I. Atallah, C. Milet, M. Henry, V. Josserand, E. Reyt et al., Near-infrared fluorescence imaging-guided surgery improves recurrence-free survival rate in novel orthotopic animal model of head and neck squamous cell carcinoma, Head & Neck, vol.21, issue.S1, pp.246-255, 2016.
DOI : 10.1021/bc100070g

I. Grammatikakis, M. Gorospe, and K. Abdelmohsen, Modulation of Cancer Traits by Tumor Suppressor microRNAs, International Journal of Molecular Sciences, vol.128, issue.1, pp.1822-1864, 2013.
DOI : 10.1002/ijc.25376

B. Luo and T. Springer, Integrin structures and conformational signaling, Current Opinion in Cell Biology, vol.18, issue.5, pp.579-86, 2006.
DOI : 10.1016/j.ceb.2006.08.005

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618925/pdf

D. Boturyn, J. Coll, E. Garanger, M. Favrot, and P. Dumy, Template Assembled Cyclopeptides as Multimeric System for Integrin Targeting and Endocytosis, Journal of the American Chemical Society, vol.126, issue.18, pp.5730-5739, 2004.
DOI : 10.1021/ja049926n

D. Gerlag, E. Borges, P. Tak, H. Ellerby, D. Bredesen et al., Suppression of murine collagen-induced arthritis by targeted apoptosis of synovial neovasculature, Arthritis Research, vol.3, issue.6, pp.357-61, 2001.
DOI : 10.1186/ar327

C. Avraamides, B. Garmy-susini, and J. Varner, Integrins in angiogenesis and lymphangiogenesis, Nature Reviews Cancer, vol.99, issue.8, pp.604-621, 2008.
DOI : 10.1172/JCI200422087

F. Danhier, L. Breton, A. Préat, and V. , RGD-Based Strategies To Target Alpha(v) Beta(3) Integrin in Cancer Therapy and Diagnosis, Molecular Pharmaceutics, vol.9, issue.11, pp.2961-73, 2012.
DOI : 10.1021/mp3002733

E. Garanger, D. Boturyn, O. Renaudet, E. Defrancq, and P. Dumy, Chemoselectively Addressable Template:?? A Valuable Tool for the Engineering of Molecular Conjugates, The Journal of Organic Chemistry, vol.71, issue.6, pp.2402-2412, 2006.
DOI : 10.1021/jo0525480

L. Sancey, F. Lux, S. Kotb, S. Roux, S. Dufort et al., The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy, The British Journal of Radiology, vol.11, issue.1041, p.20140134, 1041.
DOI : 10.1016/j.nano.2014.05.005.

URL : https://hal.archives-ouvertes.fr/hal-01286747

. Infrastructures-mai, Les nanoparticules pour le traitement des eaux, 2010.

H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review, Journal of Controlled Release, vol.65, issue.1-2, pp.271-84, 2000.
DOI : 10.1016/S0168-3659(99)00248-5

Y. Matsumura and H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs, Cancer Res. déc, vol.4612, issue.1, pp.6387-92, 1986.

S. Hobbs, W. Monsky, F. Yuan, W. Roberts, L. Griffith et al., Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment, Proceedings of the National Academy of Sciences, vol.276, issue.6, pp.4607-4619, 1998.
DOI : 10.1038/scientificamerican0697-111

H. Hashizume, Openings between Defective Endothelial Cells Explain Tumor Vessel Leakiness, The American Journal of Pathology, vol.156, issue.4, pp.1363-80, 2000.
DOI : 10.1016/S0002-9440(10)65006-7

URL : http://europepmc.org/articles/pmc1876882?pdf=render

A. Iyer, G. Khaled, J. Fang, and H. Maeda, Exploiting the enhanced permeability and retention effect for tumor targeting, Drug Discovery Today, vol.11, issue.17-18, pp.17-18812, 2006.
DOI : 10.1016/j.drudis.2006.07.005

J. Park, C. Benz, and F. Martin, Future directions of liposome- and immunoliposome-based cancer therapeutics, Seminars in Oncology, vol.31, issue.6, pp.196-205, 2004.
DOI : 10.1053/j.seminoncol.2004.08.009

