. , 38 Perméabilisation de la barrière hémato-encéphalique avec les ultrasons

S. .. Mise-en-place-du-système,

. .. Résultats,

D. .. Description-de-la-cohorte-de,

. .. Vivo, 48 1.4. Suivi ex vivo de la croissance tumorale par IRM, Présence de la mutation H3K27M dans les modèles in vitro et in

.. .. Caractéristiques,

D. .. Évaluations-thérapeutiques-du-mébendazole-dans-le,

». .. Evaluation-de-la-poudre-«-sigma,

P. .. Cdox, Pharmacocinétique et distribution intracérébrale du panobinostat chez la souris saine avec et sans US, Conservation de la BHE dans nos modèles

. Conclusion, . Discussion, and .. .. Perspectives, 62 1. Développement et caractérisation de modèles in vivo de tumeurs gliales pédiatriques

D. .. Dans-le, 68 2.1. Le mébendazole, reconversion d'un antihelminthique

.. .. Ouverture-de-la-bhe-À-l'aide-d'us-non-focalisés,

. .. Bibliographie,

. Annexes??????????????????????????????? and . ?????, , p.85

N. J. Abbott, A. A. Patabendige, D. E. Dolman, S. R. Yusof, and D. J. Begley, , 2010.

, Structure and function of the blood-brain barrier, Neurobiol. Dis, vol.37, pp.13-25

A. , S. Figueiredo, C. A. Golbourn, B. Sabha, N. Wu et al., Brainstem blood brain barrier disruption using focused ultrasound: A demonstration of feasibility and enhanced doxorubicin delivery, 2018.

, Controlled Release, vol.281, pp.29-41

V. Amani, A. M. Donson, S. C. Lummus, E. W. Prince, A. M. Griesinger et al., , 2017.

, Novel Ependymoma Cell Lines With Chromosome 1q Gain Derived From Posterior Fossa Tumors of Childhood, J. Neuropathol. Exp. Neurol, vol.76, pp.595-604

F. Andreiuolo, C. Ferreira, S. Puget, and J. Grill, Current and evolving knowledge of prognostic factors for pediatric ependymomas, Future Oncol, vol.9, pp.183-191, 2013.

F. Andreiuolo, G. Le-teuff, M. A. Bayar, J. Kilday, T. Pietsch et al., Integrating Tenascin-C protein expression and 1q25 copy number status in pediatric intracranial ependymoma prognostication: A new model for risk stratification, PLoS ONE, vol.12, 2017.

M. Aryal, K. Fischer, C. Gentile, S. Gitto, Y. Zhang et al., Effects on P-Glycoprotein Expression after Blood-Brain Barrier Disruption Using Focused Ultrasound and Microbubbles, PloS One, vol.12, p.166061, 2017.

R. Bai, V. Staedtke, C. M. Aprhys, G. L. Gallia, and G. J. Riggins, Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme, Neuro-Oncol, vol.13, pp.974-982, 2011.

R. Bai, V. Staedtke, T. Wanjiku, M. A. Rudek, A. Joshi et al., Brain Penetration and Efficacy of Different Mebendazole Polymorphs in a Mouse Brain Tumor Model, Clin. Cancer Res, vol.21, pp.3462-3470, 2015.

B. Bakar, E. A. Kose, M. Balci, P. Atasoy, B. Sarkarati et al., Evaluation of the neurotoxicity of the polyethylene glycol hydrogel dural sealant, Turk. Neurosurg, 2012.

K. Beccaria, M. Canney, L. Goldwirt, C. Fernandez, C. Adam et al., Opening of the blood-brain barrier with an unfocused ultrasound device in rabbits, J. Neurosurg, vol.119, pp.887-898, 2013.

K. Beccaria, M. Canney, L. Goldwirt, C. Fernandez, J. Piquet et al., Ultrasound-induced opening of the blood-brain barrier to enhance temozolomide and irinotecan delivery: an experimental study in rabbits, J. Neurosurg, vol.124, pp.1602-1610, 2015.

U. Ben-david, G. Ha, Y. Tseng, N. F. Greenwald, C. Oh et al., Patient-derived xenografts undergo murine-specific tumor evolution, Nat. Genet, vol.49, pp.1567-1575, 2017.

S. Bender, Y. Tang, A. M. Lindroth, V. Hovestadt, D. T. Jones et al., Reduced H3K27me3 and DNA Hypomethylation Are Major Drivers of Gene Expression in K27M Mutant Pediatric HighGrade Gliomas, Cancer Cell, vol.24, pp.660-672, 2013.

