F. Rodhain, Virus et insectes : relations multiples et variées Virologie, Virologie, vol.11, issue.2, p.5, 2007.

S. Salinas, V. Foulongne, F. Loustalot, C. Fournier-wirth, J. Molès et al., Le virus Zika L'émergence d'une menace, Medecine sciences, vol.32, issue.4, p.8, 2016.
DOI : 10.1051/medsci/20163204016

M. Sisterson, Transmission of Insect-vectored Pathogens: Effects of Vector Fitness as a Function of Infectivity Status, Environmental Entomology, vol.38, issue.2, pp.345-55, 2009.
DOI : 10.1603/022.038.0206

R. Vaidyanathan and T. Scott, Apoptosis in mosquito midgut epithelia associated with West Nile virus infection, Apoptosis, vol.15, issue.9, pp.1643-51, 2006.
DOI : 10.1093/jmedent/27.5.878

H. Ferguson and A. Read, Why is the effect of malaria parasites on mosquito survival still unresolved?, Trends in Parasitology, vol.18, issue.6, pp.256-61, 2002.
DOI : 10.1016/S1471-4922(02)02281-X

E. Gray and T. Bradley, Malarial infection in Aedes aegypti : effects on feeding, fecundity and metabolic rate, Parasitology, vol.105, issue.02, pp.169-76, 2006.
DOI : 10.1098/rspb.2003.2389

R. Anderson, B. Knols, and J. Koella, Plasmodium falciparum sporozoites increase feeding-associated mortality of their mosquito hosts Anopheles gambiae s.l., Parasitology, vol.120, issue.4, pp.329-362, 2000.
DOI : 10.1017/S0031182099005570

O. Lovisolo, R. Hull, and O. Rosler, Coevolution of Viruses with Hosts and Vectors and Possible Paleontology, Adv Virus Res, vol.62, pp.325-79, 2003.
DOI : 10.1016/S0065-3527(03)62006-3

K. Ergunay, N. Litzba, A. Brinkmann, F. Gunay, Y. Sarikaya et al., Co-circulation of West Nile virus and distinct insect-specific flaviviruses in Turkey, Parasites & Vectors, vol.498, issue.1, pp.149-159, 2017.
DOI : 10.1016/j.virol.2016.08.022

M. Aliota, S. Jones, A. Dupuis, A. Ciota, Z. Hubalek et al., Characterization of Rabensburg Virus, a Flavivirus Closely Related to West Nile Virus of the Japanese Encephalitis Antigenic Group, PLoS ONE, vol.93, issue.6, pp.39387-39398, 2012.
DOI : 10.1371/journal.pone.0039387.t003

S. Blanc and S. Gutierrez, The specifics of vector transmission of arboviruses of vertebrates and plants, Current Opinion in Virology, vol.15, pp.27-33, 2015.
DOI : 10.1016/j.coviro.2015.07.003

S. Junglen, M. Korries, W. Grasse, J. Wieseler, A. Kopp et al., Host Range Restriction of Insect- Specific Flaviviruses Occurs at Several Levels of the Viral Life Cycle. mSphere, 2017.

G. Liang, X. Gao, and E. Gould, Factors responsible for the emergence of arboviruses; strategies, challenges and limitations for their control, Emerging Microbes & Infections, vol.125, issue.3, pp.18-32, 2015.
DOI : 10.1371/journal.pone.0080720

URL : https://hal.archives-ouvertes.fr/hal-01217372

F. Rodhain, Virus et insectes : relations multiples et variées, Virologie, vol.11, issue.2, pp.5-15, 2007.

K. Smithburn, T. Hughes, A. Burke, and J. Paul, A Neurotropic Virus Isolated from the Blood of a Native of Uganda 1, The American Journal of Tropical Medicine and Hygiene, vol.1, issue.4
DOI : 10.4269/ajtmh.1940.s1-20.471

L. Kramer, J. Li, and P. Shi, West Nile virus, The Lancet Neurology, vol.6, issue.2, pp.171-81, 2007.
DOI : 10.1016/S1474-4422(07)70030-3

H. G. Zeller and . Si, West Nile Virus: An Overview of Its Spread in Europe and the Mediterranean Basin in Contrast to Its Spread in the Americas, European Journal of Clinical Microbiology & Infectious Diseases, vol.23, issue.3, pp.147-56, 2004.
DOI : 10.1007/s10096-003-1085-1

K. Murray, E. Mertens, and P. Despres, West Nile virus and its emergence in the United States of America, Veterinary Research, vol.41, issue.6, p.67, 2010.
DOI : 10.1051/vetres/2010039

URL : https://hal.archives-ouvertes.fr/hal-00903197

M. Malkinson, C. Banet, Y. Weisman, S. Pokamunski, R. King et al., Introduction of West Nile virus in the Middle East by Migrating White Storks, Emerging Infectious Diseases, vol.8, issue.4, pp.392-399, 2002.
DOI : 10.3201/eid0804.010217

T. Bakonyi, K. Erdelyi, K. Ursu, E. Ferenczi, T. Csorgo et al., Emergence of Usutu Virus in Hungary, Journal of Clinical Microbiology, vol.45, issue.12, pp.3870-3874, 2007.
DOI : 10.1128/JCM.01390-07

N. Becker, H. Jost, U. Ziegler, M. Eiden, D. Hoper et al., Epizootic Emergence of Usutu Virus in Wild and Captive Birds in Germany, PLoS ONE, vol.19, issue.2, pp.32604-32626, 2012.
DOI : 10.1371/journal.pone.0032604.t001

S. Lecollinet, Y. Blanchard, C. Manson, S. Lowenski, E. Laloy et al., Dual Emergence of Usutu Virus in Common Blackbirds, Eastern France, 2015, Emerging Infectious Diseases, vol.22, issue.12, pp.2225-2248, 2016.
DOI : 10.3201/eid2212.161272

G. Savini, F. Monaco, C. Terregino, D. Gennaro, A. Bano et al., Usutu virus in Italy: an emergence or a silent infection? Vet Microbiol Emergence and establishment of Usutu virus infection in wild and captive avian species in and around Zurich, Switzerland--genomic and pathologic comparison to other central European outbreaks, Vet Microbiol, vol.151148, issue.24, pp.264-742, 2011.

