K. Rouault-pierre, Ecole doctorale des Sciences de la Vie et de la Santé Année, 2010.

, Thèse n ° 1758 Thèse pour l ' obtention du DOCTORAT DE L ' UNIVERSITE BORDEAUX 2 Rôle des facteurs de transcription HIF ( Hypoxia Inducible Factor ) dans le maintien à long terme des cellule, pp.1-224, 2010.

G. L. Semenza and G. L. Wang, A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation, Mol. Cell. Biol, vol.12, issue.12, pp.5447-54, 1992.

M. Hockel and P. Vaupel, Tumor Hypoxia: Definitions and Current Clinical, Biologic, and Molecular Aspects, JNCI J. Natl. Cancer Inst, vol.93, issue.4, pp.266-276, 2001.

B. H. Jiang, G. L. Semenza, C. Bauer, and H. H. Marti, Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension, Am. J. Physiol, vol.271, issue.4, pp.1172-80, 1996.

M. F. Adam, Tissue oxygen distribution in head and neck cancer patients, Head Neck, vol.21, issue.2, pp.146-53, 1999.

V. A. Carroll and M. Ashcroft, Role of hypoxia-inducible factor (HIF)-1? versus HIF-2? in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: Implications for targeting the HIF pathway, Cancer Res, vol.66, issue.12, pp.6264-6270, 2006.

H. Tian, S. L. Mcknight, and D. W. Russell, Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells, Genes Dev, vol.11, issue.1, pp.72-82, 1997.

C. Willam, HIF prolyl hydroxylases in the rat; organ distribution and changes in expression following hypoxia and coronary artery ligation, J. Mol. Cell. Cardiol, vol.41, issue.1, pp.68-77, 2006.

N. S. Kenneth and S. Rocha, Regulation of gene expression by hypoxia, Biochem. J, vol.414, issue.1, pp.19-29, 2008.

G. L. Wang, B. H. Jiang, E. A. Rue, and G. L. Semenza, Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension, Proc. Natl

, Acad. Sci, vol.92, issue.12, pp.5510-5514, 1995.

J. A. Smythies, Inherent DNA-binding specificities of the HIF-1? and HIF-2? transcription factors in chromatin, EMBO Rep, vol.20, issue.1, 2019.

Y. Makino, A. Kanopka, W. J. Wilson, H. Tanaka, and L. Poellinger, Inhibitory PAS Domain Protein (IPAS) Is a Hypoxia-inducible Splicing Variant of the Hypoxiainducible Factor-3? Locus, J. Biol. Chem, vol.277, issue.36, pp.32405-32408, 2002.

, Hypoxia-inducible factor-3? promotes angiogenic activity of pulmonary endothelial cells by repressing the expression of the VE-cadherin gene. -PubMed -NCBI

Y. Z. Gu, S. M. Moran, J. B. Hogenesch, L. Wartman, and C. A. Bradfield, Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha, Gene Expr, vol.7, issue.3, pp.205-218, 1998.

J. P. Tolonen, A long hypoxia-inducible factor 3 isoform 2 is a transcription activator that regulates erythropoietin, Cell. Mol. Life Sci, 2019.

A. C. Epstein, C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation, Cell, vol.107, issue.1, pp.43-54, 2001.
URL : https://hal.archives-ouvertes.fr/in2p3-00023372

J. W. Jeong, Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation, Cell, vol.111, issue.5, pp.1085-1086, 2002.

M. A. Berta, N. Mazure, M. Hattab, J. Pouysségur, and M. C. Brahimi-horn, SUMOylation of hypoxia-inducible factor-1? reduces its transcriptional activity
URL : https://hal.archives-ouvertes.fr/hal-00319864

, Biochem. Biophys. Res. Commun, vol.360, issue.3, pp.646-652, 2007.

J. Cheng, X. Kang, S. Zhang, and E. T. Yeh, SUMO-Specific Protease 1 Is Essential for Stabilization of HIF1? during Hypoxia, Cell, vol.131, issue.3, pp.584-595, 2007.