D. Kirpotin, D. Drummond, Y. Shao, M. Shalaby, K. Hong et al., Antibody Targeting of Long-Circulating Lipidic Nanoparticles Does Not Increase Tumor Localization but Does Increase Internalization in Animal Models, Cancer Research, vol.66, issue.13, pp.6732-6772, 2006.
DOI : 10.1158/0008-5472.CAN-05-4199

G. Orive, O. Ali, E. Anitua, J. Pedraz, and D. Emerich, Biomaterial-based technologies for brain anticancer therapeutics and imaging, Biochim Biophys Acta. août, vol.1806, issue.1, pp.96-107, 2010.
DOI : 10.1016/j.bbcan.2010.04.001

S. Li, A. Wang, W. Jiang, and Z. Guan, Pharmacokinetic characteristics and anticancer effects of 5-Fluorouracil loaded nanoparticles, BMC Cancer, vol.11, issue.Suppl 2, p.103, 2008.
DOI : 10.1016/S0928-0987(00)00166-4

E. Fattal and G. Barratt, Nanotechnologies and controlled release systems for the delivery of antisense oligonucleotides and small interfering RNA, British Journal of Pharmacology, vol.49, issue.2, pp.179-94, 2009.
DOI : 10.1016/0304-4157(94)90001-9

S. Hart, Multifunctional nanocomplexes for gene transfer and gene therapy, Cell Biology and Toxicology, vol.100, issue.1, pp.69-81, 2010.
DOI : 10.1161/01.CIR.102.2.231

A. Schroeder, C. Levins, C. Cortez, R. Langer, and D. Anderson, Lipid-based nanotherapeutics for siRNA delivery, Journal of Internal Medicine, vol.128, issue.1, pp.9-21, 2010.
DOI : 10.1038/sj.jid.5701060

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2796.2009.02189.x/pdf

L. Li, C. Wartchow, S. Danthi, Z. Shen, N. Dechene et al., A novel antiangiogenesis therapy using an integrin antagonist or anti???Flk-1 antibody coated 90Y-labeled nanoparticles, International Journal of Radiation Oncology*Biology*Physics, vol.58, issue.4, pp.1215-1242, 2004.
DOI : 10.1016/j.ijrobp.2003.10.057

J. Hainfeld, F. Dilmanian, Z. Zhong, D. Slatkin, J. Kalef-ezra et al., Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma, Physics in Medicine and Biology, vol.55, issue.11, pp.3045-59, 2010.
DOI : 10.1088/0031-9155/55/11/004

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, Medical application of functionalized magnetic nanoparticles, Journal of Bioscience and Bioengineering, vol.100, issue.1, pp.1-11, 2005.
DOI : 10.1263/jbb.100.1

P. Wust, U. Gneveckow, M. Johannsen, D. Böhmer, T. Henkel et al., Magnetic nanoparticles for interstitial thermotherapy ??? feasibility, tolerance and achieved temperatures, International Journal of Hyperthermia, vol.25, issue.8, pp.673-85, 2006.
DOI : 10.1200/JCO.2005.05.520

H. Huang, K. Rege, and J. Heys, Spatiotemporal Temperature Distribution and Cancer Cell Death in Response to Extracellular Hyperthermia Induced by Gold Nanorods, ACS Nano, vol.4, issue.5, pp.2892-900, 2010.
DOI : 10.1021/nn901884d

D. Chatterjee, L. Fong, and Y. Zhang, Nanoparticles in photodynamic therapy: An emerging paradigm, Advanced Drug Delivery Reviews, vol.60, issue.15, pp.1627-1664, 2008.
DOI : 10.1016/j.addr.2008.08.003

P. Caravan, J. Ellison, T. Mcmurry, and R. Lauffer, Gadolinium(III) Chelates as MRI Contrast Agents:?? Structure, Dynamics, and Applications, Chemical Reviews, vol.99, issue.9, pp.2293-352, 1999.
DOI : 10.1021/cr980440x