H. Weissenbock, J. Kolodziejek, K. Fragner, R. Kuhn, M. Pfeffer et al., Usutu virus activity in Austria, 2001?2002, Usutu virus activity in Austria, pp.1132-1138, 2001.
DOI : 10.1016/S1286-4579(03)00204-1

M. Aguero, J. Fernandez-pinero, D. Buitrago, A. Sanchez, M. Elizalde et al., Bagaza virus in partridges and pheasants, Spain Des saisons de transmission du virus West Nile contrastée en Europe -situation épidémiologique fin 2014. Bulletin épidémiologique, santé animale et alimentation West Nile virus epidemiology and factors triggering change in its distribution in Europe, Emerg Infect Dis. Rev Sci Tech, vol.176731, issue.273, pp.1498-501829, 2010.

T. Bakonyi, E. Ferenczi, K. Erdelyi, O. Kutasi, T. Csorgo et al., Explosive spread of a neuroinvasive lineage 2 West Nile virus in Central Europe Ongoing outbreak of West Nile virus infections in humans in Greece, Vet Microbiol. Euro Surveill, vol.16515, issue.1234, pp.61-70, 2008.

A. Platonov, L. Karan, T. Shopenskaia, M. Fedorova, N. Koliasnikova et al., Genotyping of West Nile fever virus strains circulating in southern Russia as an epidemiological investigation method: principles and results], Zh Mikrobiol Epidemiol Immunobiol, issue.2, pp.201129-201166

A. Brault, Changing patterns of West Nile virus transmission: altered vector competence and host susceptibility):43. 34. Kimura T, Ohyama A. Association between the pH-dependent conformational change of West Nile flavivirus E protein and virus-mediated membrane fusion, Vet Res. J Gen Virol, vol.4069, issue.2, pp.1247-54, 1988.
DOI : 10.1051/vetres/2009026

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695027

G. Campbell, A. Marfin, R. Lanciotti, and D. Gubler, West Nile virus, The Lancet Infectious Diseases, vol.2, issue.9, pp.519-548, 2002.
DOI : 10.1016/S1473-3099(02)00368-7

M. Sanchez, T. Pierson, D. Mcallister, S. Hanna, B. Puffer et al., Characterization of neutralizing antibodies to West Nile virus Mutations in the yellow fever virus nonstructural protein NS2A selectively block production of infectious particles, Virology. Kummerer BM, Rice CM J Virol, vol.33676, issue.3710, pp.70-824773, 2002.

W. Liu, H. Chen, and A. Khromykh, Molecular and Functional Analyses of Kunjin Virus Infectious cDNA Clones Demonstrate the Essential Roles for NS2A in Virus Assembly and for a Nonconservative Residue in NS3 in RNA Replication, Journal of Virology, vol.77, issue.14, pp.7804-7817, 2003.
DOI : 10.1128/JVI.77.14.7804-7813.2003

W. Liu, X. Wang, V. Mokhonov, P. Shi, R. Randall et al., Inhibition of Interferon Signaling by the New York 99 Strain and Kunjin Subtype of West Nile Virus Involves Blockage of STAT1 and STAT2 Activation by Nonstructural Proteins, Journal of Virology, vol.79, issue.3, pp.1934-1976, 2005.
DOI : 10.1128/JVI.79.3.1934-1942.2005

J. Munoz-jordan, G. Sanchez-burgos, M. Laurent-rolle, A. Garcia-sastre, K. Pugachev et al., Inhibition of interferon signaling by dengue virus High fidelity of yellow fever virus RNA polymerase The Viruses and Their Replication Solution structure of dengue virus capsid protein reveals another fold, Proc Natl Acad Sci U S A. J Virol.Virology. Proc Natl Acad Sci, vol.10078101, issue.24210, pp.14333-14341, 2003.

M. Lobigs, Flavivirus premembrane protein cleavage and spike heterodimer secretion require the function of the viral proteinase NS3., Proceedings of the National Academy of Sciences, vol.90, issue.13, pp.6218-6240, 1993.
DOI : 10.1073/pnas.90.13.6218

E. Konishi and P. Mason, Proper maturation of the Japanese encephalitis virus envelope glycoprotein requires cosynthesis with the premembrane protein, J Virol, vol.67, issue.3, pp.1672-1677, 1993.

I. Lorenz, S. Allison, F. Heinz, and A. Helenius, Folding and Dimerization of Tick-Borne Encephalitis Virus Envelope Proteins prM and E in the Endoplasmic Reticulum, Journal of Virology, vol.76, issue.11, pp.5480-91, 2002.
DOI : 10.1128/JVI.76.11.5480-5491.2002

K. Stadler, S. Allison, J. Schalich, and F. Heinz, Proteolytic activation of tick-borne encephalitis virus by furin, J Virol, vol.71, issue.11, pp.8475-81, 1997.

S. Elshuber and C. Mandl, Resuscitating Mutations in a Furin Cleavage-Deficient Mutant of the Flavivirus Tick-Borne Encephalitis Virus, Journal of Virology, vol.79, issue.18, pp.11813-11836, 2005.
DOI : 10.1128/JVI.79.18.11813-11823.2005

T. Wang, T. Town, L. Alexopoulou, J. Anderson, E. Fikrig et al., Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis The location of asparaginelinked glycans on West Nile virions controls their interactions with CD209 (dendritic cell-specific ICAM-3 grabbing nonintegrin), Nat Med. J Biol Chem, vol.10281, issue.5048, pp.1366-7337183, 2004.

J. Chu and M. Ng, Infectious Entry of West Nile Virus Occurs through a Clathrin-Mediated Endocytic Pathway, Journal of Virology, vol.78, issue.19, pp.10543-55, 2004.
DOI : 10.1128/JVI.78.19.10543-10555.2004

M. Bogachek, E. Protopopova, V. Loktev, B. Zaitsev, M. Favre et al., Immunochemical and single molecule force spectroscopy studies of specific interaction between the laminin binding protein and the West Nile virus surface glycoprotein E domain II, Journal of Molecular Recognition, vol.74, issue.1, pp.55-62, 2008.
DOI : 10.3201/eid1210.060852

G. Cheng, J. Cox, P. Wang, M. Krishnan, J. Dai et al., A C-type lectin collaborates with a CD45 phosphatase homolog to facilitate West Nile virus infection of mosquitoes Myeloid C-type lectins in innate immunity Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains, Cell. Nat Immunol. J Virol, vol.142779, issue.5513, pp.714-251258, 2005.

