C. A. Albers, D. S. Paul, H. Schulze, K. Freson, J. C. Stephens et al., Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome, Nat. Genet, vol.44, pp.435-439, 2012.

C. B. Andersen, L. Ballut, J. S. Johansen, H. Chamieh, and K. H. Nielsen,

C. L. Oliveira, J. S. Pedersen, B. Séraphin, H. L. Hir, and G. R. Andersen, , 2006.

, Structure of the Exon Junction Core Complex with a Trapped DEAD-Box ATPase Bound to RNA, Science, vol.313, pp.1968-1972

L. Ballut, B. Marchadier, A. Baguet, C. Tomasetto, B. Séraphin et al.,

H. , The exon junction core complex is locked onto RNA by inhibition of eIF4AIII, 2005.

, ATPase activity, Nat. Struct. Mol. Biol, vol.12, pp.861-869

I. Barbosa, N. Haque, F. Fiorini, C. Barrandon, C. Tomasetto et al., Human CWC22 escorts the helicase eIF4AIII to spliceosomes and promotes exon junction complex assembly, Nat. Struct. Mol. Biol, vol.19, pp.983-990, 2012.

K. Bertram, D. E. Agafonov, W. Liu, O. Dybkov, C. L. Will et al.,

H. Urlaub, B. Kastner, H. Stark, and R. Lührmann, Cryo-EM structure of a human spliceosome activated for step 2 of splicing, Nature, vol.542, pp.318-323, 2017.

S. Bessonov, M. Anokhina, C. L. Will, H. Urlaub, and R. Lührmann, , 2008.

, Isolation of an active step I spliceosome and composition of its RNP core, Nature, vol.452, pp.846-850

G. Buchwald, S. Schussler, C. Basquin, H. Le-hir, and E. Conti, , 2013.

, Crystal structure of the human eIF4AIII-CWC22 complex shows how a DEAD-box protein is inhibited by a MIF4G domain, Proc. Natl. Acad. Sci, vol.110, pp.4611-4618

H. Chamieh, L. Ballut, F. Bonneau, L. Hir, and H. , NMD factors, p.2, 2008.

, UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity, Nat. Struct. Mol. Biol, vol.15, pp.85-93

P. Chazal, E. Daguenet, C. Wendling, N. Ulryck, C. Tomasetto et al., EJC core component MLN51 interacts with eIF3 and activates translation, Proc. Natl. Acad. Sci, vol.110, pp.5903-5908, 2013.

E. Daguenet, A. Baguet, S. Degot, U. Schmidt, F. Alpy et al.,

C. Spiegelhalter, P. Kessler, M. Rio, and H. Le-hir, Perispeckles are major assembly sites for the exon junction core complex, Mol. Biol. Cell, vol.23, pp.1765-1782, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00727654

J. Deckert, K. Hartmuth, D. Boehringer, N. Behzadnia, C. L. Will et al.,

H. Stark, H. Urlaub, and R. Lührmann, Protein Composition and Electron Microscopy Structure of Affinity-Purified Human Spliceosomal B Complexes Isolated under Physiological Conditions, Mol. Cell. Biol, vol.26, pp.5528-5543, 2006.

S. Degot, C. H. Régnier, C. Wendling, M. Chenard, and M. Rio,

C. Tomasetto, F. J. Van-eeden, I. M. Palacios, M. Petronczki, M. J. Weston et al., Barentsz is essential for the posterior localization of oskar mRNA and colocalizes with it to the posterior pole, J. Cell Biol, vol.21, pp.511-524, 2001.

F. P. Favaro, L. Alvizi, R. M. Zechi-ceide, D. Bertola, T. M. Felix et al.,

S. Raskin, S. R. Twigg, A. M. Weiner, and P. Armas, A Noncoding Expansion in EIF4A3 Causes Richieri-Costa-Pereira Syndrome, a Craniofacial Disorder Associated with Limb Defects, Am. J. Hum. Genet, vol.94, pp.120-128, 2014.

F. Fiorini, F. Bonneau, L. Hir, and H. , Biochemical characterization of the RNA helicase UPF1 involved in nonsense-mediated mRNA decay, Methods Enzymol, vol.511, pp.255-274, 2012.