P. Buczkowicz, U. Bartels, E. Bouffet, O. Becher, and C. Hawkins, , 2014.

, Histopathological spectrum of paediatric diffuse intrinsic pontine glioma: diagnostic and therapeutic implications, Acta Neuropathol. (Berl.), vol.128, pp.573-581

D. Cachia, K. Wani, M. Penas-prado, A. Olar, I. E. Mccutcheon et al., C11orf95-RELA fusion present in a primary supratentorial ependymoma and recurrent sarcoma, Brain Tumor Pathol, vol.32, pp.105-111, 2015.

R. T. Calado, Y. , and N. S. , Telomere Diseases, N. Engl. J. Med, vol.361, pp.2353-2365, 2009.

V. Caretti, I. Zondervan, D. H. Meijer, S. Idema, W. Vos et al., Monitoring of Tumor Growth and Post-Irradiation Recurrence in a Diffuse Intrinsic Pontine Glioma Mouse Model, Brain Pathol, vol.21, pp.441-451, 2011.

V. Caretti, A. C. Sewing, T. Lagerweij, P. Schellen, M. Bugiani et al., Human Pontine Glioma Cells Can Induce Murine Tumors, Acta Neuropathol. (Berl.), vol.127, pp.897-909, 2014.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria et al., Clinical trial of blood-brain barrier disruption by pulsed ultrasound, Sci. Transl. Med, vol.8, pp.343-345, 2016.

J. W. Cassidy, C. Caldas, B. , and A. , Maintaining Tumour Heterogeneity in Patient-Derived Tumour Xenografts, Cancer Res, vol.75, pp.2963-2968, 2015.

D. Castel, C. Philippe, R. Calmon, L. Le-dret, N. Truffaux et al., Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes, Acta Neuropathol. (Berl.), vol.130, pp.815-827, 2015.

K. Chan, D. Fang, H. Gan, R. Hashizume, C. Yu et al., The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression, Genes Dev, vol.27, pp.985-990, 2013.

Y. Coutel, , 1959.

, Rev. Otoneuroophtalmol, vol.31, pp.119-123

C. Dantas-barbosa, G. Bergthold, E. Daudigeos-dubus, H. Blockus, J. F. Boylan et al., Inhibition of the NOTCH pathway using ?-secretase inhibitor RO4929097 has limited antitumor activity in established glial tumors, Anticancer. Drugs, vol.26, pp.272-283, 2015.

A. Dasgupta, M. Liu, T. Ojha, G. Storm, F. Kiessling et al., , 2016.

, Ultrasound-mediated Drug Delivery to the Brain: Principles, Progress and Prospects, Drug Discov. Today Technol, vol.20, pp.41-48

E. Daudigeos-dubus, L. Le-dret, V. Rouffiac, O. Bawa, I. Leguerney et al., Establishment and characterization of new orthotopic and metastatic neuroblastoma models, Vivo Athens Greece, vol.28, pp.425-434, 2014.

N. Doudican, A. Rodriguez, I. Osman, and S. J. Orlow, Mebendazole induces apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells, Mol. Cancer Res. MCR, vol.6, pp.1308-1315, 2008.

A. Dréan, S. Rosenberg, F. Lejeune, L. Goli, A. A. Nadaradjane et al., ATP binding cassette (ABC) transporters: expression and clinical value in glioblastoma, J. Neurooncol, pp.1-8, 2018.

F. Al-mayhani, T. M. Ball, S. L. Zhao, J. Fawcett, J. Ichimura et al., An efficient method for derivation and propagation of glioblastoma cell lines that conserves the molecular profile of their original tumours, J. Neurosci. Methods, vol.176, pp.192-199, 2009.

I. Fichtner, J. Rolff, R. Soong, J. Hoffmann, S. Hammer et al., Establishment of Patient-Derived Non-Small Cell Lung Cancer Xenografts as Models for the Identification of Predictive Biomarkers, Clin. Cancer Res, vol.14, pp.6456-6468, 2008.

A. J. Filiano, S. P. Gadani, and J. Kipnis, Interactions of innate and adaptive immunity in brain development and function, Brain Res, vol.1617, pp.18-27, 2015.