G. Dauphin, S. Zientara, V. Luca, J. Abimansour, C. Nelson et al., West Nile virus: recent trends in diagnosis and vaccine development Crystal structure of the Japanese encephalitis virus envelope protein, Vaccine. J Virol, vol.2586, issue.574, pp.5563-762337, 2007.

S. Harrison, The pH sensor for flavivirus membrane fusion, The Journal of Cell Biology, vol.70, issue.2, pp.177-186, 2008.
DOI : 10.1038/nsb990

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2568014

B. Falgout, R. Chanock, and C. Lai, Proper processing of dengue virus nonstructural glycoprotein NS1 requires the N-terminal hydrophobic signal sequence and the downstream nonstructural protein NS2a Falgout B, Markoff L. Evidence that flavivirus NS1-NS2A cleavage is mediated by a membrane-bound host protease in the endoplasmic reticulum, J Virol. J Virol, vol.6369, issue.6011, pp.1852-607232, 1989.

H. Hori and C. Lai, Cleavage of dengue virus NS1-NS2A requires an octapeptide sequence at the C terminus of NS1, J Virol. Lindenbach BD, Rice CM. Molecular biology of flaviviruses. Advances in Virus Research, vol.6459, issue.62, pp.4573-740, 1990.

J. Mackenzie, M. Jones, and P. Young, Immunolocalization of the Dengue Virus Nonstructural Glycoprotein NS1 Suggests a Role in Viral RNA Replication, Virology, vol.220, issue.1, pp.232-272, 1996.
DOI : 10.1006/viro.1996.0307

E. Westaway, E. Westaway, J. Mackenzie, M. Kenney, M. Jones et al., Flavivirus replication strategy Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures, Adv Virus Res. J Virol, vol.3371, issue.9, pp.45-656650, 1987.

I. Muylaert, T. Chambers, R. Galler, C. Rice, K. Chung et al., Mutagenesis of the N-linked glycosylation sites of the yellow fever virus NS1 protein: effects on virus replication and mouse neurovirulence West Nile virus nonstructural protein NS1 inhibits complement activation by binding the regulatory protein factor H, Virology. Proc Natl Acad Sci U S A, vol.222103, issue.6750, pp.159-6819111, 1996.

K. Chung, G. Nybakken, B. Thompson, M. Engle, A. Marri et al., Antibodies against West Nile Virus Nonstructural Protein NS1 Prevent Lethal Infection through Fc ? Receptor-Dependent and -Independent Mechanisms, Journal of Virology, vol.80, issue.3, pp.1340-51, 2006.
DOI : 10.1128/JVI.80.3.1340-1351.2006

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1346945

J. Wilson, P. De-sessions, M. Leon, and F. Scholle, West Nile Virus Nonstructural Protein 1 Inhibits TLR3 Signal Transduction, Journal of Virology, vol.82, issue.17, pp.8262-71, 2008.
DOI : 10.1128/JVI.00226-08

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2519649

J. Mackenzie, A. Khromykh, M. Jones, E. Westaway, A. Khromykh et al., Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A Coupling between replication and packaging of flavivirus RNA: evidence derived from the use of DNA-based full-length cDNA clones of Kunjin virus, Virology. J Virol, vol.24575, issue.7110, pp.203-154633, 1998.

W. Liu, H. Chen, X. Wang, H. Huang, and A. Khromykh, Analysis of Adaptive Mutations in Kunjin Virus Replicon RNA Reveals a Novel Role for the Flavivirus Nonstructural Protein NS2A in Inhibition of Beta Interferon Promoter-Driven Transcription, Journal of Virology, vol.78, issue.22, pp.12225-12260, 2004.
DOI : 10.1128/JVI.78.22.12225-12235.2004

W. Liu, X. Wang, D. Clark, M. Lobigs, R. Hall et al., A Single Amino Acid Substitution in the West Nile Virus Nonstructural Protein NS2A Disables Its Ability To Inhibit Alpha/Beta Interferon Induction and Attenuates Virus Virulence in Mice, Journal of Virology, vol.80, issue.5, pp.2396-404, 2006.
DOI : 10.1128/JVI.80.5.2396-2404.2006

S. Clum, K. Ebner, R. Padmanabhan, B. Falgout, M. Pethel et al., Cotranslational membrane insertion of the serine proteinase precursor NS2B-NS3(Pro) of dengue virus type 2 is required for efficient in vitro processing and is mediated through the hydrophobic regions of NS2B Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins, J Biol Chem. J Virol, vol.27265, issue.755, pp.30715-232467, 1991.

A. Gorbalenya, A. Donchenko, E. Koonin, and V. Blinov, N-terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases, Nucleic Acids Research, vol.17, issue.10, pp.3889-97, 1989.
DOI : 10.1093/nar/17.10.3889

S. Amberg, A. Nestorowicz, D. Mccourt, and C. Rice, NS2B-3 proteinase-mediated processing in the yellow fever virus structural region: in vitro and in vivo studies Processing of the intracellular form of the west Nile virus capsid protein by the viral NS2B-NS3 protease: an in vitro study, J Virol. J Virol, vol.6868, issue.69, pp.3794-8025765, 1994.

C. Lin, S. Amberg, T. Chambers, and C. Rice, Cleavage at a novel site in the NS4A region by the yellow fever virus NS2B-3 proteinase is a prerequisite for processing at the downstream 4A/4B signalase site, J Virol, vol.67, issue.4, pp.2327-2362, 1993.

G. Wengler, The NS 3 Nonstructural Protein of Flaviviruses Contains an RNA Triphosphatase Activity, Virology, vol.197, issue.1, pp.265-73, 1993.
DOI : 10.1006/viro.1993.1587

C. Chen, M. Kuo, L. Chien, S. Hsu, Y. Wang et al., RNA-protein interactions: involvement of NS3, NS5, and 3' noncoding regions of Japanese encephalitis virus genomic RNA, J Virol, vol.71, issue.5, pp.3466-73, 1997.