N. H. Gehring, S. Lamprinaki, M. W. Hentze, and A. E. Kulozik, The Hierarchy of Exon-Junction Complex Assembly by the Spliceosome Explains Key Features of Mammalian Nonsense-Mediated mRNA Decay, PLoS Biol, vol.7, p.1000120, 2009.

C. Giorgi, G. W. Yeo, M. E. Stone, D. B. Katz, C. Burge et al.,

M. J. Moore, The EJC Factor eIF4AIII Modulates Synaptic Strength and Neuronal Protein Expression, Cell, vol.130, pp.179-191, 2007.

J. Glanzer, K. Y. Miyashiro, J. Sul, L. Barrett, B. Belt et al.,

J. Eberwine, RNA splicing capability of live neuronal dendrites, Proc. Natl, 2005.

. Acad and . Sci, , vol.102, pp.16859-16864

O. Hachet and A. Ephrussi, Drosophila Y14 shuttles to the posterior of the oocyte and is required for oskar mRNA transport, Curr. Biol, vol.11, pp.1666-1674, 2001.

O. Hachet and A. Ephrussi, Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization, Nature, vol.428, pp.959-963, 2004.

F. He, J. , and A. , Nonsense-Mediated mRNA Decay: Degradation of Defective Transcripts Is Only Part of the Story, Annu. Rev. Genet, vol.49, pp.339-366, 2015.

J. Kugler and P. Lasko, Localization, anchoring and translational control of oskar, gurken, bicoid and nanos mRNA during Drosophila oogenesis, Fly (Austin), vol.3, pp.15-28, 2009.

I. F. Lau, S. R. Filipe, B. Søballe, O. Økstad, F. Barre et al., Spatial and temporal organization of replicating Escherichia coli chromosomes, 2003.

, Mol. Microbiol, vol.49, pp.731-743

L. Hir and H. , The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions, EMBO J, vol.19, pp.6860-6869, 2000.

L. Hir and H. , The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay, EMBO J, vol.20, pp.4987-4997, 2001.

L. Hir, H. Saulière, J. , W. , and Z. , The exon junction complex as a node of post-transcriptional networks, Nat. Rev. Mol. Cell Biol, vol.17, pp.41-54, 2016.

D. Lehalle, D. Wieczorek, R. M. Zechi-ceide, M. R. Passos-bueno, S. Lyonnet et al., A review of craniofacial disorders caused by spliceosomal defects, Clin. Genet, vol.88, pp.405-415, 2015.

N. Levy, S. Eiler, K. Pradeau-aubreton, B. Maillot, F. Stricher et al., Production of unstable proteins through the formation of stable core complexes, Nat. Commun, vol.7, 2016.

J. C. Long and J. F. Caceres, The SR protein family of splicing factors: master regulators of gene expression, Biochem. J, vol.417, pp.15-27, 2009.

S. Lykke-andersen and T. H. Jensen, Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes, Nat. Rev. Mol. Cell Biol, vol.16, pp.665-677, 2015.
DOI : 10.1038/nrm4063

X. M. Ma, S. Yoon, C. J. Richardson, K. Jülich, and J. Blenis, , 2008.

, Links Pre-mRNA Splicing to mTOR/S6K1-Mediated Enhanced Translation Efficiency of Spliced mRNAs, Cell, vol.133, pp.303-313

P. Macchi, S. Kroening, I. M. Palacios, S. Baldassa, and B. Grunewald,

C. Ambrosino, B. Goetze, A. Lupas, . St, D. Johnston et al., , 2003.

. Barentsz, New Component of the Staufen-Containing Ribonucleoprotein Particles in

M. Cells, Interacts with Staufen in an RNA-Dependent Manner, J. Neurosci, vol.23, pp.5778-5788

C. D. Malone, C. Mestdagh, J. Akhtar, N. Kreim, and P. Deinhard,

R. Sachidanandam, J. Treisman, and J. Roignant, The exon junction complex controls transposable element activity by ensuring faithful splicing of the piwi transcript, Genes Dev, vol.28, pp.1786-1799, 2014.

