A. Abyzov, L. Tomasini, B. Zhou, N. Vasmatzis, G. Coppola et al., One thousand somatic SNVs per skin fibroblast cell set baseline of mosaic mutational load with patterns that suggest proliferative origin, Genome Res, vol.27, pp.512-523, 2017.

R. Acuna-hidalgo, H. Sengul, M. Steehouwer, M. Van-de-vorst, S. H. Vermeulen et al., , 2017.

, Ultra-sensitive Sequencing Identifies High Prevalence of Clonal Hematopoiesis-Associated Mutations throughout Adult Life, Am. J. Hum. Genet, vol.101, pp.50-64

A. A. Ahmed, D. Etemadmoghadam, J. Temple, A. G. Lynch, M. Riad et al., , 2010.

, J. Pathol, vol.221, pp.49-56

L. B. Alexandrov, P. H. Jones, D. C. Wedge, J. E. Sale, P. J. Campbell et al., Clock-like mutational processes in human somatic cells, Nat. Genet, vol.47, pp.1402-1407, 2015.

A. , C. Pantel, and K. , Clinical Applications of Circulating Tumor Cells and Circulating Tumor DNA as Liquid Biopsy, Cancer Discov, vol.6, pp.479-491, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01872958

M. S. Anglesio, N. Papadopoulos, A. Ayhan, T. M. Nazeran, M. Noë et al., CancerAssociated Mutations in Endometriosis without Cancer, N. Engl. J. Med, vol.376, pp.1835-1848, 2017.

A. M. Aravanis, M. Lee, and R. D. Klausner, Next-Generation Sequencing of Circulating Tumor DNA for Early Cancer Detection, Cell, vol.168, pp.571-574, 2017.

F. Blokzijl, J. De-ligt, M. Jager, V. Sasselli, S. Roerink et al., Tissue-specific mutation accumulation in human adult stem cells during life, Nature, vol.538, pp.260-264, 2016.

D. D. Bowtell, S. Bö-hm, A. A. Ahmed, P. J. Aspuria, R. C. Bast et al., Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer, Nat. Rev. Cancer, vol.15, pp.668-679, 2015.

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin, vol.68, pp.394-424, 2018.

J. Chien, H. Sicotte, J. B. Fan, S. Humphray, J. M. Cunningham et al., TP53 mutations, tetraploidy and homologous recombination repair defects in early stage high-grade serous ovarian cancer, Nucleic Acids Res, vol.43, pp.6945-6958, 2015.

E. P. Diamandis, The failure of protein cancer biomarkers to reach the clinic: why, and what can be done to address the problem, BMC Med, vol.10, p.87, 2012.

L. A. Diaz, . Jr, and A. Bardelli, Liquid biopsies: genotyping circulating tumor DNA, J. Clin. Oncol, vol.32, pp.579-586, 2014.

C. W. Drescher, A. , and G. L. , The Yet Unrealized Promise of Ovarian Cancer Screening, JAMA Oncol, vol.4, pp.456-457, 2018.

G. Genovese, A. K. Kä-hler, R. E. Handsaker, J. Lindberg, S. A. Rose et al., Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence, N. Engl. J. Med, vol.371, pp.2477-2487, 2014.

D. C. Grossman, S. J. Curry, D. K. Owens, M. J. Barry, K. W. Davidson et al., Screening for Ovarian Cancer: US Preventive Services Task Force Recommendation Statement, US Preventive Services Task Force, vol.319, pp.588-594, 2018.

J. T. Henderson, E. M. Webber, and G. F. Sawaya, Screening for Ovarian Cancer: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force, JAMA, vol.319, pp.595-606, 2018.

M. L. Hoang, I. Kinde, C. Tomasetti, K. W. Mcmahon, T. A. Rosenquist et al., , 2016.

, Genome-wide quantification of rare somatic mutations in normal human tissues using massively parallel sequencing, Proc. Natl. Acad. Sci. USA, vol.113, pp.9846-9851

S. Jaiswal, P. Fontanillas, J. Flannick, A. Manning, P. V. Grauman et al., Age-related clonal hematopoiesis associated with adverse outcomes, N. Engl. J. Med, vol.371, pp.2488-2498, 2014.

