C. B. Anfinsen, Principles that Govern the Folding of Protein Chains, Science, vol.181, issue.4096, pp.223-230, 1973.
DOI : 10.1126/science.181.4096.223

D. Balchin, M. Hayer?hartl, and F. U. Hartl, In vivo aspects of protein folding and quality control, Science, vol.32, issue.3, p.4354, 2016.
DOI : 10.1016/j.cbpa.2016.01.009

J. C. Bardwell, C. , and E. A. , Ancient heat shock gene is dispensable., Journal of Bacteriology, vol.170, issue.7, pp.2977-2983, 1988.
DOI : 10.1128/jb.170.7.2977-2983.1988

A. Battesti and E. Bouveret, Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism, Molecular Microbiology, vol.266, issue.4, pp.1048-1063, 2006.
DOI : 10.1128/JB.186.16.5249-5257.2004

A. Battesti and E. Bouveret, Improvement of bacterial two-hybrid vectors for detection of fusion proteins and transfer to pBAD-tandem affinity purification, calmodulin binding peptide, or 6-histidine tag vectors, PROTEOMICS, vol.48, issue.22, pp.4768-4771, 2008.
DOI : 10.1002/pmic.200800270

A. Battesti and E. Bouveret, The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli, Methods, vol.58, issue.4, pp.325-334, 2012.
DOI : 10.1016/j.ymeth.2012.07.018

URL : https://hal.archives-ouvertes.fr/hal-01458246

A. Battesti, J. R. Hoskins, S. Tong, P. Milanesio, J. M. Mann et al., Anti-adaptors provide multiple modes for regulation of the RssB adaptor protein, Genes & Development, vol.27, issue.24, p.2722, 2013.
DOI : 10.1101/gad.229617.113

URL : https://hal.archives-ouvertes.fr/hal-01556023

E. E. Boczek, L. G. Reefschläger, M. Dehling, T. J. Struller, E. Häusler et al., Conformational processing of oncogenic v-Src kinase by the molecular chaperone Hsp90, Proc. Natl. Acad. Sci. U. S. A. 112, pp.3189-3198, 2015.
DOI : 10.1016/0263-7855(96)00018-5

C. Bordi, C. Iobbi?nivol, V. Méjean, and J. ?. Patte, Effects of ISSo2 Insertions in Structural and Regulatory Genes of the Trimethylamine Oxide Reductase of Shewanella oneidensis, Journal of Bacteriology, vol.185, issue.6, pp.2042-2045, 2003.
DOI : 10.1128/JB.185.6.2042-2045.2003

K. A. Borkovich, F. W. Farrelly, D. B. Finkelstein, J. Taulien, and S. Lindquist, hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures., Molecular and Cellular Biology, vol.9, issue.9, 1989.
DOI : 10.1128/MCB.9.9.3919

J. Buchner, Bacterial Hsp90 - desperately seeking clients, Molecular Microbiology, vol.418, issue.3, pp.540-544, 2010.
DOI : 10.1128/MCB.9.9.3919

J. Cai, H. Chen, K. D. Thompson, L. , and C. , Isolation and identification of Shewanella alga and its pathogenic effects on post-larvae of abalone Haliotis diversicolor supertexta, Journal of Fish Diseases, vol.40, issue.8, pp.505-508, 2006.
DOI : 10.1111/j.1574-6968.1992.tb05420.x

T. Caldas, A. Malki, R. Kern, J. Abdallah, R. et al., The Escherichia coli thioredoxin homolog YbbN/Trxsc is a chaperone and a weak protein oxidoreductase, Biochemical and Biophysical Research Communications, vol.343, issue.3, pp.780-786, 2006.
DOI : 10.1016/j.bbrc.2006.03.028

URL : https://hal.archives-ouvertes.fr/hal-00021859

W. Dang, Y. Hu, and L. Sun, HtpG is involved in the pathogenesis of Edwardsiella tarda, Veterinary Microbiology, vol.152, issue.3-4, pp.394-400, 2011.
DOI : 10.1016/j.vetmic.2011.05.030

C. M. Dobson, E. , and R. J. , Protein folding and misfolding inside and outside the cell, The EMBO Journal, vol.17, issue.18, pp.5251-5254, 1998.
DOI : 10.1093/emboj/17.18.5251

R. J. Ellis and A. P. Minton, Protein aggregation in crowded environments, Biological Chemistry, vol.40, issue.5, pp.485-497, 2006.
DOI : 10.1016/0022-2836(91)90499-V

L. García?descalzo, A. Alcazar, F. Baquero, C. , and C. , Identification of in vivo HSP90-interacting proteins reveals modularity of HSP90 complexes is dependent on the environment in psychrophilic bacteria, Cell Stress and Chaperones, vol.93, issue.2, pp.203-218, 2011.
DOI : 10.1002/bip.21292

O. Genest, J. R. Hoskins, J. L. Camberg, S. M. Doyle, and S. Wickner, Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling, Proc. Natl, 2011.
DOI : 10.1073/pnas.0904886106

O. Genest, M. Reidy, T. O. Street, J. R. Hoskins, J. L. Camberg et al., Uncovering a Region of Heat Shock Protein 90 Important for Client Binding in E.??coli and Chaperone Function in Yeast, Molecular Cell, vol.49, issue.3, pp.464-473, 2013.
DOI : 10.1016/j.molcel.2012.11.017

O. Genest, J. R. Hoskins, A. N. Kravats, S. M. Doyle, and S. Wickner, Hsp70 and Hsp90 of E. coli Directly Interact for Collaboration in Protein Remodeling, Journal of Molecular Biology, vol.427, issue.24, pp.3877-3889, 2015.
DOI : 10.1016/j.jmb.2015.10.010