T. Cui, R. Sugrue, Q. Xu, A. Lee, Y. Chan et al., Recombinant Dengue Virus Type 1 NS3 Protein Exhibits Specific Viral RNA Binding and NTPase Activity Regulated by the NS5 Protein, Virology, vol.246, issue.2, pp.409-426, 1998.
DOI : 10.1006/viro.1998.9213

URL : http://doi.org/10.1006/viro.1998.9213

M. Ramanathan, J. Chambers, P. Pankhong, M. Chattergoon, W. Attatippaholkun et al., Host cell killing by the West Nile Virus NS2B???NS3 proteolytic complex: NS3 alone is sufficient to recruit caspase-8-based apoptotic pathway, Virology, vol.345, issue.1, pp.56-72, 2006.
DOI : 10.1016/j.virol.2005.08.043

D. Luo, T. Xu, C. Hunke, G. Gruber, S. Vasudevan et al., Crystal Structure of the NS3 Protease-Helicase from Dengue Virus, Journal of Virology, vol.82, issue.1, pp.173-83, 2008.
DOI : 10.1128/JVI.01788-07

A. Brault, C. Huang, S. Langevin, R. Kinney, R. Bowen et al., A single positively selected West Nile viral mutation confers increased virogenesis in American crows, Nature Genetics, vol.11, issue.9, pp.1162-1168, 2007.
DOI : 10.3201/eid1102.041028

G. Zou, F. Puig-basagoiti, B. Zhang, M. Qing, L. Chen et al., A single-amino acid substitution in West Nile virus 2K peptide between NS4A and NS4B confers resistance to lycorine, a flavivirus inhibitor, Virology, vol.384, issue.1, pp.242-52, 2009.
DOI : 10.1016/j.virol.2008.11.003

S. Miller, S. Sparacio, R. Bartenschlager, E. Westaway, J. Mackenzie et al., Replication and gene function in Kunjin virus A mouse celladapted NS4B mutation attenuates West Nile virus RNA synthesis Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses A single amino acid substitution in the central portion of the West Nile virus NS4B protein confers a highly attenuated phenotype in mice, Subcellular localization and membrane topology of the Dengue virus type 2 Non-structural protein 4B, pp.8854-63323, 2002.

W. Chiu, R. Kinney, and T. Dreher, Control of Translation by the 5'- and 3'-Terminal Regions of the Dengue Virus Genome, Journal of Virology, vol.79, issue.13, pp.8303-8318, 2005.
DOI : 10.1128/JVI.79.13.8303-8315.2005

K. Clyde and E. Harris, RNA Secondary Structure in the Coding Region of Dengue Virus Type 2 Directs Translation Start Codon Selection and Is Required for Viral Replication, Journal of Virology, vol.80, issue.5, pp.2170-82, 2006.
DOI : 10.1128/JVI.80.5.2170-2182.2006

P. Shi, M. Brinton, J. Veal, Y. Zhong, W. Wilson et al., Evidence for the existence of a pseudoknot structure at the 3' terminus of the flavivirus genomic RNA Essential role of cyclization sequences in flavivirus RNA replication, Biochemistry. J Virol, vol.3575, issue.1314, pp.6719-6747, 1996.

C. Polacek, J. Foley, and E. Harris, Conformational Changes in the Solution Structure of the Dengue Virus 5' End in the Presence and Absence of the 3' Untranslated Region, Journal of Virology, vol.83, issue.2, pp.1161-1167, 2009.
DOI : 10.1128/JVI.01362-08

C. Thurner, C. Witwer, I. Hofacker, and P. Stadler, Conserved RNA secondary structures in Flaviviridae genomes, Journal of General Virology, vol.85, issue.5
DOI : 10.1099/vir.0.19462-0

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.2543

S. You and R. Padmanabhan, Replication System for Dengue Virus, Journal of Biological Chemistry, vol.65, issue.47, pp.33714-33736, 1999.
DOI : 10.1073/pnas.91.18.8587

C. Polacek, P. Friebe, and E. Harris, Poly(A)-binding protein binds to the non-polyadenylated 3' untranslated region of dengue virus and modulates translation efficiency, Journal of General Virology, vol.90, issue.3, pp.687-92, 2009.
DOI : 10.1099/vir.0.007021-0

J. Blackwell and M. Brinton, Translation elongation factor-1 alpha interacts with the 3' stem-loop region of West Nile virus genomic RNA, J Virol, vol.71, issue.9, pp.6433-6477, 1997.

D. Nova-ocampo, M. Villegas-sepulveda, N. Angel, and R. , Translation Elongation Factor-1??, La, and PTB Interact with the 3??? Untranslated Region of Dengue 4 Virus RNA, Virology, vol.295, issue.2, pp.337-384, 2002.
DOI : 10.1006/viro.2002.1407

W. Li, Y. Li, N. Kedersha, P. Anderson, M. Emara et al., Cell Proteins TIA-1 and TIAR Interact with the 3' Stem-Loop of the West Nile Virus Complementary Minus-Strand RNA and Facilitate Virus Replication, Journal of Virology, vol.76, issue.23, pp.11989-2000, 2002.
DOI : 10.1128/JVI.76.23.11989-12000.2002

S. Gollins and J. Porterfield, PH-dependent Fusion between the Flavivirus West Nile and Liposomal Model Membranes, Journal of General Virology, vol.67, issue.1, pp.157-66, 1986.
DOI : 10.1099/0022-1317-67-1-157

. Cosset, Entrée cellulaire du virus de l'hépatite C, Virologie, vol.10, issue.3, p.12, 2010.