S. P. Flanagan, Nude', a new hairless gene with pleiotropic effects in the mouse, 1966.

, Genet. Res, vol.8, pp.295-309

D. Frappaz, A. Vasiljevic, P. Beuriat, C. Alapetite, J. Grill et al., , 2016.

, Bull. Cancer (Paris), vol.103, pp.869-879

K. Funato, T. Major, P. W. Lewis, C. D. Allis, and V. Tabar, Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation, Science, vol.346, pp.1529-1533, 2014.

N. Gaspar, J. Grill, B. Geoerger, A. Lellouch-tubiana, M. B. Michalowski et al., p53 pathway dysfunction in primary childhood ependymomas, Pediatr. Blood Cancer, vol.46, pp.604-613, 2006.

D. C. Goberdhan, W. , and C. , PTEN: tumour suppressor, multifunctional growth regulator and more, Hum. Mol. Genet, vol.12, pp.239-248, 2003.
DOI : 10.1093/hmg/ddg288

URL : https://academic.oup.com/hmg/article-pdf/12/suppl_2/R239/1715371/ddg288.pdf

S. E. Gould, M. R. Junttila, and F. J. De-sauvage, Translational value of mouse models in oncology drug development, Nat. Med, vol.21, pp.431-439, 2015.

C. S. Grasso, Y. Tang, N. Truffaux, N. E. Berlow, L. Liu et al., Functionally defined therapeutic targets in diffuse intrinsic pontine glioma, Nat. Med, vol.21, pp.555-559, 2015.

C. S. Grasso, Y. Tang, N. Truffaux, N. E. Berlow, L. Liu et al., Functionally defined therapeutic targets in diffuse intrinsic pontine glioma, Nat. Med, vol.21, p.827, 2015.

D. Hanahan and R. A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, pp.646-674, 2011.

R. Hashizume, I. Smirnov, S. Liu, J. J. Phillips, J. Hyer et al., Characterization of a diffuse intrinsic pontine glioma cell line: implications for future investigations and treatment, J. Neurooncol, vol.110, pp.305-313, 2012.

T. Hennika, G. Hu, N. G. Olaciregui, K. L. Barton, A. Ehteda et al., Pre-Clinical Study of Panobinostat in Xenograft and Genetically Engineered Murine Diffuse Intrinsic Pontine Glioma Models, PLOS ONE, vol.12, 2017.

L. Hoffman, A. M. Donson, I. Nakachi, A. M. Griesinger, D. K. Birks et al., Molecular Sub-Group Specific Immunophenotypic Changes are Associated with Outcome in Recurrent Posterior Fossa Ependymoma, Acta Neuropathol. (Berl.), vol.127, pp.731-745, 2014.

P. H. Hollis, R. A. Zappulla, M. K. Spigelman, E. J. Feuer, J. Johnson et al., Physiological and electrophysiological consequences of etoposide-induced blood-brain barrier disruption, Neurosurgery, vol.18, pp.581-586, 1986.

D. Hussein, W. Punjaruk, L. C. Storer, L. Shaw, R. T. Othman et al., Pediatric brain tumor cancer stem cells: cell cycle dynamics, DNA repair, and etoposide extrusion, Neuro-Oncol, vol.13, pp.70-83, 2011.

N. Ibrahim, E. I. Buchbinder, S. R. Granter, S. J. Rodig, A. Giobbie-hurder et al., A phase I trial of panobinostat (LBH589) in patients with metastatic melanoma, Cancer Med, vol.5, pp.3041-3050, 2016.

, Institut National du Cancer Les spécificités des cancers des enfants et des adolescentsCancérologie pédiatrique | Institut National Du Cancer

M. A. Jordan, D. Thrower, W. , and L. , Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis, J. Cell Sci, vol.102, pp.401-416, 1992.

M. Kambhampati, J. P. Perez, S. Yadavilli, A. M. Saratsis, A. D. Hill et al., A standardized autopsy procurement allows for the comprehensive study of DIPG biology, Oncotarget, vol.6, pp.12740-12747, 2015.

R. Kebudi and F. B. Cakir, Management of Diffuse Pontine Gliomas in Children: Recent Developments, Pediatr. Drugs, vol.15, pp.351-362, 2013.

