, Tous ces animaux ont été vaccinés par voie intramusculaire (parentéral)

, La dernière partie de la méthodologie annoncée dans le but de répondre à la problématique annoncée, concerne le protocole expérimental 3, sur des chiens du terrain (Maroc), avec des animaux vaccinés par voie intramusculaire, et des animaux vaccinés par voie orale

. Cliquet, en éliminant le virus des populations de chiens errants dans les pays en développement. Cette stratégie vaccinale est largement freinée par l'absence d'un indicateur relevant de l'efficacité vaccinale sur le terrain. En effet, des chiens vaccinés survivent, en conditions expérimentales, à une épreuve virulente malgré l'absence de RVNA lorsque vaccinés oralement avec SAG2 ®, La vaccination orale de masse des chiens avec un vaccin vivant atténué par voie orale pourrait apporter un espoir dans la disparition de la rage humaine, 2005.

. La-mesure-du-taux-de-rvna-dans-le-sang-n'est-pas-fiable-chez-le-chien-lors-d, une vaccination par voie orale et un autre indicateur de l'immunité est nécessaire. L'immunité cellulaire est portée par les lymphocytes T mémoires présents dans l'organisme pendant plusieurs années. Ils sont spécifiques de l'antigène qui les a sélectionné lors d'une première rencontre avec le virus dans l'organisme. Dans le cadre d'une vaccination contre la rage avec un vaccin antirabique inactivé, inoculé par voie parentérale, on peut les révéler jusque 60 jours après, in vitro, en stimulant les PBMC avec un virus inactivé comme antigène de rappel. En effet, les lymphocytes T (clones répondants), sécrètent de l'IFN? qui est détectable par ELISPOT, 2001.

L. 'hypothèse-Émise, on peut suivre la protection des animaux vaccinés oralement contre la rage avec un vaccin vivant atténué, en stimulant in vitro les PBMC avec un virus inactivé et en mesurant une surexpression des transcrits de IFN? et IL-4. Durant ce projet j'ai mis en place l'isolement des PBMC ainsi que leur congélation et décongélation qui sont des étapes importantes pour s

, IL-4 et du gène de référence GAPDH ainsi que validé les différents critères nécessaires à une analyse argumentée des résultats (efficacités proches de 100 % et identiques pour les cibles et le gène de référence, absence d'effet de la stimulation sur l, point les qPCR spécifiques de IFN?

, Utilisée pour mesurer l'expression des gènes de IFN? et IL-4 sur des PBMC de chiens vaccinés et stimulés avec un antigène rabique, la méthode a montré dans les conditions expérimentales décrites, que IFN? était plus surexprimé à 48 h

. Bibliographie, Zero by 30 : The Global Strategic Plan to End Human Deaths from Dogtransmitted Rabies by 2030. World Rabies Day, WHO Expert committee on rabies-8th report, 1992.

G. K. Amarasinghe, N. G. Aréchiga-ceballos, A. C. Banyard, C. F. Basler, S. Bavari et al., Taxonomy of the order Mononegavirales : Update 2018. Archives of Virology, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01911194

C. M. Appolinário, S. D. Allendorf, M. G. Peres, B. D. Ribeiro, C. R. Fonseca et al., Profile of Cytokines and Chemokines Triggered by Wild-Type Strains of Rabies Virus in Mice, The American Journal of Tropical Medicine and Hygiene, vol.94, issue.2, pp.378-383, 2016.

G. M. Baer, T. R. Shanthaveerappa, and G. H. Bourne, Studies on the pathogenesis of fixed rabies virus in rats, Bulletin of the World Health Organization, vol.33, issue.6, pp.783-794, 1965.

D. M. Bailey, R. Roukens, M. Knauth, K. Kallenberg, S. Christ et al., Free Radical-Mediated Damage to Barrier Function is not Associated with Altered Brain Morphology in High-Altitude Headache, Journal of Cerebral Blood Flow & Metabolism, vol.26, issue.1, pp.99-111, 2006.

A. Benmansour, H. Leblois, P. Coulon, C. Tuffereau, Y. Gaudin et al., Antigenicity of rabies virus glycoprotein, Journal of Virology, vol.65, issue.8, pp.4198-4203, 1991.

