous-unité LAGE3 qui interagit directement avec GON7. Nous avons montré que les protéines GON7 et LAGE3 ont une demivie plus courte lorsqu'elles sont exprimées individuellement alors que leur demi-vie augmente lorsqu'elles sont co-exprimées, suggérant que l'interaction stabilise les deux protéines. En parallèle, j'ai développé des modèles murins de « knock-in » (KI) en insérant une mutation dans le gène Osgep ou dans le gène Lage3 par CRISPR/Cas9 afin d'étudier l'effet des mutations sur le développement de l'atteinte rénale et neurologique. Les résultats obtenus à ce jour indiquent que les souris KI ne présentent aucun signe clinique (absence de protéinurie) et histologique évident d'atteinte rénale ou cérébrale