P. Köhler, The biochemical basis of anthelmintic action and resistance, Int. J. Parasitol, vol.31, pp.336-345, 2001.

B. Lacour, C. , and J. , , 2014.

, Rev. Prat, vol.64, pp.1264-1269

A. R. Larsen, R. Bai, J. H. Chung, A. Borodovsky, C. M. Rudin et al., Repurposing the antihelmintic mebendazole as a hedgehog inhibitor, Mol. Cancer Ther, vol.14, pp.3-13, 2015.

J. Lee, S. Kotliarova, Y. Kotliarov, A. Li, Q. Su et al., Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines, Cancer Cell, vol.9, pp.391-403, 2006.

J. F. Lehmann, H. , and J. F. , Biologic reactions to cavitation, a consideration for ultrasonic therapy, Arch. Phys. Med. Rehabil, vol.34, pp.86-98, 1953.

P. W. Lewis, M. M. Müller, M. S. Koletsky, F. Cordero, S. Lin et al., Inhibition of PRC2 Activity by a Gain-of-Function H3 Mutation Found in Pediatric Glioblastoma, Science, vol.340, pp.857-861, 2013.

H. Liu, M. Hua, P. Chen, P. Chu, C. Pan et al., Blood-Brain Barrier Disruption with Focused Ultrasound Enhances Delivery of Chemotherapeutic Drugs for Glioblastoma Treatment, Radiology, vol.255, pp.415-425, 2010.

M. J. Lobon-iglesias, G. Giraud, D. Castel, C. Philippe, M. A. Debily et al., Diffuse intrinsic pontine gliomas (DIPG) at recurrence: is there a window to test new therapies in some patients?, J. Neurooncol, vol.137, pp.111-118, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01738201

W. Löscher and H. Potschka, Drug resistance in brain diseases and the role of drug efflux transporters, Nat. Rev. Neurosci, vol.6, pp.591-602, 2005.

D. N. Louis, H. Ohgaki, O. D. Wiestler, W. K. Cavenee, P. C. Burger et al., The 2007 WHO Classification of Tumours of the Central Nervous System, Acta Neuropathol. (Berl.), vol.114, pp.97-109, 2007.

D. N. Louis, A. Perry, G. Reifenberger, A. Von-deimling, D. Figarella-branger et al., The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01479018

, Acta Neuropathol. (Berl.), vol.131, pp.803-820

P. E. Ludwig and S. S. Bhimji, Histology, Glial Cells, StatPearls, 2017.

S. C. Mack, H. Witt, R. M. Piro, L. Gu, S. Zuyderduyn et al., Epigenomic alterations define lethal CIMP-positive ependymomas of infancy, Nature, vol.506, pp.445-450, 2014.

S. C. Mack, H. Witt, R. M. Piro, L. Gu, S. Zuyderduyn et al., Epigenomic alterations define lethal CIMP-positive ependymomas of infancy, Nature, vol.506, pp.445-450, 2014.

A. Mackay, A. Burford, D. Carvalho, E. Izquierdo, J. Fazal-salom et al., Integrated Molecular MetaAnalysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma, Cancer Cell, vol.32, pp.520-537, 2017.

P. Malaney, S. V. Nicosia, and V. Davé, ONE MOUSE, ONE PATIENT PARADIGM: NEW AVATARS OF PERSONALIZED CANCER THERAPY, vol.344, pp.1-12, 2014.

P. B. Malgulwar, A. Nambirajan, P. Pathak, M. Faruq, M. Rajeshwari et al., <Emphasis Type="Italic">C11orf95RELA</Emphasis> fusions and upregulated NF-KB signalling characterise a subset of aggressive supratentorial ependymomas that express L1CAM and nestin, J. Neurooncol, pp.1-11, 2018.

D. Markowitz, G. Ha, R. Ruggieri, and M. Symons, Microtubule-targeting agents can sensitize cancer cells to ionizing radiation by an interphase-based mechanism, OncoTargets Ther, vol.10, pp.5633-5642, 2017.

D. W. Mcmillin, J. M. Negri, and C. S. Mitsiades, The role of tumour-stromal interactions in modifying drug response: challenges and opportunities, Nat. Rev. Drug Discov, vol.12, pp.217-228, 2013.

F. Mohammad, S. Weissmann, B. Leblanc, D. P. Pandey, J. W. Højfeldt et al., EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas, Nat. Med, vol.23, p.483, 2017.

M. Monje, S. S. Mitra, M. E. Freret, T. B. Raveh, J. Kim et al., Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma, Proc. Natl. Acad. Sci, vol.108, pp.4453-4458, 2011.