N. M. Mazure, HIF-1: master and commander of the hypoxic world, Biochem. Pharmacol, vol.68, issue.6, pp.971-980, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00322376

E. B. Rankin, Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo, J. Clin. Invest, vol.117, issue.4, pp.1068-1077, 2007.

P. Carmeliet, L. Moons, and D. Collen, Mouse models of angiogenesis, arterial stenosis, atherosclerosis and hemostasis, Cardiovasc. Res, vol.39, issue.1, pp.8-33, 1998.

E. Hervouet, H. Simonnet, and C. Godinot, Mitochondria and reactive oxygen species in renal cancer, Biochimie, vol.89, issue.9, pp.1080-1088, 2007.

F. Dayan, D. Roux, M. C. Brahimi-horn, J. Pouyssegur, and N. M. Mazure, The oxygen sensor factor-inhibiting hypoxia-inducible factor-1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-1alpha, Cancer Res, vol.66, issue.7, pp.3688-98, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00321066

M. Gustafsson, Hypoxia requires notch signaling to maintain the undifferentiated cell state, Dev. Cell, vol.9, issue.5, pp.617-645, 2005.

S. V. Ufr, S. Nicolas, L. H. Tumorale, D. E. Glioblastomes, L. Docteur-de et al., , 2007.

F. Latif, Identification of the von Hippel-Lindau disease tumor suppressor gene, Science (80-. ), vol.260, issue.5112, pp.1317-1320, 1993.

T. Soussi, VHL (von Hippel-Lindau), Bull. Cancer, vol.87, issue.41, pp.771-773, 2000.

P. Hascoet, The pVHL172 isoform is not a tumor suppressor and up-regulates a subset of pro-tumorigenic genes including TGFB1 and MMP13, Oncotarget, vol.8, issue.44, pp.75989-76002, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01620484

S. C. Clifford, Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease, Hum. Mol. Genet, vol.10, issue.10, pp.1029-1067, 2001.

I. Kuzmin, F. M. Duh, F. Latif, L. Geil, B. Zbar et al., Identification of the promoter of the human von Hippel-Lindau disease tumor suppressor gene, Oncogene, vol.10, issue.11, pp.2185-94, 1995.

M. Lenglet, Identification of a new VHL exon and complex splicing alterations in familial erythrocytosis or von Hippel-Lindau disease, Blood, vol.132, issue.5, pp.469-483, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01833917

N. A. Faustino and T. A. Cooper, Pre-mRNA splicing and human disease, Genes and Development, vol.17, issue.4, pp.419-437, 2003.

S. Richard, C. Ladroue, S. Gad, S. Giraud, and B. , Gardie, and Réseau national maladie de VHL et prédispositions héréditaires au cancer du rein de l'Institut national du cancer (INCa), Bull. Cancer, vol.94, pp.170-179, 2007.

H. Qi, M. L. Gervais, W. Li, J. A. Decaprio, J. R. Challis et al., Molecular cloning and characterization of the von Hippel-Lindau-like protein, Mol. Cancer Res, vol.2, issue.1, pp.43-52, 2004.

W. G. Kaelin, The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer, Nature Reviews Cancer, vol.8, issue.11, pp.865-873, 2008.

P. Koivunen, M. Hirsilä, A. M. Remes, I. E. Hassinen, K. I. Kivirikko et al., Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF, J. Biol. Chem, vol.282, issue.7, pp.4524-4556, 2007.

E. Berra, E. Benizri, A. Ginouvès, V. Volmat, D. Roux et al., HIF prolylhydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia, EMBO J, vol.22, issue.16, pp.4082-90, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00322761

R. J. Appelhoff, Differential Function of the Prolyl Hydroxylases PHD1, PHD2, and PHD3 in the Regulation of Hypoxia-inducible Factor, J. Biol. Chem, vol.279, issue.37, pp.38458-38465, 2004.

J. Köditz, Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor, Blood, vol.110, issue.10, pp.3610-3617, 2007.

J. Wang, G. Chen, M. Muckenthaler, B. Galy, M. W. Hentze et al., Ironmediated degradation of IRP2, an unexpected pathway involving a 2-oxoglutaratedependent oxygenase activity, Mol. Cell. Biol, vol.24, issue.3, pp.954-65, 2004.