L. Berthelot and D. Laplaud, Organisation de la réponse immunitaire dans le système nerveux central, pp.236-242, 2008.

B. , A guide to gating in flow cytometry

J. D. Blanton, J. Self, M. Niezgoda, M. Faber, B. Dietzschold et al., Oral vaccination of raccoons (Procyon lotor) with genetically modified rabies virus vaccines, Vaccine, vol.25, issue.42, pp.7296-7300, 2007.

F. A. Bonilla and H. C. Oettgen, Adaptive immunity, Journal of Allergy and Clinical Immunology, vol.125, issue.2, pp.33-40, 2010.

C. Chamizo, J. M. Rubio, J. Moreno, A. , and J. , Semi-quantitative analysis of multiple cytokines in canine peripheral blood mononuclear cells by [correction of zby] a single tube RT-PCR, Veterinary immunology and immunopathology, vol.83, issue.3-4, pp.191-202, 2001.

L. Chapat, F. Hilaire, J. Bouvet, D. Pialot, C. Philippe-reversat et al., Multivariate analysis of the immune response to a vaccine as an alternative to the repetition of animal challenge studies for vaccines with demonstrated efficacy, Veterinary Immunology and Immunopathology, vol.189, pp.58-65, 2017.

D. D. Chaplin, Overview of the immune response, The Journal of Allergy and Clinical Immunology, vol.125, issue.2, pp.3-23, 2010.

F. Cliquet, M. Aubert, and L. Sagné, Development of a fluorescent antibody virus neutralisation test (FAVN test) for the quantitation of rabies-neutralising antibody, Journal of immunological methods, vol.212, issue.1, pp.79-87, 1998.

F. Cliquet, J. Barrat, A. L. Guiot, N. Caël, S. Boutrand et al., Efficacy and bait acceptance of vaccinia vectored rabies glycoprotein vaccine in captive foxes (Vulpes vulpes), raccoon dogs (Nyctereutes procyonoides) and dogs (Canis familiaris), Vaccine, vol.26, issue.36, pp.4627-4638, 2008.

F. Cliquet, A. Guiot, M. Aubert, E. Robardet, C. E. Rupprecht et al., Oral vaccination of dogs : A well-studied and undervalued tool for achieving human and dog rabies elimination, Veterinary Research, vol.49, issue.1, p.61, 2018.

F. Cliquet, J. Gurbuxani, H. Pradhan, B. Pattnaik, S. Patil et al., The safety and efficacy of the oral rabies vaccine SAG2 in Indian stray dogs, Vaccine, vol.25, issue.17, pp.3409-3418, 2007.

F. Cliquet, E. Robardet, P. Meyer, and E. , Genetic strain modification of a live rabies virus vaccine widely used in Europe for wildlife oral vaccination, Antiviral Research, vol.100, issue.1, pp.84-89, 2013.

A. Costantini, S. Mancini, S. Giuliodoro, L. Butini, C. M. Regnery et al., Effects of cryopreservation on lymphocyte immunophenotype and function, Journal of Immunological Methods, vol.278, issue.1-2, pp.145-155, 2003.

B. Dietzschold, J. Li, M. Faber, and M. Schnell, Concepts in the pathogenesis of rabies, Future Virology, vol.3, issue.5, pp.481-490, 2008.

M. L. Disis, C. Dela-rosa, V. Goodell, L. Kuan, J. C. Chang et al., Maximizing the retention of antigen specific lymphocyte function after cryopreservation, Journal of Immunological Methods, vol.308, issue.1-2, pp.13-18, 2006.

J. Gerber, R. Sharpee, T. Swieczkowski, and W. Beckenhauer, Cell-mediated immune response to rabies virus in dogs following vaccination and challenge, Veterinary Immunology and Immunopathology, vol.9, issue.1, pp.13-22, 1985.

C. W. Gnanadurai, M. Zhou, W. He, C. M. Leyson, C. Huang et al., Presence of virus neutralizing antibodies in cerebral spinal fluid correlates with nonlethal rabies in dogs, PLoS neglected tropical diseases, vol.7, issue.9, p.2375, 2013.

K. Hampson, L. Coudeville, T. Lembo, M. Sambo, A. Kieffer et al., Estimating the Global Burden of Endemic Canine Rabies, PLOS Neglected Tropical Diseases, vol.9, issue.4, p.3709, 2015.

C. A. Hanham, F. Zhao, and G. H. Tignor, Evidence from the anti-idiotypic network that the acetylcholine receptor is a rabies virus receptor, Journal of Virology, vol.67, issue.1, pp.530-542, 1993.