S. Kato, S. Y. Han, W. Liu, K. Otsuka, H. Shibata et al., Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis, Proc. Natl. Acad. Sci. USA, vol.100, pp.8424-8429, 2003.

S. R. Kennedy, M. W. Schmitt, E. J. Fox, B. F. Kohrn, J. J. Salk et al., Detecting ultralow-frequency mutations by Duplex Sequencing, Nat. Protoc, vol.9, pp.2586-2606, 2014.

I. Kinde, C. Bettegowda, Y. Wang, J. Wu, N. Agrawal et al., Evaluation of DNA from the, Cell Reports, vol.28, p.143, 2013.

, Papanicolaou test to detect ovarian and endometrial cancers. Sci. Transl. Med, vol.5, pp.167-171

J. D. Krimmel, M. W. Schmitt, M. I. Harrell, K. J. Agnew, S. R. Kennedy et al., Ultradeep sequencing detects ovarian cancer cells in peritoneal fluid and reveals somatic TP53 mutations in noncancerous tissues, Proc. Natl. Acad. Sci. USA, vol.113, pp.6005-6010, 2016.

E. Kuhn, R. J. Kurman, R. Vang, A. S. Sehdev, G. Han et al., TP53 mutations in serous tubal intraepithelial carcinoma and concurrent pelvic high-grade serous carcinoma-evidence supporting the clonal relationship of the two lesions, J. Pathol, vol.226, pp.421-426, 2012.

R. J. Kurman, . Shih, and . Iem, The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory, Am. J. Surg. Pathol, vol.34, pp.433-443, 2010.

S. I. Labidi-galy, E. Papp, D. Hallberg, N. Niknafs, V. Adleff et al., High grade serous ovarian carcinomas originate in the fallopian tube, Nat. Commun, vol.8, p.1093, 2017.

H. Lee-six, P. Ellis, R. J. Osborne, M. A. Sanders, L. Moore et al., The landscape of somatic mutation in normal colorectal epithelial cells, 2018.

B. Leroy, M. Anderson, and T. Soussi, TP53 mutations in human cancer: database reassessment and prospects for the next decade, Hum. Mutat, vol.35, pp.672-688, 2014.

X. Liu, C. Wu, C. Li, and E. Boerwinkle, dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs, Hum. Mutat, vol.37, pp.235-241, 2016.

E. Maritschnegg, Y. Wang, N. Pecha, R. Horvat, E. Van-nieuwenhuysen et al., Lavage of the Uterine Cavity for Molecular Detection of M? ullerian Duct Carcinomas: A Proof-of-Concept Study, J. Clin. Oncol, vol.33, pp.4293-4300, 2015.

E. Maritschnegg, F. Heitz, N. Pecha, J. Bouda, F. Trillsch et al., Uterine and Tubal Lavage for Earlier Cancer Detection Using an Innovative Catheter: A Feasibility and Safety Study, Int. J. Gynecol. Cancer, vol.28, pp.1692-1698, 2018.

I. Martincorena, A. Roshan, M. Gerstung, P. Ellis, P. Van-loo et al., Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin, Science, vol.348, pp.880-886, 2015.

I. Martincorena, J. C. Fowler, A. Wabik, A. R. Lawson, F. Abascal et al., Somatic mutant clones colonize the human esophagus with age, Science, vol.362, pp.911-917, 2018.

N. Nair, O. Camacho-vanegas, D. Rykunov, M. Dashkoff, S. C. Camacho et al.,

, Genomic Analysis of Uterine Lavage Fluid Detects Early Endometrial Cancers and Reveals a Prevalent Landscape of Driver Mutations in Women without Histopathologic Evidence of Cancer: A Prospective Cross-Sectional Study, PLoS Med, vol.13, p.1002206

R. A. Risques and S. R. Kennedy, Aging and the rise of somatic cancerassociated mutations in normal tissues, PLoS Genet, vol.14, 2018.

