H. Ying, P. Dey, W. Yao, A. C. Kimmelman, G. F. Draetta et al., Genetics and biology of pancreatic ductal adenocarcinoma, Genes Dev, vol.30, pp.355-85, 2016.

H. A. Burris, M. J. Moore, J. Andersen, M. R. Green, M. L. Rothenberg et al., Improvements in survival and clinical benefit with gemcitabine as firstline therapy for patients with advanced pancreas cancer: a randomized trial, J Clin Oncol, vol.15, pp.2403-2416, 1997.

T. Conroy, F. Desseigne, M. Ychou, O. Bouché, R. Guimbaud et al., FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer, N Engl J Med, vol.364, pp.1817-1842, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00598658

G. L. Beatty and W. L. Gladney, Immune escape mechanisms as a guide for cancer immunotherapy, Clin Cancer Res, vol.21, pp.687-92, 2015.

N. Martinez-bosch, J. Vinaixa, and P. Navarro, Immune evasion in pancreatic cancer: from mechanisms to therapy, Cancers (Basel), vol.10, issue.1, p.6, 2018.

R. M. Carr and M. E. Fernandez-zapico, Pancreatic cancer microenvironment, to target or not to target?, EMBO Mol Med, vol.8, pp.80-82, 2016.

G. P. Dunn, L. J. Old, and R. D. Schreiber, The three Es of cancer immunoediting, Annu Rev Immunol, vol.22, pp.329-60, 2004.

A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, Cancer-related inflammation, Nature, vol.454, pp.436-480, 2008.

W. Wang, L. Liu, H. Xu, C. Wu, J. Xiang et al., Infiltrating immune cells and gene mutations in pancreatic ductal adenocarcinoma, Br J Surg, vol.103, pp.1189-99, 2016.

M. P. Di-magliano and C. D. Logsdon, Roles for KRAS in pancreatic tumor development and progression, Gastroenterology, vol.144, pp.1220-1229, 2013.

, Integrated genomic characterization of pancreatic ductal adenocarcinoma, Cancer Cell, vol.32, pp.185-203, 2017.

S. M. Wörmann, K. N. Diakopoulos, M. Lesina, and H. Algül, The immune network in pancreatic cancer development and progression, Oncogene, vol.33, pp.2956-67, 2014.

M. P. Protti and L. De-monte, Immune infiltrates as predictive markers of survival in pancreatic cancer patients, Front Physiol, vol.4, p.210, 2013.

J. H. Chang, Y. Jiang, and V. G. Pillarisetty, Role of immune cells in pancreatic cancer from bench to clinical application, Medicine, issue.49, p.5541, 2016.

X. Yu, J. S. Xu, J. Yao, W. Qu, B. Zhu et al., CD8+ T cells are compromised in human pancreatic cancer, Transl Med, issue.2, p.105, 2012.

Y. Ino, R. Yamazaki-itoh, K. Shimada, M. Iwasaki, T. Kosuge et al., Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer, Br J Cancer, vol.108, pp.914-937, 2013.

T. Nomi, M. Sho, T. Akahori, K. Hamada, A. Kubo et al., Clinical significance and therapeutic potential of the programmed death-1 ligand/ programmed death-1 pathway in human pancreatic cancer, Clin Cancer Res, vol.13, pp.2151-2158, 2007.

H. Dong, S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano et al., Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion, Nat Med, vol.8, pp.793-800, 2002.

S. Bang, H. Kim, Y. S. Choo, S. W. Park, J. B. Chung et al., Differences in immune cells engaged in cell-mediated immunity after chemotherapy for far advanced pancreatic cancer, Pancreas, vol.32, pp.29-36, 2006.

D. Suzuki, K. Furukawa, F. Kimura, H. Shimizu, H. Yoshidome et al., Effects of perioperative immunonutrition on cell-mediated immunity, T helper type 1 (Th1)/Th2 differentiation, and Th17 response after pancreaticoduodenectomy, Surgery, vol.148, pp.573-81, 2010.