A. N. Hartley, G. Cooley, S. Gwyn, M. M. Orozco, and R. L. Tarleton, Frequency of IFN?-producing T cells correlates with seroreactivity and activated T cells during canine Trypanosoma cruzi infection, Veterinary Research, vol.45, p.6, 2014.

R. Higuchi, G. Dollinger, P. S. Walsh, G. , and R. , Simultaneous amplification and detection of specific DNA sequences. Bio/Technology, Nature Publishing Company), vol.10, issue.4, pp.413-417, 1992.

A. Horowitz, R. H. Behrens, L. Okell, A. R. Fooks, R. et al., NK cells as effectors of acquired immune responses : Effector CD4+ T cell-dependent activation of NK cells following vaccination, Journal of Immunology, vol.185, issue.5, pp.2808-2818, 1950.

S. A. Houff, R. C. Burton, R. W. Wilson, T. E. Henson, W. T. London et al., Human-tohuman transmission of rabies virus by corneal transplant, The New England Journal of Medicine, vol.300, issue.11, pp.603-604, 1979.

M. Im-hof, L. Williamson, A. Summerfield, V. Balmer, V. Dutoit et al., Effect of synthetic agonists of toll-like receptor 9 on canine lymphocyte proliferation and cytokine production in vitro, Veterinary immunology and immunopathology, vol.124, issue.1-2, pp.120-131, 2008.

C. M. Johnson, S. Yang, K. S. Sellins, and G. R. Frank, Selection of HPRT primers as controls for determination of mRNA expression in dogs by RT-PCR, Veterinary immunology and immunopathology, vol.99, issue.1-2, pp.47-51, 2004.

G. Johnson, A. A. Nour, T. Nolan, J. Huggett, and S. Bustin, Minimum information necessary for quantitative real-time PCR experiments, Methods in molecular biology, vol.1160, pp.5-17, 2014.

R. T. Johnson, Experimental rabies. Studies of cellular vulnerability and pathogenesis using fluorescent antibody staining, Journal of Neuropathology and Experimental Neurology, vol.24, issue.4, pp.662-674, 1965.

W. Kammouni, H. Wood, A. Saleh, C. M. Appolinario, P. Fernyhough et al., Rabies virus phosphoprotein interacts with mitochondrial Complex I and induces mitochondrial dysfunction and oxidative stress, Journal of Neurovirology, vol.21, issue.4, pp.370-382, 2015.

I. S. Katz, F. Guedes, E. R. Fernandes, and S. Silva, Immunological aspects of rabies : A literature review, Archives of Virology, vol.162, issue.11, pp.3251-3268, 2017.

T. Koressaar and M. Remm, Enhancements and modifications of primer design program Primer3, Bioinformatics, vol.23, issue.10, pp.1289-1291, 2007.

C. R. Kreher, M. T. Dittrich, R. Guerkov, B. O. Boehm, and M. Tary-lehmann, CD4+ and CD8+ cells in cryopreserved human PBMC maintain full functionality in cytokine ELISPOT assays, Journal of Immunological Methods, vol.278, issue.1-2, pp.79-93, 2003.

M. F. Krummel, F. Bartumeus, G. , and A. , T cell migration, search strategies and mechanisms, Nature Reviews Immunology, vol.16, issue.3, pp.193-201, 2016.

M. Kubista, J. M. Andrade, M. Bengtsson, A. Forootan, J. Jonák et al., The real-time polymerase chain reaction, Molecular Aspects of Medicine, vol.27, issue.23, pp.95-125, 2006.

F. Lafay, J. Bénéjean, C. Tuffereau, A. Flamand, C. et al., Vaccination against rabies : Construction and characterization of SAG2, a double avirulent derivative of SADBern, Vaccine, vol.12, issue.4, pp.317-320, 1994.

M. Lafon, Modulation of the immune response in the nervous system by rabies virus, Current Topics in Microbiology and Immunology, vol.289, pp.239-258, 2005.

M. Lafon, Rabies virus receptors, Journal of Neurovirology, vol.11, issue.1, pp.82-87, 2005.

M. Lafon, Evasive strategies in rabies virus infection, Advances in Virus Research, vol.79, pp.33-53, 2011.

M. Lambot, E. Blasco, J. Barrat, F. Cliquet, B. Brochier et al., Humoral and cellmediated immune responses of foxes (Vulpes vulpes) after experimental primary and secondary oral vaccination using SAG2 and V-RG vaccines, Vaccine, vol.19, pp.1827-1835, 2001.