D. P. Stiehl, R. Wirthner, J. Köditz, P. Spielmann, G. Camenisch et al., Increased Prolyl 4-Hydroxylase Domain Proteins Compensate for Decreased Oxygen Levels, J. Biol. Chem, vol.281, issue.33, pp.23482-23491, 2006.

K. Takeda, Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins, Blood, vol.111, issue.6, pp.3229-3235, 2008.

I. Tcholakov, Time-dependent inhibition of PHD2, Biosci. Rep, vol.37, issue.3, p.20170275, 2017.

J. Pouysségur, F. Dayan, and N. M. Mazure, Hypoxia signalling in cancer and approaches to enforce tumour regression, Nature, vol.441, issue.7092, pp.437-443, 2006.

S. Barth, The Peptidyl Prolyl cis/trans Isomerase FKBP38 Determines Hypoxia-Inducible Transcription Factor Prolyl-4-Hydroxylase PHD2 Protein Stability

, Cell. Biol, vol.27, issue.10, pp.3758-3768, 2007.

A. C. Epstein, C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation, Cell, vol.107, issue.1, pp.43-54, 2001.
URL : https://hal.archives-ouvertes.fr/in2p3-00023372

A. Steinhoff, Cellular oxygen sensing: Importins and exportins are mediators of intracellular localisation of prolyl-4-hydroxylases PHD1 and PHD2, Biochem

, Biophys. Res. Commun, vol.387, issue.4, pp.705-716, 2009.

E. B. Rankin and A. J. Giaccia, The role of hypoxia-inducible factors in tumorigenesis, Cell Death and Differentiation, vol.15, issue.4, pp.678-685, 2008.

D. Hanahan and R. A. Weinberg, The hallmarks of cancer, Cell, vol.100, issue.1, pp.81683-81692, 2000.

A. Lindau, Studien Uber Kleinhirncysten. Bau, Pathogenese und Beziehungen zur Angiomatosis Retinae, Acta Pathol Microbiol Scand Suppl, vol.1, pp.1-128, 1926.

E. R. Maher, Von Hippel-Lindau disease: A genetic study, J. Med. Genet, vol.28, issue.7, pp.443-447, 1991.

R. T. Hillman, R. E. Green, and S. E. Brenner, An unappreciated role for RNA surveillance, Genome Biol, vol.5, issue.2, p.8, 2004.

S. Richard, P. David, K. Marsot-dupuch, S. Giraud, C. Béroud et al., Central nervous system hemangioblastomas, endolymphatic sac tumors, and von Hippel-Lindau disease, Neurosurgical Review, vol.23, issue.1, pp.1-22, 2000.

E. R. Maher and J. Kaelin, Medicine, vol.76, issue.6, pp.381-391, 1997.

P. R. Hammel, Pancreatic involvement in von Hippel-Lindau disease, Gastroenterology, vol.119, issue.4, pp.1087-1095, 2000.

C. Béroud, G. Collod-béroud, C. Boileau, T. Soussi, and C. Junien, UMD (Universal mutation database): a generic software to build and analyze locus-specific databases, Hum. Mutat, vol.15, issue.1, pp.86-94, 2000.

O. Iliopoulos, A. Kibel, S. Gray, and W. G. Kaelin, Tumour suppression by the human von Hippel-Lindau gene product, Nat. Med, vol.1, issue.8, pp.822-826, 1995.

M. A. Selak, R. V. Durán, and E. Gottlieb, Redox stress is not essential for the pseudohypoxic phenotype of succinate dehydrogenase deficient cells, Biochim. Biophys. Acta -Bioenerg, vol.1757, issue.5-6, pp.567-572, 2006.

T. Weaver, Structure of free fumarase C from Escherichia coli, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.61, issue.10, pp.1395-1401, 2005.

W. M. Linehan and T. A. Rouault, Molecular Pathways: Fumarate Hydratase-Deficient Kidney Cancer--Targeting the Warburg Effect in Cancer, Clin. Cancer Res, vol.19, issue.13, pp.3345-3352, 2013.