URL : https://hal.archives-ouvertes.fr/hal-01432234

C. Graf, M. Stankiewicz, G. Kramer, and M. P. Mayer, Spatially and kinetically resolved changes in the conformational dynamics of the Hsp90 chaperone machine, The EMBO Journal, vol.24, issue.5, pp.602-613, 2009.
DOI : 10.1002/pro.5560021114

A. M. Grudniak, K. Pawlak, K. Bartosik, and K. I. Wolska, Physiological consequences of mutations in the htpG heat shock gene of Escherichia coli, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.745, issue.746, pp.745-746, 2013.
DOI : 10.1016/j.mrfmmm.2013.04.003

A. M. Grudniak, K. Markowska, and K. I. Wolska, Interactions of Escherichia coli molecular chaperone HtpG with DnaA replication initiator DNA, Cell Stress and Chaperones, vol.93, issue.6, pp.951-957, 2015.
DOI : 10.1002/bip.21292

L. M. Guzman, D. Belin, M. J. Carson, and J. Beckwith, Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter., Journal of Bacteriology, vol.177, issue.14, pp.4121-4130, 1995.
DOI : 10.1128/jb.177.14.4121-4130.1995

D. Hanahan, Studies on transformation of Escherichia coli with plasmids, Journal of Molecular Biology, vol.166, issue.4, pp.557-580, 1983.
DOI : 10.1016/S0022-2836(83)80284-8

J. F. Heidelberg, I. T. Paulsen, K. E. Nelson, E. J. Gaidos, W. C. Nelson et al., Genome sequence of the dissimilatory metal ion???reducing bacterium Shewanella oneidensis, Nature Biotechnology, vol.20, issue.11, pp.1118-1123, 2002.
DOI : 10.1038/nbt749

M. Herrero, V. De-lorenzo, and K. N. Timmis, Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria., Journal of Bacteriology, vol.172, issue.11, pp.6557-6567, 1990.
DOI : 10.1128/jb.172.11.6557-6567.1990

F. A. Honoré, V. Méjean, and O. Genest, Hsp90 Is Essential under Heat Stress in the Bacterium Shewanella oneidensis, Cell Reports, vol.19, issue.4, pp.680-687, 2017.
DOI : 10.1016/j.celrep.2017.03.082

M. M. Hossain and H. Nakamoto, HtpG Plays a Role in Cold Acclimation in Cyanobacteria, Current Microbiology, vol.44, issue.4, pp.291-296, 2002.
DOI : 10.1007/s00284-001-0005-9

M. M. Hossain and H. Nakamoto, Role for the Cyanobacterial HtpG in Protection from Oxidative Stress, Current Microbiology, vol.46, issue.1, pp.70-76, 2003.
DOI : 10.1007/s00284-002-3831-5

K. Jhaveri, T. Taldone, S. Modi, C. , and G. , Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1823, issue.3, pp.742-755, 2012.
DOI : 10.1016/j.bbamcr.2011.10.008

J. L. Johnson, Evolution and function of diverse Hsp90 homologs and cochaperone proteins, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1823, issue.3, pp.607-613, 2012.
DOI : 10.1016/j.bbamcr.2011.09.020

G. E. Karagöz and S. G. Rüdiger, Hsp90 interaction with clients, Trends in Biochemical Sciences, vol.40, issue.2, pp.117-125, 2015.
DOI : 10.1016/j.tibs.2014.12.002

G. Karimova, J. Pidoux, A. Ullmann, and D. Ladant, A bacterial two-hybrid system based on a reconstituted signal transduction pathway, Proceedings of the National Academy of Sciences, vol.16, issue.3, pp.5752-5756, 1998.
DOI : 10.1038/ng0797-277

Y. E. Kim, M. S. Hipp, A. Bracher, M. Hayer?hartl, and F. U. Hartl, Molecular Chaperone Functions in Protein Folding and Proteostasis, Annual Review of Biochemistry, vol.82, issue.1, pp.323-355, 2013.
DOI : 10.1146/annurev-biochem-060208-092442

K. A. Krukenberg, T. O. Street, L. A. Lavery, and D. A. Agard, Conformational dynamics of the molecular chaperone Hsp90, Quarterly Reviews of Biophysics, vol.94, issue.02, pp.229-255, 2011.
DOI : 10.1093/emboj/19.16.4383

F. Kthiri, H. ?. Le, J. Tagourti, R. Kern, A. Malki et al., The thioredoxin homolog YbbN functions as a chaperone rather than as an oxidoreductase, Biochemical and Biophysical Research Communications, vol.374, issue.4, 2008.
DOI : 10.1016/j.bbrc.2008.07.080

URL : https://hal.archives-ouvertes.fr/hal-00326873

R. E. Lackie, A. Maciejewski, V. G. Ostapchenko, J. Marques?lopes, W. ?. Choy et al., The Hsp70/Hsp90 Chaperone Machinery in Neurodegenerative Diseases, Frontiers in Neuroscience, vol.93, issue.254, 2017.
DOI : 10.1002/bip.21292

J. Li, J. Soroka, and J. Buchner, The Hsp90 chaperone machinery: Conformational dynamics and regulation by co-chaperones, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1823, issue.3, pp.624-635, 2012.
DOI : 10.1016/j.bbamcr.2011.09.003

J. Lin and M. A. Wilson, Thioredoxin-like Protein YbbN Contains an Atypical Tetratricopeptide Repeat Motif and Is a Negative Regulator of GroEL, Journal of Biological Chemistry, vol.1804, issue.22, pp.19459-19469, 2011.
DOI : 10.1016/0022-2836(90)90313-B

S. Lindquist, Protein Folding Sculpting Evolutionary Change, Cold Spring Harbor Symposia on Quantitative Biology, vol.74, issue.0, pp.103-108, 2009.
DOI : 10.1101/sqb.2009.74.043