Y. Peng, C. Xi, Y. Zhu, L. Yin, J. Wei et al., Altered expression of CD226 and CD96 on natural killer cells in patients with pancreatic cancer, Oncotarget, vol.7, pp.66586-94, 2016.

N. Li, Y. Li, Z. Li, C. Huang, Y. Yang et al., Hypoxia inducible factor 1 (HIF-1) recruits macrophage to activate pancreatic Stellate cells in pancreatic ductal adenocarcinoma, Int J Mol Sci, vol.17, 2016.

O. Helm, J. Held-feindt, E. Grage-griebenow, N. Reiling, H. Ungefroren et al., Tumor-associated macrophages exhibit pro-and anti-inflammatory properties by which they impact on pancreatic tumorigenesis, Int J Cancer, vol.135, pp.843-61, 2014.

H. Kurahara, H. Shinchi, Y. Mataki, K. Maemura, H. Noma et al., Significance of M2-polarized tumor-associated macrophage in pancreatic cancer, J Surg Res, vol.167, pp.211-220, 2011.

A. Mantovani, T. Schioppa, C. Porta, P. Allavena, and A. Sica, Role of tumorassociated macrophages in tumor progression and invasion, Cancer Metastasis Rev, vol.25, pp.315-337, 2006.

T. Komura, Y. Sakai, K. Harada, K. Kawaguchi, H. Takabatake et al., Inflammatory features of pancreatic cancer highlighted by monocytes/macrophages and CD4+ T cells with clinical impact, Cancer Sci, vol.106, pp.672-86, 2015.

R. Cui, W. Yue, E. C. Lattime, M. N. Stein, Q. Xu et al., Targeting tumor-associated macrophages to combat pancreatic cancer, Oncotarget, vol.7, pp.50735-54, 2016.

A. Mantovani, F. Marchesi, A. Malesci, L. Laghi, and P. Allavena, Tumour-associated macrophages as treatment targets in oncology, Nat Rev Clin Oncol, vol.14, pp.399-416, 2017.

K. C. Shibuya, V. K. Goel, W. Xiong, J. G. Sham, S. M. Pollack et al., Pancreatic ductal adenocarcinoma contains an effector and regulatory immune cell infiltrate that is altered by multimodal neoadjuvant treatment, PLoS One, vol.9, p.96565, 2014.

Z. G. Fridlender, J. Sun, S. Kim, V. Kapoor, G. Cheng et al., Polarization of tumor-associated neutrophil (TAN) phenotype by TGF-?: "N1" versus "N2" TAN, Cancer Cell, vol.16, pp.183-94, 2009.

K. Felix and M. M. Gaida, Neutrophil-derived proteases in the microenvironment of pancreatic cancer-active players in tumor progression, Int J Biol Sci, vol.12, pp.302-315, 2016.

D. R. Powell and A. Huttenlocher, Neutrophils in the tumor microenvironment, Trends Immunol, vol.37, pp.41-52, 2016.

P. Qu, L. Wang, and P. C. Lin, Expansion and functions of myeloid-derived suppressor cells in the tumor microenvironment, Cancer Lett, vol.380, pp.253-259, 2016.

S. Kusmartsev, Y. Nefedova, D. Yoder, and D. I. Gabrilovich, Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species, J Immunol, vol.172, pp.989-99, 2004.

M. Pergamo and G. Miller, Myeloid-derived suppressor cells and their role in pancreatic cancer, Cancer Gene Ther, vol.24, pp.100-105, 2017.

H. K. Hwang, H. Kim, S. H. Kim, J. Choi, C. M. Kang et al., Prognostic impact of the tumor-infiltrating regulatory T-cell (Foxp3+)/activated cytotoxic T lymphocyte (granzyme B+) ratio on resected left-sided pancreatic cancer, Oncol Lett, vol.12, pp.4477-84, 2016.

T. C. Theoharides and P. Conti, Mast cells: the Jekyll and Hyde of tumor growth, Trends Immunol, vol.25, pp.235-276, 2004.