C. Liu, Prevalence of Somatic and Germline Mutations of Fumarate Hydratase in Uterine Leiomyomas from Young Patients, Histopathology, 2019.

H. D. Lau, A Clinicopathologic and Molecular Analysis of Fumarate Hydratase-Deficient Renal Cell Carcinoma in 32 Patients, Am. J. Surg. Pathol, p.1, 2019.

L. J. Castro-vega, Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas, Hum. Mol. Genet, vol.23, issue.9, pp.2440-2446, 2014.

B. Gardie, The role of PHD2 mutations in the pathogenesis of erythrocytosis, Hypoxia, vol.2, p.71, 2014.

P. J. Mccaffery, J. K. Fraser, F. K. Lin, and M. Berridge, Subunit structure of the erythropoietin receptor, J. Biol. Chem, vol.264, issue.18, pp.10507-10519, 1989.

V. C. Broudy, N. Lin, M. Brice, B. Nakamoto, and T. Papayannopoulou, Erythropoietin receptor characteristics on primary human erythroid cells, Blood, vol.77, issue.12, pp.2583-2590, 1991.

S. E. Juul, A. T. Yachnis, A. M. Rojiani, and R. D. Christensen, Immunohistochemical localization of erythropoietin and its receptor in the developing human brain

, Dev. Pathol, vol.2, issue.2, pp.148-58

C. Westenfelder, D. L. Biddle, and R. L. Baranowski, Human, rat, and mouse kidney cells express functional erythropoietin receptors, Kidney Int, vol.55, issue.3, pp.808-820, 1999.

D. M. Wojchowski, R. C. Gregory, C. P. Miller, A. K. Pandit, and T. J. Pircher, Signal Transduction in the Erythropoietin Receptor System, Exp. Cell Res, vol.253, issue.1, pp.143-156, 1999.

G. Constantinescu and L. , The Erythropoietin Receptor: Structure, Activation and Intracellular Signal Transduction, Trends Endocrinol. Metab, vol.10, issue.1, pp.18-23, 1999.

N. Motoyama, T. Kimura, T. Takahashi, T. Watanabe, and T. Nakano, bcl-x prevents apoptotic cell death of both primitive and definitive erythrocytes at the end of maturation, J. Exp. Med, vol.189, issue.11, pp.1691-1699, 1999.

S. R. Datta, Akt Phosphorylation of BAD Couples Survival Signals to the Cell-Intrinsic Death Machinery, Cell, vol.91, issue.2, pp.80405-80410, 1997.

M. Gadina, Signaling by type I and II cytokine receptors: ten years after, Curr. Opin. Immunol, vol.13, issue.3, pp.363-73, 2001.

W. Tong, J. Zhang, and H. F. Lodish, Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways, Blood, vol.105, issue.12, pp.4604-4616, 2005.

C. Deflandre, , pp.1871-1890

T. Miyake, C. K. Kung, and E. Goldwasser, Purification of human erythropoietin, J. Biol. Chem, vol.252, issue.15, pp.5558-5564, 1977.

F. K. Lin, Cloning and expression of the human erythropoietin gene, Proc. Natl

. Acad and . U. Sci, , vol.82, pp.7580-7584, 1985.

K. Jacobs, Isolation and characterization of genomic and cDNA clones of human erythropoietin, Nature, vol.313, issue.6005, pp.806-810, 1985.

H. Wu, X. Liu, R. Jaenisch, and H. F. Lodish, Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor, Cell, vol.83, issue.1, pp.90234-90235, 1995.

J. Zmajkovic, P. Lundberg, R. Nienhold, A. Sundan, A. Waage et al., A Gain-of-Function Mutation in <em>EPO</em> Gene Causes Familial Erythrocytosis, Blood, vol.130, pp.1653-1653, 2017.

M. Buemi, The pleiotropic effects of erythropoietin in the central nervous system, J. Neuropathol. Exp. Neurol, vol.62, issue.3, pp.228-264, 2003.