E. Westaway, J. Mackenzie, and A. Khromykh, Kunjin RNA replication and applications ofKunjin replicons
DOI : 10.1016/S0065-3527(03)59004-2

J. Mackenzie and E. Westaway, Assembly and Maturation of the Flavivirus Kunjin Virus Appear To Occur in the Rough Endoplasmic Reticulum and along the Secretory Pathway, Respectively, Journal of Virology, vol.75, issue.22, pp.10787-99, 2001.
DOI : 10.1128/JVI.75.22.10787-10799.2001

F. Heinz and K. Stiasny, Flaviviruses and flavivirus vaccines, Vaccine, vol.30, issue.29, pp.4301-4307, 2012.
DOI : 10.1016/j.vaccine.2011.09.114

H. Hurlbut, F. Rizk, R. Taylor, and T. Work, A study of the ecology of West Nile virus in Egypt, Am J Trop Med Hyg, vol.5, issue.4, pp.579-620, 1956.

E. Hayes, N. Komar, R. Nasci, S. Montgomery, O. Leary et al., Epidemiology and Transmission Dynamics of West Nile Virus Disease, Emerging Infectious Diseases, vol.11, issue.8, pp.1167-73, 2005.
DOI : 10.3201/eid1108.050289a

B. Granwehr, K. Lillibridge, S. Higgs, P. Mason, J. Aronson et al., West Nile virus: where are we now?, The Lancet Infectious Diseases, vol.4, issue.9, pp.547-56, 2004.
DOI : 10.1016/S1473-3099(04)01128-4

E. Perez-ramirez, F. Llorente, and M. Jimenez-clavero, Experimental Infections of Wild Birds with West Nile Virus, Viruses, vol.38, issue.2, pp.752-81, 2014.
DOI : 10.1603/0022-2585(2007)44[320:AOTIIP]2.0.CO;2

N. Komar, S. Langevin, S. Hinten, N. Nemeth, E. Edwards et al., Experimental Infection of North American Birds with the New York 1999 Strain of West Nile Virus, Emerging Infectious Diseases, vol.9, issue.3, pp.311-333, 2003.
DOI : 10.3201/eid0903.020628

D. Swayne, J. Beck, C. Smith, W. Shieh, and S. Zaki, ) Caused by West Nile Virus, Emerging Infectious Diseases, vol.7, issue.4, pp.751-754, 2001.
DOI : 10.3201/eid0704.017429

S. Ladeau, A. Kilpatrick, and P. Marra, West Nile virus emergence and large-scale declines of North American bird populations, Nature, vol.64, issue.7145, pp.710-713, 2007.
DOI : 10.3201/eid1203.051004

T. Bakonyi, E. Ivanics, K. Erdelyi, K. Ursu, E. Ferenczi et al., Lineage 1 and 2 Strains of Encephalitic West Nile Virus, Central Europe, Emerging Infectious Diseases, vol.12, issue.4, pp.618-641, 2006.
DOI : 10.3201/eid1204.051379

U. Hofle, J. Blanco, E. Crespo, V. Naranjo, M. Jimenez-clavero et al., West Nile virus in the endangered Spanish imperial eagle, Veterinary Microbiology, vol.129, issue.1-2, pp.171-179, 2008.
DOI : 10.1016/j.vetmic.2007.11.006

URL : https://hal.archives-ouvertes.fr/hal-00532357

N. Nemeth, D. Gould, R. Bowen, and N. Komar, NATURAL AND EXPERIMENTAL WEST NILE VIRUS INFECTION IN FIVE RAPTOR SPECIES, Journal of Wildlife Diseases, vol.42, issue.1, pp.1-13, 2006.
DOI : 10.7589/0090-3558-42.1.1

E. Sotelo, A. Gutierrez-guzman, J. Del-amo, F. Llorente, M. El-harrak et al., Pathogenicity of two recent Western Mediterranean West Nile virus isolates in a wild bird species indigenous to Southern Europe: the red-legged partridge, Veterinary Research, vol.42, issue.1, p.11, 2011.
DOI : 10.1186/1297-9716-42-11

D. Amo, J. Llorente, F. Figuerola, J. Soriguer, R. Moreno et al., Experimental infection of house sparrows (Passer domesticus) with West Nile virus isolates of Euro-Mediterranean and North American origins, Vet Res, vol.45, p.33, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01290545

D. Amo, J. Llorente, F. Perez-ramirez, E. Soriguer, R. Figuerola et al., Experimental infection of house sparrows (Passer domesticus) with West Nile virus strains of lineages 1 and 2, Vet Microbiol, vol.172, pp.3-4542, 2014.

M. Dridi, F. Rauw, B. Muylkens, S. Lecollinet, T. Van-den-berg et al., Setting up a SPF Chicken Model for the Pathotyping of West Nile Virus (WNV) Strains, Transboundary and Emerging Diseases, vol.161, issue.2, pp.51-62, 2013.
DOI : 10.1016/j.vetmic.2012.07.041

URL : https://hal.archives-ouvertes.fr/hal-01190010

M. Dridi, D. Vangeluwe, S. Lecollinet, T. Van-den-berg, and B. Lambrecht, Experimental infection of Carrion crows (Corvus corone) with two European West Nile virus (WNV) strains, Veterinary Microbiology, vol.165, issue.1-2, pp.160-166, 2013.
DOI : 10.1016/j.vetmic.2012.12.043

M. Spedicato, C. I. Bellacicco, A. Marruchella, G. Marini, V. Pisciella et al., Experimental infection of rock pigeons (Columba livia) with three West Nile virus lineage 1 strains isolated in Italy between, Epidemiol Infect, vol.144, issue.6, pp.2012-1312, 2009.