M. G. Marcu, A. Chadli, I. Bouhouche, M. Catelli, and L. M. Neckers, The Heat Shock Protein 90 Antagonist Novobiocin Interacts with a Previously Unrecognized ATP-binding Domain in the Carboxyl Terminus of the Chaperone, Journal of Biological Chemistry, vol.255, issue.47, pp.37181-37186, 2000.
DOI : 10.1210/me.9.6.670

M. P. Mayer, L. Breton, and L. , Hsp90: Breaking the Symmetry, Molecular Cell, vol.58, issue.1, pp.8-20, 2015.
DOI : 10.1016/j.molcel.2015.02.022

Y. Motojima?miyazaki, M. Yoshida, and F. Motojima, Ribosomal protein L2 associates with E. coli HtpG and activates its ATPase activity, Biochemical and Biophysical Research Communications, vol.400, issue.2, pp.241-245, 2010.
DOI : 10.1016/j.bbrc.2010.08.047

C. R. Myers, N. , and K. H. , Bacterial Manganese Reduction and Growth with Manganese Oxide as the Sole Electron Acceptor, Science, vol.240, issue.4857, pp.1319-1321, 1988.
DOI : 10.1126/science.240.4857.1319

L. Neckers, Heat shock protein 90: The cancer chaperone, Journal of Biosciences, vol.23, issue.3, pp.517-530, 2007.
DOI : 10.1093/jnci/94.7.504

W. M. Obermann, H. Sondermann, A. A. Russo, N. P. Pavletich, and F. U. Hartl, In Vivo Function of Hsp90 Is Dependent on ATP Binding and ATP Hydrolysis, The Journal of Cell Biology, vol.418, issue.4, pp.901-910, 1998.
DOI : 10.1074/jbc.273.29.18007

L. H. Pearl, Review: The HSP90 molecular chaperone-an enigmatic ATPase, Biopolymers, vol.271, issue.8, pp.594-607, 2016.
DOI : 10.1074/jbc.271.9.4974

P. W. Piper and S. H. Millson, Spotlight on the microbes that produce heat shock protein 90-targeting antibiotics, Open Biology, vol.8, issue.3, 2012.
DOI : 10.1371/journal.pgen.1002562

W. B. Pratt, J. E. Gestwicki, Y. Osawa, and A. P. Lieberman, Targeting Hsp90/Hsp70-Based Protein Quality Control for Treatment of Adult Onset Neurodegenerative Diseases, Annual Review of Pharmacology and Toxicology, vol.55, issue.1, pp.353-371, 2015.
DOI : 10.1146/annurev-pharmtox-010814-124332

M. O. Press, H. Li, N. Creanza, G. Kramer, C. Queitsch et al., Genome-scale Co-evolutionary Inference Identifies Functions and Clients of Bacterial Hsp90, PLoS Genetics, vol.37, issue.7, 2013.
DOI : 10.1371/journal.pgen.1003631.s013

C. Prodromou, G. Siligardi, R. O-'brien, D. N. Woolfson, L. Regan et al., Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones, The EMBO Journal, vol.18, issue.3, pp.754-762, 1999.
DOI : 10.1093/emboj/18.3.754

D. A. Rodionov, P. S. Novichkov, E. D. Stavrovskaya, I. A. Rodionova, X. Li et al., Comparative genomic Références bibliographiques 69, 2011.

A. Röhl, J. Rohrberg, and J. Buchner, The chaperone Hsp90: changing partners for demanding clients, Trends in Biochemical Sciences, vol.38, issue.5, pp.253-262, 2013.
DOI : 10.1016/j.tibs.2013.02.003

T. Sato, S. Minagawa, E. Kojima, N. Okamoto, and H. Nakamoto, HtpG, the prokaryotic homologue of Hsp90, stabilizes a phycobilisome protein in the cyanobacterium Synechococcus elongatus PCC 7942, Molecular Microbiology, vol.154, issue.3, pp.576-589, 2010.
DOI : 10.1128/jb.171.1.24-29.1989

F. Sauvage, S. Messaoudi, E. Fattal, G. Barratt, and J. Vergnaud?gauduchon, Heat shock proteins and cancer: How can nanomedicine be harnessed?, Journal of Controlled Release, vol.248, pp.133-143, 2017.
DOI : 10.1016/j.jconrel.2017.01.013

F. H. Schopf, M. M. Biebl, and J. Buchner, The HSP90 chaperone machinery, Nature Reviews Molecular Cell Biology, vol.7, issue.6, 2017.
DOI : 10.1111/febs.12147

K. K. Sharma and U. Kalawat, Emerging infections: Shewanella - A series of five cases, Journal of Laboratory Physicians, vol.2, issue.2, pp.61-65, 2010.
DOI : 10.4103/0974-2727.72150

L. Shrestha, A. Bolaender, H. J. Patel, and T. Taldone, Heat Shock Protein (HSP) Drug Discovery and Development: Targeting Heat Shock Proteins in Disease, Current Topics in Medicinal Chemistry, vol.16, issue.25, pp.2753-2764, 2016.
DOI : 10.2174/1568026616666160413141911

A. Soma, Y. Ikeuchi, S. Kanemasa, K. Kobayashi, N. Ogasawara et al., An RNA-Modifying Enzyme that Governs Both the Codon and Amino Acid Specificities of Isoleucine tRNA, Molecular Cell, vol.12, issue.3, pp.689-698, 2003.
DOI : 10.1016/S1097-2765(03)00346-0

M. Stankiewicz and M. P. Mayer, Abstract, BioMolecular Concepts, vol.3, issue.1, pp.79-97, 2012.
DOI : 10.1515/bmc.2011.054

T. Suzuki and K. Miyauchi, Discovery and characterization of tRNAIle lysidine synthetase (TilS), 2010.

M. Taipale, D. F. Jarosz, and S. Lindquist, HSP90 at the hub of protein homeostasis: emerging mechanistic insights, Nature Reviews Molecular Cell Biology, vol.121, issue.7, pp.515-528, 2010.
DOI : 10.1073/pnas.0609973103