C. W. Mount, R. G. Majzner, S. Sundaresh, E. P. Arnold, M. Kadapakkam et al., Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas, Nat. Med, vol.24, pp.572-579, 2018.

S. Nagaraja, N. A. Vitanza, P. J. Woo, K. R. Taylor, F. Liu et al., Transcriptional Dependencies in Diffuse Intrinsic Pontine Glioma, Cancer Cell, vol.31, pp.635-652, 2017.

F. Némati, X. Sastre-garau, C. Laurent, J. Couturier, P. Mariani et al., Establishment and Characterization of a Panel of Human Uveal Melanoma Xenografts Derived from Primary and/or Metastatic Tumors, Clin. Cancer Res, vol.16, pp.2352-2362, 2010.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner et al., A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes, Cancer Cell, vol.10, pp.515-527, 2006.

H. Nikbakht, E. Panditharatna, L. G. Mikael, R. Li, T. Gayden et al., , 2016.

Q. T. Ostrom, H. Gittleman, J. Fulop, M. Liu, R. Blanda et al., CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States, NeuroOncol, vol.17, pp.1-62, 2008.

K. W. Pajtler, H. Witt, M. Sill, D. T. Jones, V. Hovestadt et al., Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups, Cancer Cell, vol.27, pp.728-743, 2015.

P. Panwalkar, J. Clark, V. Ramaswamy, D. Hawes, F. Yang et al., Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome, Acta Neuropathol. (Berl.), vol.134, pp.705-714, 2017.

M. Parker, K. M. Mohankumar, C. Punchihewa, R. Weinlich, J. D. Dalton et al., C11orf95-RELA fusions drive oncogenic NF-?B signaling in ependymoma, Nature, vol.506, pp.451-455, 2014.

K. Patel, N. A. Doudican, P. B. Schiff, and S. J. Orlow, Albendazole sensitizes cancer cells to ionizing radiation, Radiat. Oncol. Lond. Engl, vol.6, p.160, 2011.

M. Pathania, N. De-jay, N. Maestro, A. S. Harutyunyan, J. Nitarska et al., H3.3K27M Cooperates with Trp53 Loss and PDGFRA Gain in Mouse Embryonic Neural Progenitor Cells to Induce Invasive High-Grade Gliomas, vol.32, pp.684-700, 2017.

B. S. Paugh, C. Qu, C. Jones, Z. Liu, M. Adamowicz-brice et al., Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol, vol.28, pp.3061-3068, 2010.

G. Paxinos, F. , and K. , The mouse brain in stereotaxic coordinates, 2012.

A. D. Pearson, S. M. Pfister, A. Baruchel, J. Bourquin, M. Casanova et al., From class waivers to precision medicine in paediatric oncology, Lancet Oncol, vol.18, pp.394-404, 2017.

A. Piunti, R. Hashizume, M. A. Morgan, E. T. Bartom, C. M. Horbinski et al., Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas, Nat. Med, vol.23, pp.493-500, 2017.

A. Plessier, L. Le-dret, P. Varlet, K. Beccaria, J. Lacombe et al., New in vivo avatars of diffuse intrinsic pontine gliomas (DIPG) from stereotactic biopsies performed at diagnosis, Oncotarget, vol.8, pp.52543-52559, 2017.

S. N. Porter, L. C. Baker, D. Mittelman, and M. H. Porteus, Lentiviral and targeted cellular barcoding reveals ongoing clonal dynamics of cell lines in vitro and in vivo, Genome Biol, vol.15, p.75, 2014.

S. Puget, T. Blauwblomme, and J. Grill, Is biopsy safe in children with newly diagnosed diffuse intrinsic pontine glioma?, Am. Soc. Clin. Oncol. Educ. Book ASCO Am. Soc. Clin. Oncol. Meet, pp.629-633, 2012.

S. Puget, K. Beccaria, T. Blauwblomme, T. Roujeau, S. James et al., Biopsy in a series of 130 pediatric diffuse intrinsic Pontine gliomas, Childs Nerv. Syst. ChNS Off. J. Int. Soc. Pediatr. Neurosurg, vol.31, pp.1773-1780, 2015.

S. I. Rapoport, R. , and P. J. , Tight-Junctional Modification as the Basis of Osmotic Opening of the Blood-Brain Barriera, Ann. N. Y. Acad. Sci, vol.481, pp.250-267, 1986.