U. Ziegler, J. Angenvoort, D. Fischer, C. Fast, M. Eiden et al., Pathogenesis of West Nile virus lineage 1 and 2 in experimentally infected large falcons, Veterinary Microbiology, vol.161, issue.3-4, pp.3-4263, 2013.
DOI : 10.1016/j.vetmic.2012.07.041

E. Sotelo, J. Fernandez-pinero, F. Llorente, M. Aguero, U. Hoefle et al., Characterization of West Nile virus isolates from Spain: New insights into the distinct West Nile virus eco-epidemiology in the Western Mediterranean, Virology, vol.395, issue.2, pp.289-97, 2009.
DOI : 10.1016/j.virol.2009.09.013

F. Berthet, H. Zeller, M. Drouet, J. Rauzier, J. Digoutte et al., Extensive nucleotide changes and deletions within the envelope glycoprotein gene of Euro-African West Nile viruses., Journal of General Virology, vol.78, issue.9, pp.2293-2300, 1997.
DOI : 10.1099/0022-1317-78-9-2293

R. Charrel, A. Brault, P. Gallian, J. Lemasson, B. Murgue et al., Evolutionary relationship between Old World West Nile virus strains, Virology, vol.315, issue.2, pp.381-389, 2003.
DOI : 10.1016/S0042-6822(03)00536-1

URL : http://doi.org/10.1016/s0042-6822(03)00536-1

E. Jourdain, Y. Toussaint, A. Leblond, D. Bicout, P. Sabatier et al., Bird Species Potentially Involved in Introduction, Amplification, And Spread of West Nile Virus in A Mediterranean Wetland, The Camargue (Southern France), Vector-Borne and Zoonotic Diseases, vol.7, issue.1, pp.15-33, 2007.
DOI : 10.1089/vbz.2006.0543

C. Hayes, The Arboviruses: epidemiology and ecology. Monath TP, Boca Raton, pp.59-88, 1988.

K. Bernard, J. Maffei, S. Jones, E. Kauffman, G. Ebel et al., West Nile Virus Infection in Birds and Mosquitoes, New York State, 2000, Emerging Infectious Diseases, vol.7, issue.4, pp.679-85, 2000.
DOI : 10.3201/eid0704.017415

URL : http://doi.org/10.3201/eid0704.010415

H. Bin, Z. Grossman, S. Pokamunski, M. Malkinson, L. Weiss et al., West Nile Fever in Israel 1999-2000, Annals of the New York Academy of Sciences, vol.39, issue.1, pp.127-169, 2001.
DOI : 10.1099/0022-1317-78-9-2293

M. Malkinson, C. Banet, Y. Khinich, I. Samina, S. Pokamunski et al., Use of Live and Inactivated Vaccines in the Control of West Nile Fever in Domestic Geese, Annals of the New York Academy of Sciences, vol.15, issue.1, pp.255-61, 2001.
DOI : 10.1111/j.1749-6632.2001.tb02701.x

M. Malkinson, Y. Weisman, S. Pokamonski, R. King, and V. Deubel, Intercontinental Transmission of West Nile Virus by Migrating White Storks, Emerging Infectious Diseases, vol.7, issue.7, p.540, 2001.
DOI : 10.3201/eid0707.017719

R. Mclean, S. Ubico, D. Docherty, W. Hansen, L. Sileo et al., West Nile Virus Transmission and Ecology in Birds, Annals of the New York Academy of Sciences, vol.16, issue.1, pp.54-61, 2001.
DOI : 10.1111/j.1749-6632.2001.tb02684.x

S. Zientara and S. Lecollinet, Le virus West Nile, sa diffusion limitée en Europe par comparaison avec sa rapide implantation en Amérique du Nord: Edition Lavoisier, 2010.

S. Ahmed, R. Libman, K. Wesson, F. Ahmed, and K. Einberg, Guillain-Barre syndrome: An unusual presentation of West Nile virus infection, Neurology, vol.55, issue.1, pp.144-150, 2000.
DOI : 10.1212/WNL.55.1.144

M. Bunning, R. Bowen, C. Cropp, K. Sullivan, B. Davis et al., Experimental Infection of Horses with West Nile virus, Emerging Infectious Diseases, vol.8, issue.4, pp.380-386, 2002.
DOI : 10.3201/eid0804.010239

C. V. Db, G. Gerbier, M. Babinot, J. F. Michel, I. Toure et al., Analyse spatiale de l'épizootie d'infection à virus West Nile chez les chevaux de Camargue en 2000 : résultats et perspectives, Epidémiol et Santé anim, vol.42, pp.123-154, 2002.

J. Desenclos, S. Lecollinet, T. Balenghien, D. Fontenille, L. Lagadic et al., Le contexte de la lutte antivectorielle en France: 3

G. Huhn, J. Sejvar, S. Montgomery, and M. Dworkin, West Nile virus in the United States: an update on an emerging infectious disease, Am Fam Physician, vol.68, issue.4, pp.653-60, 2003.

L. Goddard, A. Roth, W. Reisen, and T. Scott, Vertical Transmission of West Nile Virus by Three California <I>Culex</I> (Diptera: Culicidae) Species, Journal of Medical Entomology, vol.40, issue.6, pp.743-749, 2003.
DOI : 10.1603/0022-2585-40.6.743

R. Nasci, H. Savage, D. White, J. Miller, B. Cropp et al., Mosquitoes, New York City, 2000, Emerging Infectious Diseases, vol.7, issue.4, pp.742-746, 2000.
DOI : 10.3201/eid0704.017426

C. Lawrie, N. Uzcategui, E. Gould, and P. Nuttall, Ixodid and Argasid Tick Species and West Nile Virus, Emerging Infectious Diseases, vol.10, issue.4, pp.653-660, 2004.
DOI : 10.3201/eid1004.030517

URL : http://doi.org/10.3201/eid1004.030517

D. Gammon and C. Mello, RNA interference-mediated antiviral defense in insects, Current Opinion in Insect Science, vol.8, pp.111-131, 2015.
DOI : 10.1016/j.cois.2015.01.006

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448697

P. Kakumani, S. Ponia, S. Rk, V. Sood, M. Chinnappan et al., Role of RNA Interference (RNAi) in Dengue Virus Replication and Identification of NS4B as an RNAi Suppressor, Journal of Virology, vol.87, issue.16, pp.8870-83, 2013.
DOI : 10.1128/JVI.02774-12

E. Schnettler, M. Sterken, J. Leung, S. Metz, C. Geertsema et al., Noncoding Flavivirus RNA Displays RNA Interference Suppressor Activity in Insect and Mammalian Cells, Journal of Virology, vol.86, issue.24, pp.13486-500, 2012.
DOI : 10.1128/JVI.01104-12

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503047

H. Zeller and B. Murgue, Rôle des oiseaux migrateurs dans l'épidémiologie du virus West Nile. Médecine et maladies infectieuses, p.6, 2001.
DOI : 10.1016/s0399-077x(01)80055-x

M. Diamond, B. Shrestha, A. Marri, D. Mahan, and M. Engle, B Cells and Antibody Play Critical Roles in the Immediate Defense of Disseminated Infection by West Nile Encephalitis Virus, Journal of Virology, vol.77, issue.4, pp.2578-86, 2003.
DOI : 10.1128/JVI.77.4.2578-2586.2003

M. Diamond, E. Sitati, L. Friend, S. Higgs, B. Shrestha et al., A Critical Role for Induced IgM in the Protection against West Nile Virus Infection, The Journal of Experimental Medicine, vol.26, issue.12, pp.1853-62, 2003.
DOI : 10.1023/A:1006659401385

N. Nemeth, P. Oesterle, and R. Bowen, Humoral immunity to West Nile virus is long-lasting and protective in the house sparrow (Passer domesticus), Am J Trop Med Hyg, vol.80, issue.5, pp.864-873, 2009.