A. Bianchi, S. Dufort, F. Lux, P. Fortin, N. Tassali et al., Targeting and in vivo imaging of non-small-cell lung cancer using nebulized multimodal contrast agents, Proceedings of the National Academy of Sciences, vol.45, issue.1, pp.9247-52, 2014.
DOI : 10.1002/1522-2594(200101)45:1<88::AID-MRM1013>3.0.CO;2-N

URL : https://hal.archives-ouvertes.fr/hal-01115890

I. Miladi, G. Duc, D. Kryza, A. Berniard, P. Mowat et al., Biodistribution of ultra small gadolinium-based nanoparticles as theranostic agent: Application to brain tumors, Journal of Biomaterials Applications, vol.28, issue.3, pp.385-94, 2013.
DOI : 10.1002/smll.200900563

URL : https://hal.archives-ouvertes.fr/hal-01020860

J. Hainfeld, D. Slatkin, and H. Smilowitz, The use of gold nanoparticles to enhance radiotherapy in mice, Physics in Medicine and Biology, vol.49, issue.18, pp.309-315, 2004.
DOI : 10.1088/0031-9155/49/18/N03

J. Hainfeld, D. Slatkin, T. Focella, and H. Smilowitz, Gold nanoparticles: a new X-ray contrast agent, The British Journal of Radiology, vol.79, issue.939, pp.248-53, 2006.
DOI : 10.1016/S0002-8703(98)70336-9

S. Dufort, A. Bianchi, M. Henry, F. Lux, L. Duc et al., Nebulized Gadolinium-Based Nanoparticles: A Theranostic Approach for Lung Tumor Imaging and Radiosensitization, Small, vol.32, issue.2, pp.215-236, 2015.
DOI : 10.1016/j.biomaterials.2010.11.063

URL : https://hal.archives-ouvertes.fr/hal-01115895

L. Duc, G. Miladi, I. Alric, C. Mowat, P. Bräuer-krisch et al., Toward an Image-Guided Microbeam Radiation Therapy Using Gadolinium-Based Nanoparticles, ACS Nano, vol.5, issue.12, pp.9566-74, 2011.
DOI : 10.1021/nn202797h

N. Tassali, A. Bianchi, F. Lux, G. Raffard, S. Sanchez et al., MR imaging, targeting and characterization of pulmonary fibrosis using intra-tracheal administration of gadolinium-based nanoparticles, Contrast Media & Molecular Imaging, vol.59, issue.5, pp.396-404, 2016.
DOI : 10.1002/mrm.21517

URL : https://hal.archives-ouvertes.fr/hal-01405806

M. Plissonneau, J. Pansieri, L. Heinrich-balard, J. Morfin, N. Stransky-heilkron et al., Gd-nanoparticles functionalization with specific peptides for ??-amyloid plaques targeting, Journal of Nanobiotechnology, vol.19, issue.1, p.60, 2016.
DOI : 10.1016/S0896-6273(00)80974-5

URL : https://hal.archives-ouvertes.fr/hal-01356748

H. Mehanna, V. Paleri, C. West, and C. Nutting, Head and neck cancer-Part 1: Epidemiology, presentation, and preservation, Clinical Otolaryngology, vol.36, issue.1, pp.65-73, 2011.
DOI : 10.1111/j.1749-4486.2010.02231.x

A. Boing, J. Antunes, M. De-carvalho, J. De-góis-filho, L. Kowalski et al., How much do smoking and alcohol consumption explain socioeconomic inequalities in head and neck cancer risk?, Journal of Epidemiology & Community Health, vol.65, issue.8, pp.709-723, 2011.
DOI : 10.1136/jech.2009.097691

D. Conway, M. Hashibe, P. Boffetta, . Inhance-consortium, V. Wunsch-filho et al., Enhancing epidemiologic research on head and neck cancer: INHANCE ??? The international head and neck cancer epidemiology consortium, Oral Oncology, vol.45, issue.9, pp.743-749, 2009.
DOI : 10.1016/j.oraloncology.2009.02.007