T. Reya, S. J. Morrison, M. F. Clarke, and I. L. Weissman, Stem cells, cancer, and cancer stem cells, 2001.

R. Domenico, N. Beatrice, C. Enrico, and A. Marco, Development of the blood-brain barrier: A historical point of view, Anat. Rec. B. New Anat, vol.289, pp.3-8, 2006.

T. Ritzmann, Recurrent Paediatric Ependymoma: A multicentre Analysis of Clinical Features and tumor Biology in the Molecular Era, 2018.

R. W. Robey, A. R. Chakraborty, A. Basseville, V. Luchenko, J. Bahr et al., Histone deacetylase inhibitors: emerging mechanisms of resistance, Mol. Pharm, vol.8, pp.2021-2031, 2011.

N. J. Robison and M. W. Kieran, Diffuse intrinsic pontine glioma: a reassessment, J. Neurooncol, vol.119, pp.7-15, 2014.

J. Schwartzentruber, A. Korshunov, X. Liu, D. T. Jones, E. Pfaff et al., Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma, Nature, vol.482, pp.226-231, 2012.

D. Segal and M. A. Karajannis, Pediatric Brain Tumors: An Update, Curr. Probl. Pediatr. Adolesc. Health Care, vol.46, pp.242-250, 2016.
DOI : 10.1016/j.cppeds.2016.04.004

T. Servidei, D. Meco, N. Trivieri, V. Patriarca, V. G. Vellone et al., Effects of epidermal growth factor receptor blockade on ependymoma stem cells in vitro and in orthotopic mouse models, Int. J. Cancer, vol.131, pp.791-803, 2012.

L. D. Shultz, B. L. Lyons, L. M. Burzenski, B. Gott, X. Chen et al., Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells, J. Immunol. Baltim. Md, vol.174, pp.6477-6489, 1950.

B. D. Strahl, A. , and C. D. , The language of covalent histone modi®cations, vol.403, p.7, 2000.

K. R. Taylor, A. Mackay, N. Truffaux, Y. S. Butterfield, O. Morozova et al., Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma, Nat. Genet, vol.46, pp.457-461, 2014.
DOI : 10.1038/ng.2925

URL : http://europepmc.org/articles/pmc4018681?pdf=render

M. D. Taylor, H. Poppleton, C. Fuller, X. Su, Y. Liu et al., Radial glia cells are candidate stem cells of ependymoma, Cancer Cell, vol.8, pp.323-335, 2005.

L. H. Treat, N. Mcdannold, Y. Zhang, N. Vykhodtseva, and K. Hynynen, Improved Anti-Tumor Effect of Liposomal Doxorubicin After Targeted Blood-Brain Barrier Disruption by MRI-Guided Focused Ultrasound in Rat Glioma, Ultrasound Med. Biol, vol.38, pp.1716-1725, 2012.

N. Truffaux, C. Philippe, J. Paulsson, F. Andreiuolo, L. Guerrini-rousseau et al., Preclinical evaluation of dasatinib alone and in combination with cabozantinib for the treatment of diffuse intrinsic pontine glioma, Neuro-Oncol, vol.17, pp.953-964, 2015.

G. Vassal, M. Terrier-lacombe, A. Lellouch-tubiana, C. A. Valery, C. Sainte-rose et al., Tumorigenicity of cerebellar primitive neuro-ectodermal tumors in athymic mice correlates with poor prognosis in children, Int. J. Cancer, vol.69, pp.146-151, 1996.

A. Wenger, S. Larsson, A. Danielsson, K. J. Elbaek, P. Kettunen et al., Stem cell cultures derived from pediatric brain tumors accurately model the originating tumors, Oncotarget, vol.8, pp.18626-18639, 2017.

P. Windrum, M. , and T. C. , Severe neurotoxicity because of dimethyl sulphoxide following peripheral blood stem cell transplantation, Bone Marrow Transplant, vol.31, p.315, 2003.

H. Witt, S. C. Mack, M. Ryzhova, S. Bender, M. Sill et al., Delineation of Two Clinically and Molecularly Distinct Subgroups of Posterior Fossa Ependymoma, Cancer Cell, vol.20, pp.143-157, 2011.

G. Wu, A. Broniscer, T. A. Mceachron, C. Lu, B. S. Paugh et al., Somatic Histone H3 Alterations in Paediatric Diffuse Intrinsic Pontine Gliomas and Non-Brainstem Glioblastomas, Nat. Genet, vol.44, pp.251-253, 2012.