T. Taldone, W. Sun, C. , and G. , Discovery and development of heat shock protein 90 inhibitors, Bioorganic & Medicinal Chemistry, vol.17, issue.6, pp.2225-2235, 2009.
DOI : 10.1016/j.bmc.2008.10.087

N. Tanaka and H. Nakamoto, HtpG is essential for the thermal stress management in cyanobacteria, FEBS Letters, vol.22, issue.2, pp.117-123, 1999.
DOI : 10.1093/nar/22.22.4673

J. G. Thomas and F. Baneyx, Roles of the Escherichia coli small heat shock proteins IbpA and IbpB in thermal stress management: comparison with ClpA, ClpB, and HtpG in vivo, J. Bacteriol, vol.180, pp.5165-5172, 1998.

S. Tsutsumi, M. Mollapour, C. Prodromou, C. ?. Lee, B. Panaretou et al., Charged linker sequence modulates eukaryotic heat shock protein 90 (Hsp90) chaperone activity, Proceedings of the National Academy of Sciences, vol.281, issue.24, pp.2937-2942, 2012.
DOI : 10.1074/jbc.M600847200

K. Venkateswaran, D. P. Moser, M. E. Dollhopf, D. P. Lies, D. A. Saffarini et al., Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov., International Journal of Systematic Bacteriology, vol.49, issue.2, pp.705-724, 1999.
DOI : 10.1099/00207713-49-2-705

E. Verbrugghe, A. Van-parys, B. Leyman, F. Boyen, F. Haesebrouck et al., HtpG contributes to Salmonella Typhimurium intestinal persistence in pigs, Veterinary Research, vol.8, issue.1, p.118, 2015.
DOI : 10.1016/j.micinf.2006.09.008

URL : https://hal.archives-ouvertes.fr/hal-01341428

E. Verbrugghe, A. Van-parys, R. Haesendonck, B. Leyman, F. Boyen et al., Typhimurium infection by increasing bacterial virulence, Journal of Antimicrobial Chemotherapy, vol.71, issue.8, pp.2158-2166, 2016.
DOI : 10.1093/jac/dkw152

S. Verma, S. Goyal, S. Jamal, A. Singh, and A. Grover, Hsp90: Friends, clients and natural foes, Biochimie, vol.127, pp.227-240, 2016.
DOI : 10.1016/j.biochi.2016.05.018

E. Vivien, S. Megessier, I. Pieretti, S. Cociancich, R. Frutos et al., HtpG is required for biosynthesis of the antibiotic and phytotoxin albicidin, FEMS Microbiology Letters, vol.251, issue.1, pp.81-89, 2005.
DOI : 10.1016/j.femsle.2005.07.026

I. Yosef, M. G. Goren, R. Kiro, R. Edgar, and U. Qimron, High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system, Proceedings of the National Academy of Sciences, vol.178, issue.3, pp.20136-20141, 2011.
DOI : 10.1007/s00203-002-0442-2

J. C. Young, I. Moarefi, and F. U. Hartl, Hsp90, The Journal of Cell Biology, vol.268, issue.2, 2001.
DOI : 10.1016/S0092-8674(00)81588-3

URL : https://hal.archives-ouvertes.fr/pasteur-00819549

A. Zuehlke, J. , and J. L. , Hsp90 and co-chaperones twist the functions of diverse client proteins, Biopolymers, vol.8, issue.3, pp.211-217, 2010.
DOI : 10.1128/MCB.18.12.7353

R. Balchin, D. Hayer-hartl, M. Hartl, and F. U. , In vivo aspects of protein folding and quality control, Science, vol.32, issue.3, p.4354, 2016.
DOI : 10.1016/j.cbpa.2016.01.009

J. C. Bardwell, C. , and E. A. , Ancient heat shock gene is dispensable., Journal of Bacteriology, vol.170, issue.7, 1988.
DOI : 10.1128/jb.170.7.2977-2983.1988

A. Battesti and E. Bouveret, The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli, Methods, vol.58, issue.4, pp.325-334, 2012.
DOI : 10.1016/j.ymeth.2012.07.018

URL : https://hal.archives-ouvertes.fr/hal-01458246

A. Battesti, J. R. Hoskins, S. Tong, P. Milanesio, J. M. Mann et al., Anti-adaptors provide multiple modes for regulation of the RssB adaptor protein, Genes & Development, vol.27, issue.24, pp.2722-2735, 2013.
DOI : 10.1101/gad.229617.113

URL : https://hal.archives-ouvertes.fr/hal-01556023

C. Bordi, C. Iobbi-nivol, V. Mé-jean, and J. Patte, Effects of ISSo2 Insertions in Structural and Regulatory Genes of the Trimethylamine Oxide Reductase of Shewanella oneidensis, Journal of Bacteriology, vol.185, issue.6, pp.2042-2045, 2003.
DOI : 10.1128/JB.185.6.2042-2045.2003

J. Buchner, Bacterial Hsp90 - desperately seeking clients, Molecular Microbiology, vol.418, issue.3, pp.540-544, 2010.
DOI : 10.1128/MCB.9.9.3919

W. Dang, Y. H. Hu, and L. Sun, HtpG is involved in the pathogenesis of Edwardsiella tarda, Veterinary Microbiology, vol.152, issue.3-4, pp.394-400, 2011.
DOI : 10.1016/j.vetmic.2011.05.030

J. M. Flynn, P. Mishra, and D. N. Bolon, Mechanistic Asymmetry in Hsp90 Dimers, Journal of Molecular Biology, vol.427, issue.18, pp.2904-2911, 2015.
DOI : 10.1016/j.jmb.2015.03.017