L. Tourneau, C. Jung, G. Borel, C. Bronner, G. Flesch et al., Prognostic factors of survival in head and neck cancer patients treated with surgery and postoperative radiation therapy, Acta Oto-Laryngologica, vol.368, issue.6, pp.706-718, 2008.
DOI : 10.1016/S0140-6736(06)69121-6

N. Vincent, O. Dassonville, E. Chamorey, G. Poissonnet, C. Pierre et al., Clinical and histological prognostic factors in locally advanced oral cavity cancers treated with primary surgery, European Annals of Otorhinolaryngology, Head and Neck Diseases, vol.129, issue.6, pp.291-297, 2012.
DOI : 10.1016/j.anorl.2012.01.004

A. Argiris, M. Karamouzis, J. Johnson, D. Heron, E. Myers et al., Long-Term Results of a Phase III Randomized Trial of Postoperative Radiotherapy With or Without Carboplatin in Patients With High-Risk Head and Neck Cancer, The Laryngoscope, vol.22, issue.3, pp.444-453, 2008.
DOI : 10.1016/0360-3016(89)90451-3

M. Anijdan, S. Mahdavi, S. Shirazi, A. Zarrinfard, M. Hajati et al., Megavoltage X-ray Dose Enhancement with Gold Nanoparticles in Tumor Bearing Mice, Int J Mol Cell Med, vol.2, issue.3, pp.118-141, 2013.

J. Gioanni, J. Fischel, J. Lambert, F. Demard, C. Mazeau et al., Two new human tumor cell lines derived from squamous cell carcinomas of the tongue: Establishment, characterization and response to cytotoxic treatment, European Journal of Cancer and Clinical Oncology, vol.24, issue.9, pp.1445-55, 1988.
DOI : 10.1016/0277-5379(88)90335-5

M. Hughes, J. Health, and P. , The Principles of Humane Experimental Technique [Internet], Johns Hopkins Bloomberg School of Public Health

K. Aubry, F. Paraf, J. Monteil, J. Bessede, and M. Rigaud, Characterization of a new rat model of head and neck squamous cell carcinoma, Vivo Athens Greece. août, vol.22, issue.4, pp.403-411, 2008.

S. Lu, H. Herrington, and X. Wang, Mouse models for human head and neck squamous cell carcinomas, Head & Neck, vol.2, issue.10, pp.945-54, 2006.
DOI : 10.1001/archotol.1997.01900010022003

J. Myers, F. Holsinger, S. Jasser, B. Bekele, and I. Fidler, An orthotopic nude mouse model of oral tongue squamous cell carcinoma, Clin Cancer Res Off J Am Assoc Cancer Res. janv, vol.8, issue.1, pp.293-301, 2002.

B. Lyu-null, N. Romanova, and N. Ugarova, Bioluminescent assay of bacterial intracellular AMP, ADP, and ATP with the use of a coimmobilized three-enzyme reagent (adenylate kinase, pyruvate kinase, and firefly luciferase), Anal Biochem. 1 août, vol.220, issue.2, pp.410-414, 1994.

M. James and S. Gambhir, A Molecular Imaging Primer: Modalities, Imaging Agents, and Applications, Physiological Reviews, vol.1, issue.2, pp.897-965, 2012.
DOI : 10.1021/bc7004297

URL : http://physrev.physiology.org/content/physrev/92/2/897.full.pdf

K. Simons and E. Ikonen, Functional rafts in cell membranes, Nature, vol.128, issue.6633, pp.569-72, 1997.
DOI : 10.1083/jcb.128.6.1043

E. Garanger, D. Boturyn, J. Z. Dumy, P. Favrot, M. Coll et al., New Multifunctional Molecular Conjugate Vector for Targeting, Imaging, and Therapy of Tumors, Molecular Therapy, vol.12, issue.6, pp.1168-75, 2005.
DOI : 10.1016/j.ymthe.2005.06.095

D. Duret, A. Grassin, M. Henry, T. Jacquet, F. Thoreau et al., Integrins, Bioconjugate Chemistry, vol.28, issue.9, pp.2241-2246, 2017.
DOI : 10.1021/acs.bioconjchem.7b00362