P. Lau and E. Joly, Le contexte immunologique très particulier du système nerveux central. médecine/sciences, vol.17, pp.395-401, 2001.

A. Lenarczyk, J. Helsloot, K. Farmer, L. Peters, A. Sturgess et al., , 2000.

, Antigen-induced IL-17 response in the peripheral blood mononuclear cells (PBMC) of healthy controls, Clinical and Experimental Immunology, vol.122, issue.1, pp.41-48

S. Listvanova, S. Temmerman, P. Stordeur, V. Verscheure, S. Place et al., Optimal kinetics for quantification of antigen-induced cytokines in human peripheral blood mononuclear cells by real-time PCR and by ELISA, Journal of immunological methods, vol.281, issue.1-2, pp.27-35, 2003.

J. Liu, H. Wang, J. Gu, T. Deng, Z. Yuan et al., BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein, Autophagy, vol.13, issue.4, pp.739-753, 2017.

E. Lycke and H. Tsiang, Rabies virus infection of cultured rat sensory neurons, Journal of Virology, vol.61, issue.9, pp.2733-2741, 1987.

E. Masson, V. Bruyère-masson, P. Vuillaume, S. Lemoyne, A. et al., Rabies oral vaccination of foxes during the summer with the VRG vaccine bait, Veterinary Research, vol.30, issue.6, pp.595-605, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00902599

F. Miao, S. Zhang, S. Wang, Y. Liu, F. Zhang et al., Comparison of immune responses to attenuated rabies virus and street virus in mouse brain, Archives of Virology, vol.162, issue.1, pp.247-257, 2017.

J. Minke, J. Bouvet, F. Cliquet, M. Wasniewski, A. Guiot et al., Comparison of antibody responses after vaccination with two inactivated rabies vaccines, Veterinary Microbiology, vol.133, issue.3, pp.283-286, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00532448

K. Nakamichi, S. Inoue, T. Takasaki, K. Morimoto, K. et al., Rabies virus stimulates nitric oxide production and CXC chemokine ligand 10 expression in macrophages through activation of extracellular signal-regulated kinases 1 and 2, Journal of Virology, vol.78, issue.17, pp.9376-9388, 2004.

F. Nazé, V. Suin, S. Lamoral, A. Francart, B. Brochier et al., Infectivity of rabies virus-exposed macrophages, Microbes and Infection, vol.15, issue.2, pp.115-125, 2013.

R. Palacios, Concanavalin A triggers T lymphocytes by directly interacting with their receptors for activation, Journal of Immunology, vol.128, issue.1, pp.337-342, 1950.

P. Perrin, Y. Jacob, A. Aguilar-sétien, E. Loza-rubio, C. Jallet et al., Immunization of dogs with a DNA vaccine induces protection against rabies virus, Vaccine, vol.18, issue.5-6, pp.479-486, 1999.

M. W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Research, vol.29, issue.9, p.45, 2001.

E. Picard-meyer, V. Beven, E. Hirchaud, C. Guillaume, G. Larcher et al., Lleida Bat Lyssavirus isolation in Miniopterus schreibersii in France : XXXX. Zoonoses and Public Health, 2018.

H. Ramachandran, J. Laux, I. Moldovan, R. Caspell, P. V. Lehmann et al., Optimal thawing of cryopreserved peripheral blood mononuclear cells for use in high-throughput human immune monitoring studies, Cells, vol.1, issue.3, pp.313-324, 2012.

C. Riedhammer, D. Halbritter, and R. Weissert, Peripheral Blood Mononuclear Cells : Isolation, Freezing, Thawing, and Culture, Multiple Sclerosis, vol.1304, pp.53-61, 2014.

C. A. Rodrigues, L. F. Batista, R. S. Filho, C. D. Santos, C. G. Pinheiro et al., IFN-gamma expression is up-regulated by peripheral blood mononuclear cells (PBMC) from nonexposed dogs upon Leishmania chagasi promastigote stimulation in vitro, Veterinary immunology and immunopathology, vol.127, issue.3-4, pp.382-388, 2009.

A. Roy and D. C. Hooper, Lethal silver-haired bat rabies virus infection can be prevented by opening the blood-brain barrier, J. Virol, vol.81, pp.7993-7998, 2007.

C. E. Rupprecht, C. A. Hanlon, J. Blanton, J. Manangan, P. Morrill et al., Oral vaccination of dogs with recombinant rabies virus vaccines, Virus research, vol.111, issue.1, pp.101-105, 2005.