L. Yu, P. A. Baxter, H. Voicu, S. Gurusiddappa, Y. Zhao et al., A clinically relevant orthotopic xenograft model of ependymoma that maintains the genomic signature of the primary tumor and preserves cancer stem cells in vivo, Neuro-Oncol, vol.12, pp.580-594, 2010.

S. C. Zimmermann, T. Tichý, J. Vávra, R. P. Dash, C. E. Slusher et al., N-Substituted Prodrugs of Mebendazole Provide Improved Aqueous Solubility and Oral Bioavailability in Mice and Dogs, J. Med. Chem, vol.61, pp.3918-3929, 2018.

D. Sturm, H. Witt, V. Hovestadt, D. A. Khuong-quang, D. T. Jones et al., Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma, Cancer Cell, vol.22, pp.425-462, 2012.

G. Reyes-botero, M. Giry, K. Mokhtari, M. Labussière, A. Idbaih et al., Molecular analysis of diffuse intrinsic brainstem gliomas in adults, J Neurooncol, vol.116, pp.405-416, 2013.

S. Puget, K. Beccaria, T. Blauwblomme, T. Roujeau, S. James et al., Biopsy in a series of 130 pediatric diffuse intrinsic Pontine gliomas, Childs Nerv Syst, vol.31, pp.1773-80, 2015.

K. E. Warren, Diffuse intrinsic pontine glioma: poised for progress, Front Oncol, vol.2, p.205, 2012.
DOI : 10.3389/fonc.2012.00205

URL : https://www.frontiersin.org/articles/10.3389/fonc.2012.00205/pdf

N. J. Robison and M. W. Kieran, Diffuse intrinsic pontine glioma: a reassessment, J Neurooncol, vol.119, pp.7-15, 2014.

J. Schwartzentruber, A. Korshunov, X. Y. Liu, D. T. Jones, E. Pfaff et al., Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma, Nature, vol.482, pp.226-257, 2012.

G. Wu, A. Broniscer, T. A. Mceachron, C. Lu, B. S. Paugh et al., Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and nonbrainstem glioblastomas, Nat Genet, vol.44, pp.251-254, 2012.

D. Castel, C. Philippe, R. Calmon, L. Dret, L. Truffaux et al., Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes, Acta Neuropathol, vol.130, pp.815-842, 2015.

S. Bender, Y. Tang, A. M. Lindroth, V. Hovestadt, D. T. Jones et al., Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas, Cancer Cell, vol.24, pp.660-72, 2013.

K. M. Chan, D. Fang, H. Gan, R. Hashizume, C. Yu et al., The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression, Genes Dev, vol.27, pp.985-90, 2013.

P. W. Lewis, M. M. Müller, M. S. Koletsky, F. Cordero, S. Lin et al., Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma, Science, vol.340, pp.857-61, 2013.

D. N. Louis, A. Perry, G. Reifenberger, V. Deimling, A. Figarella-branger et al., The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary, Acta Neuropathol, vol.131, pp.803-823, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01479018

O. J. Becher, D. Hambardzumyan, T. R. Walker, K. Helmy, J. Nazarian et al., Preclinical evaluation of radiation and perifosine in a genetically and histologically accurate model of brainstem glioma, Cancer Res, vol.70, pp.2548-57, 2010.

K. L. Misuraca, G. Hu, K. L. Barton, A. Chung, and O. J. Becher, A novel mouse model of diffuse intrinsic pontine glioma initiated in Pax3-expressing cells, Neoplasia, vol.18, pp.60-70, 2016.

M. Monje, S. S. Mitra, M. E. Freret, T. B. Raveh, J. Kim et al., Hedgehog-responsive Oncotarget 52559 www.impactjournals.com/oncotarget candidate cell of origin for diffuse intrinsic pontine glioma, PNAS, vol.108, pp.4453-4461, 2011.

M. Kambhampati, J. P. Perez, S. Yadavilli, A. M. Saratsis, A. D. Hill et al., A standardized autopsy procurement allows for the comprehensive study of DIPG biology, Oncotarget, vol.6, pp.12740-12747, 2015.

P. Buczkowicz, C. Hoeman, P. Rakopoulos, S. Pajovic, L. Letourneau et al., Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations, Nat Genet, vol.46, pp.451-457, 2014.