L. García-descalzo, A. Alcazar, F. Baquero, C. , and C. , Identification of in vivo HSP90-interacting proteins reveals modularity of HSP90 complexes is dependent on the environment in psychrophilic bacteria, Cell Stress and Chaperones, vol.93, issue.2, pp.203-218, 2011.
DOI : 10.1002/bip.21292

O. Genest, M. Reidy, T. O. Street, J. R. Hoskins, J. L. Camberg et al., Uncovering a Region of Heat Shock Protein 90 Important for Client Binding in E.??coli and Chaperone Function in Yeast, Molecular Cell, vol.49, issue.3, pp.464-473, 2013.
DOI : 10.1016/j.molcel.2012.11.017

H. Hsp70 and E. , coli directly interact for collaboration in protein remodeling, J. Mol. Biol, vol.427, pp.3877-3889

C. Graf, M. Stankiewicz, G. Kramer, and M. P. Mayer, Spatially and kinetically resolved changes in the conformational dynamics of the Hsp90 chaperone machine, The EMBO Journal, vol.24, issue.5, pp.602-613, 2009.
DOI : 10.1002/pro.5560021114

A. M. Grudniak, K. Pawlak, K. Bartosik, and K. I. Wolska, Physiological consequences of mutations in the htpG heat shock gene of Escherichia coli, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.745, issue.746, pp.745-746, 2013.
DOI : 10.1016/j.mrfmmm.2013.04.003

M. M. Hossain and H. Nakamoto, Role for the Cyanobacterial HtpG in Protection from Oxidative Stress, Current Microbiology, vol.46, issue.1, pp.70-76, 2003.
DOI : 10.1007/s00284-002-3831-5

Y. Ikeuchi, A. Soma, T. Ote, J. Kato, Y. Sekine et al., Molecular Mechanism of Lysidine Synthesis that Determines tRNA Identity and Codon Recognition, Molecular Cell, vol.19, issue.2, pp.235-246, 2005.
DOI : 10.1016/j.molcel.2005.06.007

J. L. Johnson, Evolution and function of diverse Hsp90 homologs and cochaperone proteins, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1823, issue.3, pp.607-613, 2012.
DOI : 10.1016/j.bbamcr.2011.09.020

G. E. Karagö-z, R. Udiger, and S. G. , Hsp90 interaction with clients, Trends in Biochemical Sciences, vol.40, issue.2, pp.117-125, 2015.
DOI : 10.1016/j.tibs.2014.12.002

K. A. Krukenberg, T. O. Street, L. A. Lavery, and D. A. Agard, Conformational dynamics of the molecular chaperone Hsp90, Quarterly Reviews of Biophysics, vol.94, issue.02, pp.229-255, 2011.
DOI : 10.1093/emboj/19.16.4383

J. Li, J. Soroka, and J. Buchner, The Hsp90 chaperone machinery: Conformational dynamics and regulation by co-chaperones, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1823, issue.3, pp.624-635, 2012.
DOI : 10.1016/j.bbamcr.2011.09.003

M. P. Mayer, L. Breton, and L. , Hsp90: Breaking the Symmetry, Molecular Cell, vol.58, issue.1, pp.8-20, 2015.
DOI : 10.1016/j.molcel.2015.02.022

Y. Motojima-miyazaki, M. Yoshida, and F. Motojima, Ribosomal protein L2 associates with E. coli HtpG and activates its ATPase activity, Biochemical and Biophysical Research Communications, vol.400, issue.2, pp.241-245, 2010.
DOI : 10.1016/j.bbrc.2010.08.047

H. Nakamoto, K. Fujita, A. Ohtaki, S. Watanabe, S. Narumi et al., Physical Interaction between Bacterial Heat Shock Protein (Hsp) 90 and Hsp70 Chaperones Mediates Their Cooperative Action to Refold Denatured Proteins, Journal of Biological Chemistry, vol.262, issue.9, pp.6110-6119, 2014.
DOI : 10.1016/j.jprot.2012.06.020

L. Neckers, Heat shock protein 90: The cancer chaperone, Journal of Biosciences, vol.23, issue.3, pp.517-530, 2007.
DOI : 10.1093/jnci/94.7.504

W. M. Obermann, H. Sondermann, A. A. Russo, N. P. Pavletich, and F. U. Hartl, In Vivo Function of Hsp90 Is Dependent on ATP Binding and ATP Hydrolysis, The Journal of Cell Biology, vol.418, issue.4, pp.901-910, 1998.
DOI : 10.1074/jbc.273.29.18007

B. Panaretou, C. Prodromou, S. M. Roe, R. O-'brien, J. E. Ladbury et al., ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone invivo, The EMBO Journal, vol.17, issue.16, pp.4829-4836, 1998.
DOI : 10.1093/emboj/17.16.4829

M. O. Press, H. Li, N. Creanza, G. Kramer, C. Queitsch et al., Genome-scale Co-evolutionary Inference Identifies Functions and Clients of Bacterial Hsp90, PLoS Genetics, vol.37, issue.7, 2013.
DOI : 10.1371/journal.pgen.1003631.s013

A. Rö-hl, J. Rohrberg, and J. Buchner, The chaperone Hsp90: changing partners for demanding clients, Trends in Biochemical Sciences, vol.38, issue.5, pp.253-262, 2013.
DOI : 10.1016/j.tibs.2013.02.003

. Htpg, the prokaryotic homologue of Hsp90, stabilizes a phycobilisome protein in the cyanobacterium Synechococcus elongatus PCC 7942, Mol. Microbiol, vol.76, pp.576-589

A. K. Shiau, S. F. Harris, D. R. Southworth, and D. A. Agard, Structural Analysis of E. coli hsp90 Reveals Dramatic Nucleotide-Dependent Conformational Rearrangements, Cell, vol.127, issue.2, pp.329-340, 2006.
DOI : 10.1016/j.cell.2006.09.027