J. W. Fisher, Erythropoietin: Physiology and Pharmacology Update, Exp. Biol. Med, vol.228, issue.1, pp.1-14, 2003.

R. H. Wenger and A. Kurtz, Erythropoietin, Compr. Physiol, vol.1, issue.4, pp.1759-1794, 2011.

A. V. Santhanam, L. V. Uscio, and Z. S. Katusic, Cardiovascular effects of erythropoietin. An update, Advances in Pharmacology, vol.60, issue.C, pp.257-285, 2010.

B. Cevik, V. Solmaz, G. Yigitturk, T. Cavuso?lu, G. Peker et al., Neuroprotective effects of erythropoietin on Alzheimer's dementia model in rats

, Clin. Exp. Med, vol.26, issue.1, pp.23-29

Y. Li, Erythropoietin attenuates Alzheimer-like memory impairments and pathological changes induced by amyloid ?42 in mice, Brain Res, vol.1618, pp.159-67, 2015.

V. Ugo, C. James, and W. Vainchenker, Une mutation unique de la protéine kinase JAK2 dans la polyglobulie de Vaquez et les syndromes myéloprolifératifs non-LMC

, Medecine/Sciences, vol.21, issue.6-7, pp.669-670, 2005.

M. J. Percy, The frequency of JAK2 exon 12 mutations in idiopathic erythrocytosis patients with low serum erythropoietin levels, Haematologica, vol.92, issue.12, pp.1607-1621, 2007.

P. Walrafen, F. Verdier, Z. Kadri, S. Chrétien, C. Lacombe et al., Both proteasomes and lysosomes degrade the activated erythropoietin receptor, Blood, vol.105, issue.2, pp.600-608, 2005.

M. J. Percy, A Gain-of-Function Mutation in the HIF2A Gene in Familial Erythrocytosis, N. Engl. J. Med, vol.358, issue.2, pp.162-168, 2008.

M. Suzuki, Erythropoietin synthesis by tumour tissues in a patient with uterine myoma and erythrocytosis, Br. J. Haematol, vol.113, issue.1, pp.49-51, 2001.

S. Couvé, Genetic evidence of a precisely tuned dysregulation in the hypoxia signaling pathway during oncogenesis, Cancer Res, vol.74, issue.22, pp.6554-64, 2014.

S. O. Ang, Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia, Nat. Genet, vol.32, issue.4, pp.614-635, 2002.

M. J. Percy, A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis, Proc. Natl. Acad. Sci. U. S. A, vol.103, issue.3, pp.654-663, 2006.

M. Al-sheikh, K. Moradkhani, M. Lopez, H. Wajcman, and C. Préhu, Disturbance in the HIF-1alpha pathway associated with erythrocytosis: further evidences brought by frameshift and nonsense mutations in the prolyl hydroxylase domain protein 2 (PHD2) gene, Blood Cells. Mol. Dis, vol.40, issue.2, pp.160-165

M. J. Percy, P. W. Furlow, P. A. Beer, T. R. Lappin, M. F. Mcmullin et al., A novel erythrocytosis-associated PHD2 mutation suggests the location of a HIF binding groove, Blood, vol.110, issue.6, pp.2193-2196, 2007.

C. Ladroue, PHD2 Mutation and Congenital Erythrocytosis with Paraganglioma, N. Engl. J. Med, vol.359, issue.25, pp.2685-2692, 2008.

M. J. Percy, A gain-of-function mutation in the HIF2A gene in familial erythrocytosis, N. Engl. J. Med, vol.358, issue.2, pp.162-168, 2008.

Z. Zhuang, Somatic HIF2A Gain-of-Function Mutations in Paraganglioma with Polycythemia, N. Engl. J. Med, vol.367, issue.10, pp.922-930, 2012.

S. M. Berget, C. Moore, and P. A. Sharp, Spliced segments at the 5' terminus of adenovirus 2 late mRNA, Proc. Natl. Acad. Sci. U. S. A, vol.74, issue.8, pp.3171-3175, 1977.

E. T. Wang, Alternative isoform regulation in human tissue transcriptomes, Nature, vol.456, issue.7221, pp.470-476, 2008.

P. J. Grabowski, S. R. Seiler, and P. A. Sharp, A multicomponent complex is involved in the splicing of messenger RNA precursors, Cell, vol.42, issue.1, pp.80130-80136, 1985.