K. R. Taylor, A. Mackay, N. Truffaux, Y. S. Butterfield, O. Morozova et al., Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma, Nat Genet, vol.46, pp.457-61, 2014.

M. Zarghooni, U. Bartels, E. Lee, P. Buczkowicz, A. Morrison et al., Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor ? and poly (ADPribose) polymerase as potential therapeutic targets, JCO, vol.28, pp.1337-1381, 2010.

B. S. Paugh, A. Broniscer, C. Qu, C. P. Miller, J. Zhang et al., Genomewide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma, J Clin Oncol, vol.29, pp.3999-4006, 2011.

S. Puget, C. Philippe, D. A. Bax, J. B. Varlet, P. Junier et al., Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas, PLoS One, vol.7, p.30313, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01541438

T. Yamada, T. Kawamata, D. G. Walker, and P. L. Mcgeer, Vimentin immunoreactivity in normal and pathological human brain tissue, Acta Neuropathol, vol.84, pp.157-62, 1992.

C. S. Grasso, Y. Tang, N. Truffaux, N. E. Berlow, L. Liu et al., Functionally defined therapeutic targets in diffuse intrinsic pontine glioma, Nat Med, vol.21, pp.555-564, 2015.

K. A. Bradley, I. F. Pollack, J. M. Reid, P. C. Adamson, M. M. Ames et al., Motexafin gadolinium and involved field radiation therapy for intrinsic pontine glioma of childhood: a Children's Oncology Group phase I study, Neuro Oncol, vol.10, pp.752-760, 2008.

X. Guo, M. Geng, and G. Du, Glucose transporter 1, distribution in the brain and in neural disorders: its relationship with transport of neuroactive drugs through the blood-brain barrier, Biochem Genet, vol.43, pp.175-87, 2005.

K. Beccaria, M. Canney, L. Goldwirt, C. Fernandez, C. Adam et al., Opening of the blood-brain barrier with an unfocused ultrasound device in rabbits, J Neurosurg, vol.119, pp.887-98, 2013.

O. Uyama, N. Okamura, M. Yanase, M. Narita, K. Kawabata et al., Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using Evans blue fluorescence, J Cereb Blood Flow Metab, vol.8, pp.282-286, 1988.

M. H. Jansen, S. E. Veldhuijzen-van-zanten, E. Sanchez-aliaga, M. W. Heymans, M. Warmuth-metz et al., Survival prediction model of children with diffuse intrinsic pontine glioma based on clinical and radiological criteria, Neuro Oncol, vol.17, pp.160-166, 2015.

G. Vassal, M. J. Terrier-lacombe, A. Lellouch-tubiana, C. A. Valery, C. Sainte-rose et al., Tumorigenicity of cerebellar primitive neuro-ectodermal tumors in athymic mice correlates with poor prognosis in children, Int J Cancer, vol.69, pp.2-7, 1996.

N. Gaspar, J. Grill, B. Geoerger, A. Lellouch-tubiana, M. B. Michalowski et al., p53 Pathway dysfunction in primary childhood ependymomas, Pediatr Blood Cancer, vol.46, pp.604-617, 2006.

V. Caretti, A. C. Sewing, T. Lagerweij, P. Schellen, M. Bugiani et al., Human pontine glioma cells can induce murine tumors, Acta Neuropathol, vol.127, pp.897-909, 2014.

D. Shcherbo, E. M. Merzlyak, T. V. Chepurnykh, A. F. Fradkov, G. V. Ermakova et al., Bright far-red fluorescent protein for whole-body imaging, Nat Methods, vol.4, pp.741-747, 2007.

C. M. Elso, L. J. Roberts, G. K. Smyth, R. J. Thomson, T. M. Baldwin et al., Leishmaniasis host response loci (lmr1-3) modify disease severity through a Th1/Th2independent pathway, Genes Immun, vol.5, pp.93-100, 2004.
DOI : 10.1038/sj.gene.6364042

URL : https://www.nature.com/articles/6364042.pdf

T. Baldwin, A. Sakthianandeswaren, J. M. Curtis, B. Kumar, G. K. Smyth et al., Wound healing response is a major contributor to the severity of cutaneous leishmaniasis in the ear model of infection, Parasite Immunol, vol.29, pp.501-514, 2007.

J. F. Mangin, Entropy minimization for automatic correction of intensity nonuniformity, IEEE, pp.162-69, 2000.