J. Lowenthal, T. Connick, P. Mcwaters, and J. York, Development of T cell immune responsiveness in the chicken, Immunology and Cell Biology, vol.4, issue.2, pp.115-137, 1994.
DOI : 10.3382/ps.0601981

S. Byrne, G. Halliday, L. Johnston, and N. King, Interleukin-1? But Not Tumor Necrosis Factor is Involved in West Nile Virus-Induced Langerhans Cell Migration from the Skin in C57BL/6 Mice, Journal of Investigative Dermatology, vol.117, issue.3, pp.702-711, 2001.
DOI : 10.1046/j.0022-202x.2001.01454.x

L. Johnston, G. Halliday, and N. King, Langerhans Cells Migrate to Local Lymph Nodes Following Cutaneous Infection with an Arbovirus, Journal of Investigative Dermatology, vol.114, issue.3, pp.560-568, 2000.
DOI : 10.1046/j.1523-1747.2000.00904.x

URL : http://doi.org/10.1046/j.1523-1747.2000.00904.x

M. Samuel and M. Diamond, Pathogenesis of West Nile Virus Infection: a Balance between Virulence, Innate and Adaptive Immunity, and Viral Evasion, Journal of Virology, vol.80, issue.19, pp.9349-60, 2006.
DOI : 10.1128/JVI.01122-06

M. Samuel, H. Wang, V. Siddharthan, J. Morrey, and M. Diamond, Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis, Proceedings of the National Academy of Sciences, vol.80, issue.14, pp.17140-17145, 2007.
DOI : 10.1128/JVI.00489-06

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2040476

M. Emara, H. Liu, W. Davis, and M. Brinton, Mutation of Mapped TIA-1/TIAR Binding Sites in the 3' Terminal Stem-Loop of West Nile Virus Minus-Strand RNA in an Infectious Clone Negatively Affects Genomic RNA Amplification, Journal of Virology, vol.82, issue.21
DOI : 10.1128/JVI.00991-08

P. Schlick, C. Taucher, B. Schittl, J. Tran, R. Kofler et al., Helices ?2 and ?3 of West Nile Virus Capsid Protein Are Dispensable for Assembly of Infectious Virions, Journal of Virology, vol.83, issue.11, pp.5581-91, 2009.
DOI : 10.1128/JVI.02653-08

S. Zhang, L. Li, S. Woodson, C. Huang, R. Kinney et al., A mutation in the envelope protein fusion loop attenuates mouse neuroinvasiveness of the NY99 strain of West Nile virus, Virology, vol.353, issue.1, pp.35-40, 2006.
DOI : 10.1016/j.virol.2006.05.025

M. Basu and M. Brinton, West Nile virus (WNV) genome RNAs with up to three adjacent mutations that disrupt long distance 5??3? cyclization sequence basepairs are viable, Virology, vol.412, issue.1, pp.220-252, 2011.
DOI : 10.1016/j.virol.2011.01.008

URL : http://doi.org/10.1016/j.virol.2011.01.008

S. Langevin, R. Bowen, W. Ramey, T. Sanders, P. Maharaj et al., Envelope and pre-membrane protein structural amino acid mutations mediate diminished avian growth and virulence of a Mexican West Nile virus isolate, Journal of General Virology, vol.92, issue.12, pp.2810-2830, 2011.
DOI : 10.1099/vir.0.035535-0

E. Donadieu, C. Bahuon, S. Lowenski, S. Zientara, M. Coulpier et al., Differential Virulence and Pathogenesis of West Nile Viruses, Viruses, vol.119, issue.11, pp.2856-80, 2013.
DOI : 10.1128/JVI.01650-06

URL : https://hal.archives-ouvertes.fr/hal-01190081

S. Lim, P. Koraka, S. Van-boheemen, J. Roose, D. Jaarsma et al., Characterization of the Mouse Neuroinvasiveness of Selected European Strains of West Nile Virus, PLoS ONE, vol.57, issue.9, p.74575, 2013.
DOI : 10.1371/journal.pone.0074575.s004

E. Perez-ramirez, F. Llorente, D. Amo, J. Fall, G. Sall et al., Pathogenicity evaluation of twelve West Nile virus strains belonging to four lineages from five continents in a mouse model: discrimination between three pathogenicity categories, Journal of General Virology, 2017.

G. Capelli, S. Ravagnan, F. Montarsi, S. Fabrizio, S. Cazzin et al., Further evidence of lineage 2 West Nile Virus in Culex pipiens of North-Eastern Italy, Vet Ital, vol.49, issue.3, pp.263-271, 2013.

S. Langevin, R. Bowen, W. Reisen, C. Andrade, W. Ramey et al., Host Competence and Helicase Activity Differences Exhibited by West Nile Viral Variants Expressing NS3-249 Amino Acid Polymorphisms, PLoS ONE, vol.79, issue.6, p.100802, 2014.
DOI : 10.1371/journal.pone.0100802.t001

URL : http://doi.org/10.1371/journal.pone.0100802

M. Dridi, . Van-den, T. Berg, S. Lecollinet, and B. Lambrecht, Evaluation of the pathogenicity of West Nile virus (WNV) lineage 2 strains in a SPF chicken model of infection: NS3-249Pro mutation is neither sufficient nor necessary for conferring virulence, Veterinary Research, vol.40, issue.1, p.130, 2015.
DOI : 10.1016/j.dci.2012.10.013

URL : https://hal.archives-ouvertes.fr/hal-01341439

V. Yamshchikov, G. Wengler, A. Perelygin, M. Brinton, and R. Compans, An Infectious Clone of the West Nile Flavivirus, Virology, vol.281, issue.2, pp.294-304, 2001.
DOI : 10.1006/viro.2000.0795

A. Khromykh and E. Westaway, Completion of Kunjin virus RNA sequence and recovery of an infectious RNA transcribed from stably cloned full-length cDNA, J Virol, vol.68, issue.7, pp.4580-4588, 1994.