URL : https://hal.archives-ouvertes.fr/hal-01649349

?. References-)-mammen, M. Choi, S. Whitesides, and G. M. , Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors, Angewandte Chemie International Edition, vol.37, issue.20, p.2754, 1998.
DOI : 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3

V. M. Krishnamurthy, L. A. Estroff, G. M. Whitesides, &. Wiley-vch-verlag-gmbh, . Co et al., Multivalency in Ligand Design In Fragment-based Approaches in Drug Discovery Selective tumor cell targeting using low-affinity, multivalent interactions Multivalency as a Chemical Organization and Action Principle Glycomimetics versus multivalent glycoconjugates for the design of high affinity lectin ligands Recent Advances in Engineering Polyvalent Biological Interactions Influencing receptor-ligand binding mechanisms with multivalent ligand architecture, Bioconjugate Chemistry Communication DOI: 10.1021/acs.bioconjchem.7b00362 Bioconjugate Chem, pp.2241-2245, 2002.

. Natl, . Acad, . U. Sci, G. V. Dubacheva, T. Curk et al., Designing super selectivity in multivalent nano-particle binding Ligandclustered " patchy " nanoparticles for modulated cellular uptake and in vivo tumor targeting Surface functionalization of nanomaterials with dendritic groups: toward enhanced binding to biological targets Thiol-alkyne chemistry for the preparation of micelles with glycopolymer corona: dendritic surfaces versus linear glycopolymer in their ability to bind to lectins, G. (2012) Virus-like glycodendrinanoparticles displaying quasi-equivalent nested polyvalency upon glycoprotein platforms potently block viral infection. Nat, pp.1722-1727, 2009.

C. Ringsdorf, H. Pfaff, M. Tangemann, K. Mu?-ller, B. Gurrath et al., A reevaluation of integrins as regulators of angiogenesis Noninvasive and quantitative assessment of in vivo angiogenesis using RGD-based fluorescence imaging of subcutaneous sponges RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrintargeted drug delivery Conjugated platinum(IV)-peptide complexes for targeting angiogenic tumor vasculatureCu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor alpha(v)beta(3) integrin expression In vivo optical imaging of integrin ?V-?3 in mice using multivalent or monovalent cRGD targeting vectors Biocompatible well-defined chromophore? polymer conjugates for photodynamic therapy and two-photon imaging Template assembled cyclopeptides as multimeric system for integrin targeting and endocytosis RAFT Nano-constructs: surfing to biological applications Coliposomes comprising a lipidated multivalent RGD-peptide and a cationic gemini cholesterol induce selective gene transfection in ?v?3 and ?v?5 integrin receptor-rich cancer cells Multivalent RGD synthetic peptides as potent alphaVbeta3 integrin ligands Clustering and internalization of integrin alphavbeta3 with a tetrameric RGD-synthetic peptide Highly efficient cell adhesion on beads functionalized with clustered peptide ligands Development of a selective cell capture and release assay: impact of clustered RGD ligands Living free-radical polymerization by reversible addition?fragmentation chain transfer: The RAFT process Experimental requirements for an efficient control of free-radical polymerizations via the reversible addition-fragmentation chain transfer (RAFT) process Synthesis of N-acryloxysuccinimide copolymers by RAFT polymerization, as reactive building blocks with full control of composition and molecular weights Method for controlled free-radical polymerization, Polym. Sci., Polym. Symp. 51, 135. (10)-acryloylmorpholine) oligomers carrying a ?cyclodextrin residue at one terminus. J. Polym. Sci., Part A: Polym, pp.918-514, 1098.

C. Galibert, M. Sancey, L. Renaudet, O. Coll, J. Dumy et al., Application of click???click chemistry to the synthesis of new multivalent RGD conjugates, Organic & Biomolecular Chemistry, vol.42, issue.22, pp.1607-1627, 2010.
DOI : 10.1039/c0ob00070a

URL : https://hal.archives-ouvertes.fr/inserm-00559554