H. Mao, J. J. Mcmahon, Y. Tsai, Z. Wang, and D. L. Silver, , 2016.

, Haploinsufficiency for Core Exon Junction Complex Components Disrupts Embryonic Neurogenesis and Causes p53-Mediated Microcephaly, PLOS Genet, vol.12, p.1006282

S. E. Mohr, S. T. Dillon, and R. E. Boswell, The RNA-binding protein, 2001.

, Tsunagi interacts with Mago Nashi to establish polarity and localize oskar mRNA during Drosophila oogenesis, Genes Dev, vol.15, pp.2886-2899

M. Monshausen, N. H. Gehring, and K. S. Kosik, The mammalian RNAbinding protein staufen2 links nuclear and cytoplasmic RNA processing pathways in neurons, NeuroMolecular Med, vol.6, pp.127-144, 2004.

A. Nott, H. L. Hir, M. , and M. J. , Splicing enhances translation in mammalian cells: an additional function of the exon junction complex, Genes Dev, vol.18, pp.210-222, 2004.

M. D. Ohi and K. L. Gould, Characterization of interactions among the, 2002.

, Cef1p-Prp19p-associated splicing complex, RNA, vol.8, pp.798-815

J. Saulière, V. Murigneux, Z. Wang, E. Marquenet, I. Barbosa et al., CLIP-seq of eIF4AIII reveals transcriptome-wide mapping of the human exon junction complex, 2012.

, Mol. Biol, vol.19, pp.1124-1131

G. Singh, A. Kucukural, C. Cenik, J. D. Leszyk, S. A. Shaffer et al.,

M. J. Moore, The Cellular EJC Interactome Reveals Higher-Order mRNP Structure and an EJC-SR Protein Nexus, Cell, vol.151, pp.750-764, 2012.

G. Singh, G. Pratt, G. W. Yeo, M. , and M. J. , The Clothes Make the mRNA: Past and Present Trends in mRNP Fashion, Annu. Rev. Biochem, vol.84, pp.325-354, 2015.

A. Steckelberg, V. Boehm, A. M. Gromadzka, and N. H. Gehring, , 2012.

, CWC22 Connects Pre-mRNA Splicing and Exon Junction Complex Assembly, Cell Rep, vol.2, pp.454-461

T. Ø. Tange, A. Nott, M. , and M. J. , The ever-increasing complexities of the exon junction complex, Curr. Opin. Cell Biol, vol.16, pp.279-284, 2004.

A. Ulrich and M. C. Wahl, Structure and evolution of the spliceosomal peptidyl-prolyl cis-trans isomerase Cwc27, Acta Crystallogr. D Biol. Crystallogr, vol.70, pp.3110-3123, 2014.

M. C. Wahl, C. L. Will, and R. Lührmann, The Spliceosome: Design Principles of a Dynamic RNP Machine, Cell, vol.136, pp.701-718, 2009.

Z. Wang and V. Murigneux, Transcriptome-wide modulation of splicing by the exon junction complex, vol.18, 2014.

Z. Wang, L. Ballut, I. Barbosa, L. Hir, and H. , Exon Junction Complexes can have distinct functional flavours to regulate specific splicing events, Sci. Rep, vol.8, 2018.
DOI : 10.1038/s41598-018-27826-y

URL : https://www.nature.com/articles/s41598-018-27826-y.pdf

C. L. Will and R. Luhrmann, Spliceosome Structure and Function, Cold Spring Harb. Perspect. Biol, vol.3, pp.3707-003707, 2011.
DOI : 10.1101/cshperspect.a003707

URL : http://cshperspectives.cshlp.org/content/3/7/a003707.full.pdf

M. Xu, Y. Xie, H. Abouzeid, C. T. Gordon, A. Fiorentino et al.,

A. Lehman, I. S. Osman, R. Dharmat, and R. Riveiro-alvarez, Mutations in the Spliceosome Component CWC27 Cause Retinal Degeneration with or without Additional Developmental Anomalies, Am. J. Hum. Genet, vol.100, pp.592-604, 2017.

T. Yeh, H. Liu, C. Chung, N. Wu, Y. Liu et al., Splicing Factor Cwc22 Is Required for the Function of Prp2 and for the, 2011.

, Spliceosome To Escape from a Futile Pathway, Mol. Cell. Biol, vol.31, pp.43-53

X. Zhang, C. Yan, J. Hang, L. I. Finci, J. Lei et al., An Atomic Structure of the Human Spliceosome, Cell, vol.169, pp.918-929, 2017.

X. Zhang, C. Yan, X. Zhan, L. Li, J. Lei et al., Structure of the human activated spliceosome in three conformational states, Cell Res, vol.28, pp.307-322, 2018.