A. Soma, Y. Ikeuchi, S. Kanemasa, K. Kobayashi, N. Ogasawara et al., An RNA-Modifying Enzyme that Governs Both the Codon and Amino Acid Specificities of Isoleucine tRNA, Molecular Cell, vol.12, issue.3, pp.689-698, 2003.
DOI : 10.1016/S1097-2765(03)00346-0

M. Stankiewicz and M. P. Mayer, Abstract, BioMolecular Concepts, vol.3, issue.1, pp.79-97, 2012.
DOI : 10.1515/bmc.2011.054

T. O. Street, L. A. Lavery, K. A. Verba, C. Lee, M. P. Mayer et al., Cross-Monomer Substrate Contacts Reposition the Hsp90 N-Terminal Domain and Prime the Chaperone Activity, Journal of Molecular Biology, vol.415, issue.1, pp.3-15, 2012.
DOI : 10.1016/j.jmb.2011.10.038

T. Suzuki and K. Miyauchi, lysidine synthetase (TilS), FEBS Letters, vol.284, issue.2, pp.272-277, 2010.
DOI : 10.1074/jbc.M809013200

M. Taipale, D. F. Jarosz, and S. Lindquist, HSP90 at the hub of protein homeostasis: emerging mechanistic insights, Nature Reviews Molecular Cell Biology, vol.121, issue.7, pp.515-528, 2010.
DOI : 10.1073/pnas.0609973103

N. Tanaka and H. Nakamoto, HtpG is essential for the thermal stress management in cyanobacteria, FEBS Letters, vol.22, issue.2, pp.117-123, 1999.
DOI : 10.1093/nar/22.22.4673

J. G. Thomas and F. Baneyx, ClpB and HtpG facilitate de novo protein folding in stressed Escherichia coli cells, Molecular Microbiology, vol.274, issue.6, pp.1360-1370, 2000.
DOI : 10.1128/jb.174.5.1454-1461.1992

E. Vartholomaiou, P. C. Echeverría, and D. Picard, Unusual Suspects in the Twilight Zone Between the Hsp90 Interactome and Carcinogenesis, Adv. Cancer Res, vol.129, pp.1-30, 2016.
DOI : 10.1016/bs.acr.2015.08.001

E. Verbrugghe, A. Van-parys, B. Leyman, F. Boyen, F. Haesebrouck et al., HtpG contributes to Salmonella Typhimurium intestinal persistence in pigs, Veterinary Research, vol.8, issue.1, 2015.
DOI : 10.1016/j.micinf.2006.09.008

URL : https://hal.archives-ouvertes.fr/hal-01341428

E. Vivien, S. Megessier, I. Pieretti, S. Cociancich, R. Frutos et al., HtpG is required for biosynthesis of the antibiotic and phytotoxin albicidin, FEMS Microbiology Letters, vol.251, issue.1, pp.81-89, 2005.
DOI : 10.1016/j.femsle.2005.07.026

I. Yosef, M. G. Goren, R. Kiro, R. Edgar, and U. Qimron, High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system, Proc. Natl, 2011.
DOI : 10.1007/s00203-002-0442-2

A. Battesti and E. Bouveret, Improvement of bacterial two-hybrid vectors for detection of fusion proteins and transfer to pBAD-tandem affinity purification, calmodulin binding peptide, or 6-histidine tag vectors, PROTEOMICS, vol.48, issue.22, pp.4768-4771, 2008.
DOI : 10.1002/pmic.200800270

A. Battesti and E. Bouveret, The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli, Methods, vol.58, issue.4, pp.325-334, 2012.
DOI : 10.1016/j.ymeth.2012.07.018

URL : https://hal.archives-ouvertes.fr/hal-01458246

O. Genest, M. Reidy, T. O. Street, J. R. Hoskins, J. L. Camberg et al., Uncovering a Region of Heat Shock Protein 90 Important for Client Binding in E.??coli and Chaperone Function in Yeast, Molecular Cell, vol.49, issue.3, pp.464-473, 2013.
DOI : 10.1016/j.molcel.2012.11.017

M. Herrero, V. De-lorenzo, and K. N. Timmis, Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria., Journal of Bacteriology, vol.172, issue.11, pp.6557-6567, 1990.
DOI : 10.1128/jb.172.11.6557-6567.1990

A. Soma, Y. Ikeuchi, S. Kanemasa, K. Kobayashi, N. Ogasawara et al., An RNA-Modifying Enzyme that Governs Both the Codon and Amino Acid Specificities of Isoleucine tRNA, Molecular Cell, vol.12, issue.3, pp.689-698, 2003.
DOI : 10.1016/S1097-2765(03)00346-0

M. Ufnal, A. Zadlo, and R. Ostaszewski, TMAO: A small molecule of great expectations, Nutrition, vol.31, issue.11-12, pp.1317-1340, 2015.
DOI : 10.1016/j.nut.2015.05.006

Y. Nagatomo and W. Tang, Intersections Between Microbiome and Heart Failure: Revisiting the Gut Hypothesis, Journal of Cardiac Failure, vol.21, issue.12, pp.973-80, 2015.
DOI : 10.1016/j.cardfail.2015.09.017

Z. Wang, E. Klipfell, B. Bennett, R. Koeth, B. Levison et al., Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease, Nature, vol.53, issue.7341, pp.57-63, 2011.
DOI : 10.2307/2533575

W. Tang, Z. Wang, B. Levison, R. Koeth, E. Britt et al., Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk, New England Journal of Medicine, vol.368, issue.17, pp.1575-84, 2013.
DOI : 10.1056/NEJMoa1109400

D. Mueller, M. Allenspach, A. Othman, C. Saely, A. Muendlein et al., Plasma levels of trimethylamine-N-oxide are confounded by impaired kidney function and poor metabolic control, Atherosclerosis, vol.243, issue.2, pp.638-682, 2015.
DOI : 10.1016/j.atherosclerosis.2015.10.091

P. Yancey, M. Rhea, K. Kemp, and D. Bailey, Trimethylamine oxide, betaine and other osmolytes in deep-sea animals: depth trends and effects on enzymes under hydrostatic pressure, Cell Mol Biol, vol.50, pp.371-377, 2004.