Y. Ma, R. F. Hwang, C. D. Logsdon, and S. E. Ullrich, Dynamic mast cell-stromal cell interactions promote growth of pancreatic cancer, Cancer Res, vol.73, pp.3927-3964, 2013.

M. Ammendola, R. Sacco, G. Sammarco, G. Donato, V. Zuccalà et al., Mast cells density positive to tryptase correlates with angiogenesis in pancreatic ductal adenocarcinoma patients having undergone surgery

, Gastroenterol Res Pract, p.951957, 2014.

T. Ikemoto, T. Yamaguchi, Y. Morine, S. Imura, Y. Soejima et al., Clinical roles of increased populations of Foxp3+CD4+ T cells in peripheral blood from advanced pancreatic cancer patients, Pancreas, vol.33, pp.386-90, 2006.

T. L. Whiteside, The role of regulatory T cells in cancer immunology, Immunotargets Ther, vol.4, pp.159-71, 2015.

W. Zou and N. P. Restifo, T(H)17 cells in tumour immunity and immunotherapy, Nat Rev Immunol, vol.10, pp.248-56, 2010.

S. He, M. Fei, Y. Wu, D. Zheng, D. Wan et al., Distribution and clinical significance of Th17 cells in the tumor microenvironment and peripheral blood of pancreatic cancer patients, Int J Mol Sci, vol.12, pp.7424-7461, 2011.

J. L. Gnerlich, J. B. Mitchem, J. S. Weir, N. V. Sankpal, H. Kashiwagi et al., Induction of Th17 cells in the tumor microenvironment improves survival in a murine model of pancreatic cancer, J Immunol, vol.185, pp.4063-71, 2010.

F. Balkwill, K. A. Charles, and A. Mantovani, Smoldering and polarized inflammation in the initiation and promotion of malignant disease, Cancer Cell, vol.7, pp.211-218, 2005.

L. Guéry and S. Hugues, Th17 cell plasticity and functions in cancer immunity, Biomed Res Int, p.314620, 2015.

Z. Asadzadeh, H. Mohammadi, E. Safarzadeh, M. Hemmatzadeh, A. Mahdian-shakib et al., The paradox of Th17 cell functions in tumor immunity, Cell Immunol, vol.322, pp.15-25, 2017.

S. R. Bailey, M. H. Nelson, R. A. Himes, Z. Li, S. Mehrotra et al., Th17 cells in cancer: the ultimate identity crisis, Front Immunol, vol.5, p.276, 2014.

X. Wang, L. Wang, Q. Mo, Y. Dong, G. Wang et al., Changes of Th17/Treg cell and related cytokines in pancreatic cancer patients, Int J Clin Exp Pathol, vol.8, pp.5702-5710, 2015.

L. De-monte, M. Reni, E. Tassi, D. Clavenna, I. Papa et al., Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer, J Exp Med, vol.208, pp.469-78, 2011.

D. Daley, C. P. Zambirinis, L. Seifert, N. Akkad, N. Mohan et al., ?? T cells support pancreatic oncogenesis by restraining ?? T cell activation, Cell, vol.166, pp.1485-99, 2016.

A. Benyamine, C. Loncle, E. Foucher, J. Blazquez, C. Castanier et al., BTN3A is a prognosis marker and a promising target for V?9V?2 T cells based-immunotherapy in pancreatic ductal adenocarcinoma

. Oncoimmunology, , vol.7, p.1372080, 2017.

A. C. Koong, V. K. Mehta, Q. T. Le, G. A. Fisher, D. J. Terris et al., Pancreatic tumors show high levels of hypoxia, Int J Radiat Oncol Biol Phys, vol.48, pp.919-941, 2000.

J. M. Brown, The hypoxic cell: a target for selective cancer therapy -eighteenth Bruce F. Cain Memorial Award Lecture, Cancer Res, vol.59, pp.5863-70, 1999.

S. Chouaib, M. Z. Noman, K. Kosmatopoulos, and M. A. Curran, Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer, Oncogene, vol.36, pp.439-484, 2017.