A. R. Kornblihtt, I. E. Schor, M. Alló, G. Dujardin, E. Petrillo et al., Alternative splicing: A pivotal step between eukaryotic transcription and translation, Nature Reviews Molecular Cell Biology, vol.14, issue.3, pp.153-165, 2013.

J. A. Sena, L. Wang, L. E. Heasley, and C. Hu, Hypoxia regulates alternative splicing of HIF and non-HIF target genes, Mol. Cancer Res, vol.12, issue.9, pp.1233-1276, 2014.

A. Anna and G. Monika, Splicing mutations in human genetic disorders: examples, detection, and confirmation, J. Appl. Genet, vol.59, issue.3, pp.253-268, 2018.

P. Gaildrat, A. Killian, A. Martins, I. Tournier, T. Frébourg et al., Use of splicing reporter minigene assay to evaluate the effect on splicing of unclassified genetic variants, Methods in molecular biology, vol.653, pp.249-257, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02336373

, Urine-sample-derived human induced pluripotent stem cells as a model to study PCSK9-mediated autosomal dominant hypercholesterolemia. -PubMed -NCBI

C. Ladroue, Distinct deregulation of the hypoxia inducible factor by PHD2 mutants identified in germline DNA of patients with polycythemia, Haematologica, vol.97, issue.1, pp.9-14, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-01401555

T. R. Lappin and F. S. Lee, Update on mutations in the HIF: EPO pathway and their role in erythrocytosis, Blood Rev, vol.37, p.100590, 2019.

C. Ladroue, PHD2 Mutation and Congenital Erythrocytosis with Paraganglioma, N. Engl. J. Med, vol.359, issue.25, pp.2685-2692, 2008.

F. R. Lorenzo, A genetic mechanism for Tibetan high-altitude adaptation, Nat. Genet, vol.46, issue.9, pp.951-956, 2014.

A. Corvelo, M. Hallegger, C. W. Smith, and E. Eyras, Genome-wide association between branch point properties and alternative splicing, PLoS Comput. Biol, vol.6, issue.11, pp.12-15, 2010.

M. Denham, Multipotent Caudal Neural Progenitors Derived from Human Pluripotent Stem Cells That Give Rise to Lineages of the Central and Peripheral Nervous System, Stem Cells, vol.33, issue.6, pp.1759-1770, 2015.

H. M. Burke, L. Mcsweeney, and E. M. Scanlan, Exploring chemoselective S-to-N acyl transfer reactions in synthesis and chemical biology, Nat. Commun, vol.8, p.15655, 2017.

P. Postnikov, G. I. Krotov, Y. A. Efimova, and G. M. Rodchenkov, Basic analytical methods for identification of erythropoiesis-stimulating agents in doping control

, Chem. Rev, vol.85, issue.2, pp.99-114, 2016.

F. Imeri, Generation of renal Epo-producing cell lines by conditional gene tagging reveals rapid HIF-2 driven Epo kinetics, cell autonomous feedback regulation, and a telocyte phenotype, Kidney Int, vol.95, issue.2, pp.375-387, 2019.

A. Marchand, C. Buisson, L. Martin, J. A. Martin, A. Molina et al., Report on an anti-doping operation in Guadeloupe: High number of positive cases and inferences about doping habits, Drug Test. Anal, vol.9, issue.11-12, pp.1753-1761, 2017.

A. R. Kim, Functional Selectivity in Cytokine Signaling Revealed Through a Pathogenic EPO Mutation, Cell, vol.168, issue.6, pp.1053-1064, 2017.

M. G. Kearse and J. E. Wilusz, Non-AUG translation: A new start for protein synthesis in eukaryotes, Genes and Development, vol.31, issue.17, pp.1717-1731, 2017.

, TIA : attaque ischémique transitoire ; HFE : hémochromatose héréditaire ; VSI : variant de signification inconnu, Listes des variants publiées de PHD2, vol.3, 2018.

, Amorce de criblage du clonage EPO. Nom de l'amorce Séquences pCas2-A-F 5'-TCCAGGCTGACCCTGCTGACC-3' pCas2-B-R 5, Annexe, vol.9