J. Ma, I. Pazos, and F. Gai, Microscopic insights into the protein-stabilizing effect of trimethylamine N-oxide (TMAO), Proceedings of the National Academy of Sciences, vol.134, issue.15, pp.8476-81, 2014.
DOI : 10.1063/1.3580776

M. , V. Iobbi-nivol, C. Lepelletier, M. Giordano, G. Chippaux et al., TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon, Mol Microbiol, vol.11, pp.1169-79, 1994.

D. Santos, J. Iobbi-nivol, C. Couillault, C. Giordano, and G. , Molecular analysis of the trimethylamine N -oxide (TMAO) reductase respiratory system from a Shewanella species, Journal of Molecular Biology, vol.284, issue.2, pp.421-454, 1998.
DOI : 10.1006/jmbi.1998.2155

L. Proctor and R. Gunsalus, Anaerobic respiratory growth of Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi with trimethylamine N-oxide, nitrate and fumarate: ecological implications, Environmental Microbiology, vol.217, issue.4, pp.399-406, 2000.
DOI : 10.1099/00221287-138-8-1607

C. Jourlin and M. Ansaldi, Transphosphorylation of the TorR response regulator requires the three phosphorylation sites of the TorS unorthodox sensor in Escherichia coli, Journal of Molecular Biology, vol.267, issue.4, pp.770-777, 1997.
DOI : 10.1006/jmbi.1997.0919

M. Ilbert, V. Iobbi-nivol, and C. , Functional and structural analysis of members of the TorD family, a large chaperone family dedicated to molybdoproteins, Microbiology, vol.150, issue.4, pp.935-978, 2004.
DOI : 10.1099/mic.0.26909-0

O. Genest, F. Seduk, L. Th-eraulaz, V. Iobbi-nivol, and C. , Chaperone protection of immature molybdoenzyme during molybdenum cofactor limitation, FEMS Microbiology Letters, vol.265, issue.1, pp.51-56, 2006.
DOI : 10.1111/j.1574-6968.2006.00468.x

O. Genest, M. Neumann, F. Seduk, W. St?-ocklein, V. Leimkühler et al., Dedicated Metallochaperone Connects Apoenzyme and Molybdenum Cofactor Biosynthesis Components, Journal of Biological Chemistry, vol.11, issue.31, pp.21433-21473, 2008.
DOI : 10.1074/jbc.M407087200

R. Jack, G. Buchanan, A. Dubini, K. Hatzixanthis, T. Palmer et al., Coordinating assembly and export of complex bacterial proteins, The EMBO Journal, vol.6, issue.20, pp.3962-72, 2004.
DOI : 10.1110/ps.0202902

J. Maillard, C. Spronk, G. Buchanan, V. Lyall, D. Richardson et al., Structural diversity in twin-arginine signal peptide-binding proteins, Proceedings of the National Academy of Sciences, vol.8, issue.4, pp.15641-15647, 2007.
DOI : 10.1007/BF00228148

O. Genest, M. Ilbert, V. Iobbi-nivol, and C. , TorD, an Essential Chaperone for TorA Molybdoenzyme Maturation at High Temperature, Journal of Biological Chemistry, vol.177, issue.16, pp.15644-15652, 2005.
DOI : 10.1093/nar/16.8.3580

R. Wade, T. Dichristina, J. Myers, and C. Myers, Isolation of U(VI) reduction-deficient mutants of Shewanella putrefaciens Role for outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide, FEMS Microbiol Lett Appl Environ Microbiol, vol.1842167, pp.260-269, 2000.

J. Heidelberg, I. Paulsen, K. Nelson, E. Gaidos, W. Nelson et al., Genome sequence of the dissimilatory metal ion???reducing bacterium Shewanella oneidensis, Nature Biotechnology, vol.20, issue.11, pp.1118-1141, 2002.
DOI : 10.1038/nbt749

C. Iobbi-nivol and S. Leimkühler, Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1827, issue.8-9, pp.1086-101, 2013.
DOI : 10.1016/j.bbabio.2012.11.007

D. Bay, C. Chan, and R. Turner, NarJ subfamily system specific chaperone diversity and evolution is directed by respiratory enzyme associations, BMC Evolutionary Biology, vol.26, issue.3, p.110, 2015.
DOI : 10.1111/j.1574-6976.2002.tb00616.x

S. Leimkühler and C. Iobbi-nivol, Bacterial molybdoenzymes: old enzymes for new purposes, FEMS Microbiology Reviews, vol.40, issue.1, pp.1-18, 2016.
DOI : 10.1093/femsre/fuv043

M. Olmo-mira, M. Gavira, D. Richardson, F. Castillo, and C. Moreno-vivi-an, NapF Is a Cytoplasmic Iron-Sulfur Protein Required for Fe-S Cluster Assembly in the Periplasmic Nitrate Reductase, Journal of Biological Chemistry, vol.269, issue.48, pp.49727-49762, 2004.
DOI : 10.1016/0022-2836(82)90515-0

J. Dow, F. Gabel, F. Sargent, and T. Palmer, Characterization of a pre-export enzyme???chaperone complex on the twin-arginine transport pathway, Biochemical Journal, vol.452, issue.1, pp.57-66, 2013.
DOI : 10.1042/BJ20121832