J. J. Salk, M. W. Schmitt, and L. A. Loeb, Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations, Nat. Rev. Genet, vol.19, pp.269-285, 2018.

M. W. Schmitt, S. R. Kennedy, J. J. Salk, E. J. Fox, J. B. Hiatt et al., Detection of ultra-rare mutations by next-generation sequencing, Proc. Natl. Acad. Sci. USA, vol.109, pp.14508-14513, 2012.

M. W. Schmitt, E. J. Fox, M. J. Prindle, K. S. Reid-bayliss, L. D. True et al., Sequencing small genomic targets with high efficiency and extreme accuracy, Nat. Methods, vol.12, pp.423-425, 2015.

A. H. Shain, I. Yeh, I. Kovalyshyn, A. Sriharan, E. Talevich et al., The Genetic Evolution of Melanoma from Precursor Lesions, N. Engl. J. Med, vol.373, pp.1926-1936, 2015.

R. L. Siegel, K. D. Miller, J. , and A. , Cancer Statistics, vol.67, pp.7-30, 2017.

T. R. Soong, B. E. Howitt, N. Horowitz, M. R. Nucci, and C. P. Crum, The fallopian tube, ''precursor escape'' and narrowing the knowledge gap to the origins of high-grade serous carcinoma, Gynecol. Oncol, vol.152, pp.426-433, 2019.

K. Suda, H. Nakaoka, K. Yoshihara, T. Ishiguro, R. Tamura et al., Clonal Expansion and Diversification of Cancer-Associated Mutations in Endometriosis and Normal Endometrium, Cell Rep, vol.24, pp.1777-1789, 2018.

, Integrated genomic analyses of ovarian carcinoma, The Cancer Genome Atlas Research Network, vol.474, pp.609-615, 2011.

T. Tikkanen, B. Leroy, J. L. Fournier, R. A. Risques, J. Malcikova et al., Seshat: A Web service for accurate annotation, validation, and analysis of TP53 variants generated by conventional and next-generation sequencing, Hum. Mutat, vol.39, pp.925-933, 2018.

R. Vang, D. A. Levine, R. A. Soslow, C. Zaloudek, I. Shih et al., Molecular Alterations of TP53 are a Defining Feature of Ovarian High-Grade Serous Carcinoma: A Rereview of Cases Lacking TP53 Mutations in The Cancer Genome Atlas Ovarian Study, Int. J. Gynecol. Pathol, vol.35, pp.48-55, 2016.

Y. Wang, L. Li, C. Douville, J. D. Cohen, T. T. Yen et al., Evaluation of liquid from the Papanicolaou test and other liquid biopsies for the detection of endometrial and ovarian cancers, Sci. Transl. Med, vol.10, p.8793, 2018.

J. S. Welch, T. J. Ley, D. C. Link, C. A. Miller, D. E. Larson et al., The origin and evolution of mutations in acute myeloid leukemia, Cell, vol.150, pp.264-278, 2012.

M. Xie, C. Lu, J. Wang, M. D. Mclellan, K. J. Johnson et al., , 2014.

, Age-related mutations associated with clonal hematopoietic expansion and malignancies, Nat. Med, vol.20, pp.1472-1478

V. K. Yadav, J. Degregori, and S. De, The landscape of somatic mutations in protein coding genes in apparently benign human tissues carries signatures of relaxed purifying selection, Nucleic Acids Res, vol.44, pp.2075-2084, 2016.

A. L. Young, G. A. Challen, B. M. Birmann, T. E. Druley, and . Liu, For the last 3 variables (frequency in cancer database, activity, and pathogenicity), mutations were aggregated into 5 categories and 2 categories. Categories of frequency in cancer database included very frequent, frequent, not frequent, rare/unique, and never identified in human cancer. The first 2 categories were considered ''common in cancer'' and the last 3 categories ''not common in cancer, Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat. Commun. 7, 12484. variables were used to annotate the DS pipeline-generated mutational calls in Table S3 (uterine lavage) and Table S5 (normal tissue), vol.179, 2003.