C. E. Rupprecht, C. A. Hanlon, and T. Hemachudha, Rabies re-examined, The Lancet. Infectious Diseases, vol.2, pp.327-343, 2002.

O. A. Saldarriaga, B. L. Travi, and P. C. Melby, Quantification of canine cytokines using real time reverse transcriptase polymerase chain reaction. Biomédica : revista del Instituto Nacional de Salud, vol.26, pp.254-263, 2006.

M. J. Schnell, J. P. Mcgettigan, C. Wirblich, P. , and A. , The cell biology of rabies virus : Using stealth to reach the brain, Nature Reviews. Microbiology, vol.8, issue.1, pp.51-61, 2010.

E. Shim, K. Hampson, S. Cleaveland, and A. P. Galvani, Evaluating the costeffectiveness of rabies post-exposure prophylaxis : A case study in Tanzania, Vaccine, vol.27, issue.51, pp.7167-7172, 2009.

D. Silva, C. G. Ponte, M. A. Hacker, A. , and P. R. , A whole blood assay as a simple, broad assessment of cytokines and chemokines to evaluate human immune responses to Mycobacterium tuberculosis antigens, Acta Tropica, vol.127, issue.2, pp.75-81, 2013.

T. Suzuki, P. J. Higgins, C. , and D. R. , Control selection for RNA quantitation, BioTechniques, vol.29, issue.2, pp.332-337, 2000.

M. I. Thoulouze, M. Lafage, M. Schachner, U. Hartmann, H. Cremer et al., The neural cell adhesion molecule is a receptor for rabies virus, Journal of Virology, vol.72, issue.9, pp.7181-7190, 1998.

M. Tollis, B. Dietzschold, C. B. Volia, and H. Koprowski, Immunization of monkeys with rabies ribonucleoprotein (RNP) confers protective immunity against rabies, Vaccine, vol.9, issue.2, pp.134-136, 1991.

A. Untergasser, I. Cutcutache, T. Koressaar, J. Ye, B. C. Faircloth et al., Primer3-new capabilities and interfaces, vol.40, pp.115-115, 2012.

D. Voigt, R. Tinline, and L. Broekhoven, A spatial simulation model for rabies control, Population Dynamics of Rabies Wildlife, pp.311-349, 1985.

C. Vuaillat, M. Varrin-doyer, A. Bernard, I. Sagardoy, S. Cavagna et al., High CRMP2 expression in peripheral T lymphocytes is associated with recruitment to the brain during virus-induced neuroinflammation, Journal of Neuroimmunology, vol.193, issue.1-2, pp.38-51, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-00229867

A. I. Wandeler, S. Capt, A. Kappeler, and R. Hauser, Oral immunization of wildlife against rabies : Concept and first field experiments, Reviews of Infectious Diseases, vol.10, pp.649-653, 1988.

S. Wang, M. Hsu, C. Tzeng, H. Hsu, and C. Ho, The Influence of Cryopreservation on Cytokine Production by Human T Lymphocytes, vol.37, pp.22-29, 1998.

A. Weinberg, L. Song, C. Wilkening, A. Sevin, B. Blais et al., Optimization and Limitations of Use of Cryopreserved Peripheral Blood Mononuclear Cells for Functional and Phenotypic T-Cell Characterization, ACTG Cryopreservation Working Group, vol.16, issue.8, pp.1176-1186, 2009.

, WHO Expert Consultation on Rabies and Weltgesundheitsorganisation, 2018.

, WHO Expert Consultation on Rabies : Third Report, pp.26-28, 2017.

C. T. Wittwer, M. G. Herrmann, A. A. Moss, and R. P. Rasmussen, Continuous fluorescence monitoring of rapid cycle DNA amplification, BioTechniques, vol.22, issue.1, pp.134-138, 1997.

W. H. Wunner, J. K. Larson, B. Dietzschold, and C. L. Smith, The molecular biology of rabies viruses, Reviews of Infectious Diseases, vol.10, pp.771-784, 1988.

Y. Yang, Y. Huang, C. W. Gnanadurai, S. Cao, X. Liu et al., The inability of wild-type rabies virus to activate dendritic cells is dependent on the glycoprotein and correlates with its low level of the de novo-synthesized leader RNA, Journal of Virology, vol.89, issue.4, pp.2157-2169, 2015.