URL : https://hal.archives-ouvertes.fr/hal-01326125

Y. Liu, A. Hitchcock, R. Salmon, and D. Kelly, It takes two to tango: two TatA paralogues and two redox enzyme-specific chaperones are involved in the localization of twin-arginine translocase substrates in Campylobacter jejuni, Microbiology, vol.160, issue.Pt_9, pp.2053-66, 2014.
DOI : 10.1099/mic.0.080713-0

T. Hartmann, N. Schwanhold, and S. Leimkühler, Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1854, issue.9, pp.1090-100, 2015.
DOI : 10.1016/j.bbapap.2014.12.006

C. Cruz-garcía, A. Murray, J. Rodrigues, J. Gralnick, L. Mccue et al., Fnr (EtrA) acts as a fine-tuning regulator of anaerobic metabolism in Shewanella oneidensis MR-1, BMC Microbiology, vol.11, issue.1, p.64, 2011.
DOI : 10.1126/science.240.4857.1319

H. Gao, X. Wang, Z. Yang, T. Palzkill, and J. Zhou, Probing regulon of ArcA in Shewanella oneidensis MR-1 by integrated genomic analyses, BMC Genomics, vol.9, issue.1, p.42, 2008.
DOI : 10.1186/1471-2164-9-42

M. Jin, Y. Jiang, L. Sun, J. Yin, H. Fu et al., Unique Organizational and Functional Features of the Cytochrome c Maturation System in Shewanella oneidensis, PLoS ONE, vol.161, issue.9, p.75610, 2013.
DOI : 10.1371/journal.pone.0075610.t002

K. Pitts, P. Dobbin, F. Reyes-ramirez, A. Thomson, D. Richardson et al., MR-1 Decaheme Cytochrome MtrA, Journal of Biological Chemistry, vol.12, issue.30, pp.27758-65, 2003.
DOI : 10.1111/j.1365-2958.1994.tb01004.x

A. Craske and S. Ferguson, The respiratory nitrate reductase from Paracoccus denitrificans. Molecular characterisation and kinetic properties, European Journal of Biochemistry, vol.40, issue.2
DOI : 10.1271/bbb1961.47.2427

P. Thomas, A. Lu, D. Ryan, S. West, J. Kawalek et al., Multiple forms of rat liver cytochrome P-450. Immunochemical evidence with antibody against cytochrome P-448, J Biol Chem, vol.251, pp.1385-91, 1976.

A. Shaw, S. Leimkuhler, W. Klipp, G. Hanson, and A. Mcewan, Mutational analysis of the dimethylsulfoxide respiratory (dor) operon of Rhodobacter capsulatus, Microbiology, vol.145, issue.6, pp.1409-1429, 1999.
DOI : 10.1099/13500872-145-6-1409

I. Oresnik, C. Ladner, and R. Turner, Identification of a twin-arginine leader-binding protein, Molecular Microbiology, vol.175, issue.2, pp.323-354, 2001.
DOI : 10.1074/jbc.M000800200

M. Ilbert, V. Giudici-orticoni, M. Samama, J. Iobbi-nivol, and C. , Involvement of a Mate Chaperone (TorD) in the Maturation Pathway of Molybdoenzyme TorA, Journal of Biological Chemistry, vol.181, issue.31, pp.28787-92, 2003.
DOI : 10.1046/j.1365-2958.1998.00795.x

D. Redelberger, O. Genest, D. Arabet, V. Ilbert, M. Iobbi-nivol et al., Quality control of a molybdoenzyme by the Lon protease, FEBS Letters, vol.21, issue.24, pp.3935-3977, 2013.
DOI : 10.1002/pro.2013

C. Bordi, L. Th-eraulaz, V. Jourlin-castelli, and C. , Anticipating an alkaline stress through the Tor phosphorelay system in Escherichia coli, Molecular Microbiology, vol.97, issue.1, pp.211-234, 2003.
DOI : 10.1128/jb.175.23.7747-7748.1993

O. N. Lemaire, Efficient respiration on TMAO requires TorD and TorE auxiliary proteins in Shewanella oneidensis, Research in Microbiology, vol.167, issue.8, pp.630-637, 2016.
DOI : 10.1016/j.resmic.2016.05.004

URL : https://hal.archives-ouvertes.fr/hal-01411703

I. Lidbury, J. Murrell, and Y. Chen, Trimethylamine N-oxide metabolism by abundant marine heterotrophic bacteria, Proceedings of the National Academy of Sciences, vol.4, issue.4, pp.2710-2715, 2014.
DOI : 10.1099/ijs.0.01472-0

G. Sturm, K. Richter, A. Doetsch, H. Heide, R. Louro et al., A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime The napEDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha, ISME J Biochem J, vol.9309, pp.983-92, 1995.

G. Thomas, L. Potter, and J. Cole, : a heterodimeric molybdoprotein with a double-arginine signal sequence and an unusual leader peptide cleavage site, FEMS Microbiology Letters, vol.174, issue.1, pp.167-71, 1999.
DOI : 10.1111/j.1574-6968.1999.tb13564.x

S. Essentielle-chez, T. Oneidensis, and . Est-connue-pour-permettre-la-maturation-d-'un-arn-de-transfert, Par différentes approches, j'ai montré que (i) l'activité et la quantité de TilS sont réduites en absence d'Hsp90So, (ii) TilS et Hsp90So interagissent et (iii) Hsp90So empêche l'agrégation de la protéine TilS in vitro. Ces résultats montrent que TilS est une nouvelle protéine cliente de Hsp90So. Enfin, je me suis intéressée à la protéine YbbN de S. oneidensis dont la séquence codante est proche du gène hsp90. YbbN est décrite pour avoir une fonction chaperon chez d'autres bactéries. Mes résultats préliminaires montrent que Hsp90So et YbbN interagissent, ce qui suggère l'existence d'une collaboration entre les deux protéines. Des études supplémentaires seront nécessaires pour une meilleure compréhension du rôle de YbbN chez cette bactérie. En conclusion