M. Audsley, J. Edmonds, W. Liu, V. Mokhonov, E. Mokhonova et al., Virulence determinants between New York 99 and Kunjin strains of West Nile virus, Virology, vol.414, issue.1, pp.63-73, 2011.
DOI : 10.1016/j.virol.2011.03.008

V. Borisevich, A. Seregin, R. Nistler, D. Mutabazi, and V. Yamshchikov, Biological properties of chimeric West Nile viruses, Virology, vol.349, issue.2, pp.371-81, 2006.
DOI : 10.1016/j.virol.2006.02.013

R. Kinney, C. Huang, M. Whiteman, R. Bowen, S. Langevin et al., Avian virulence and thermostable replication of the North American strain of West Nile virus, Journal of General Virology, vol.87, issue.12, pp.3611-3633, 2006.
DOI : 10.1099/vir.0.82299-0

P. Shi, M. Tilgner, M. Lo, K. Kent, and K. Bernard, Infectious cDNA Clone of the Epidemic West Nile Virus from New York City, Journal of Virology, vol.76, issue.12, pp.5847-56, 2002.
DOI : 10.1128/JVI.76.12.5847-5856.2002

C. Bahuon, P. Despres, N. Pardigon, J. Panthier, N. Cordonnier et al., IS-98-ST1 West Nile Virus Derived from an Infectious cDNA Clone Retains Neuroinvasiveness and Neurovirulence Properties of the Original Virus, PLoS ONE, vol.7, issue.10, p.47666, 2012.
DOI : 10.1371/journal.pone.0047666.s001

K. Szentpali-gavaller, S. Lim, L. Dencso, K. Banyai, P. Koraka et al., In Vitro and in Vivo Evaluation of Mutations in the NS Region of Lineage 2 West Nile Virus Associated with Neuroinvasiveness in a Mammalian Model, Viruses, vol.277, issue.2, 2016.
DOI : 10.1371/journal.pone.0109905

L. Barzon, M. Pacenti, E. Franchin, L. Squarzon, A. Sinigaglia et al., Isolation of West Nile Virus from Urine Samples of Patients with Acute Infection, Journal of Clinical Microbiology, vol.52, issue.9, pp.3411-3414, 2014.
DOI : 10.1128/JCM.01328-14

F. May, C. Davis, R. Tesh, and A. Barrett, Phylogeography of West Nile Virus: from the Cradle of Evolution in Africa to Eurasia, Australia, and the Americas, Journal of Virology, vol.85, issue.6, pp.2964-74, 2011.
DOI : 10.1128/JVI.01963-10

J. Quan and J. Tian, Circular Polymerase Extension Cloning of Complex Gene Libraries and Pathways, PLoS ONE, vol.44, issue.7, p.6441, 2009.
DOI : 10.1371/journal.pone.0006441.s001

URL : http://doi.org/10.1371/journal.pone.0006441

Y. Setoh, N. Prow, D. Rawle, C. Tan, J. Edmonds et al., Systematic analysis of viral genes responsible for differential virulence between American and Australian West Nile virus strains, Journal of General Virology, vol.96, issue.6, pp.1297-308, 2015.
DOI : 10.1099/vir.0.000069

L. Reed and H. Muench, A simple method of estimating fifty per cent endpoint, Am J Hyg, vol.27, p.5, 1938.

P. Holland, R. Abramson, R. Watson, and D. Gelfand, Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase., Proceedings of the National Academy of Sciences, vol.88, issue.16, pp.7276-80, 1991.
DOI : 10.1073/pnas.88.16.7276

S. Linke, H. Ellerbrok, M. Niedrig, A. Nitsche, and G. Pauli, Detection of West Nile virus lineages 1 and 2 by real-time PCR, Journal of Virological Methods, vol.146, issue.1-2, pp.355-363, 2007.
DOI : 10.1016/j.jviromet.2007.05.021

J. Toussaint, C. Sailleau, E. Breard, S. Zientara, D. Clercq et al., Bluetongue virus detection by two real-time RT-qPCRs targeting two different genomic segments, Journal of Virological Methods, vol.140, issue.1-2, pp.115-138, 2007.
DOI : 10.1016/j.jviromet.2006.11.007

J. Edmonds, E. Van-grinsven, N. Prow, A. Bosco-lauth, A. Brault et al., A Novel Bacterium-Free Method for Generation of Flavivirus Infectious DNA by Circular Polymerase Extension Reaction Allows Accurate Recapitulation of Viral Heterogeneity, Journal of Virology, vol.87, issue.4, pp.2367-72, 2013.
DOI : 10.1128/JVI.03162-12

M. Lucas, M. Frenkiel, T. Mashimo, J. Guenet, V. Deubel et al., The Israeli strain IS-98-ST1 of West Nile virus as viral model for West Nile encephalitis in the Old World, Virology Journal, vol.1, issue.1, p.9, 2004.
DOI : 10.1186/1743-422X-1-9

G. Ebel, K. Fitzpatrick, P. Lim, C. Bennett, E. Deardorff et al., Nonconsensus West Nile Virus Genomes Arising during Mosquito Infection Suppress Pathogenesis and Modulate Virus Fitness In Vivo, Journal of Virology, vol.85, issue.23, pp.12605-12618, 2011.
DOI : 10.1128/JVI.05637-11

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3209405

M. Brinton, Replication Cycle and Molecular Biology of the West Nile Virus, Viruses, vol.71, issue.1, pp.13-53, 2013.
DOI : 10.1016/j.virol.2012.06.028