C. Hajj, J. Russell, C. P. Hart, K. A. Goodman, M. A. Lowery et al., A combination of radiation and the hypoxia-activated prodrug evofosfamide (TH-302) is efficacious against a human orthotopic pancreatic tumor model, Transl Oncol, vol.10, pp.760-765, 2017.

J. E. Kobes, I. Daryaei, C. M. Howison, J. G. Bontrager, R. W. Sirianni et al., Improved treatment of pancreatic cancer with drug delivery nanoparticles loaded with a novel AKT/PDK1 inhibitor, Pancreas, vol.45, pp.1158-66, 2016.

M. V. Apte, P. S. Haber, T. L. Applegate, I. D. Norton, G. W. Mccaughan et al., Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture, Gut, vol.43, pp.128-161, 1998.

M. V. Apte, P. S. Haber, S. J. Darby, S. C. Rodgers, G. W. Mccaughan et al., Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis, Gut, vol.44, pp.534-575, 1999.

A. Ene-obong, A. J. Clear, J. Watt, J. Wang, R. Fatah et al., Activated pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration of the juxtatumoral compartment of pancreatic ductal adenocarcinoma, Gastroenterology, vol.145, pp.1121-1153, 2013.

D. Tang, Z. Yuan, X. Xue, Z. Lu, Y. Zhang et al., High expression of Galectin-1 in pancreatic stellate cells plays a role in the development and maintenance of an immunosuppressive microenvironment in pancreatic cancer, Int J Cancer, vol.130, pp.2337-2385, 2012.

G. K. Alderton, Pancreatic cancer: PDAC subtypes, Nat Rev Cancer, vol.15, p.575, 2015.

I. Mellman, G. Coukos, and G. Dranoff, Cancer immunotherapy comes of age, Nature, vol.480, pp.480-489, 2011.

S. Guo, M. Contratto, G. Miller, L. Leichman, and J. Wu, Immunotherapy in pancreatic cancer: unleash its potential through novel combinations, World J Clin Oncol, vol.8, pp.230-270, 2017.

M. K. Gjertsen, A. Bakka, J. Breivik, I. Saeterdal, B. G. Solheim et al., Vaccination with mutant ras peptides and induction of T-cell responsiveness in pancreatic carcinoma patients carrying the corresponding RAS mutation, Lancet, vol.346, pp.1399-400, 1995.

M. Chmielewski, O. Hahn, G. Rappl, M. Nowak, I. H. Schmidt-wolf et al., T cells that target carcinoembryonic antigen eradicate orthotopic pancreatic carcinomas without inducing autoimmune colitis in mice, Gastroenterology, vol.143, pp.1095-107, 2012.

G. K. Pennock and L. Chow, The evolving role of immune checkpoint inhibitors in cancer treatment, Oncologist, vol.20, pp.812-834, 2015.

R. Winograd, K. T. Byrne, R. A. Evans, P. M. Odorizzi, A. Meyer et al., Induction of T-cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma, Cancer Immunol Res, vol.3, pp.399-411, 2015.

A. Mantovani, B. Bottazzi, F. Colotta, S. Sozzani, and L. Ruco, The origin and function of tumor-associated macrophages, Immunol Today, vol.13, pp.265-70, 1992.

Y. Takeuchi and H. Nishikawa, Roles of regulatory T cells in cancer immunity, Int Immunol, vol.28, pp.401-410, 2016.

R. A. Moffitt, R. Marayati, E. L. Flate, K. E. Volmar, S. Loeza et al., Virtual microdissection identifies distinct tumor-and stroma-specific subtypes of pancreatic ductal adenocarcinoma, Nat Genet, vol.47, pp.1168-78, 2015.

P. Bailey, D. K. Chang, K. Nones, A. L. Johns, A. Patch et al., Genomic analyses identify molecular subtypes of pancreatic cancer, Nature, vol.531, pp.47-52, 2016.

D. S. Chen and I. Mellman, Elements of cancer immunity and the cancer-immune set point, Nature, vol.541, pp.321-351, 2017.