G. De-la, Les cellules sont alors récoltées dans un tube enduit avec du sérum. b)-La culture de cellules satellites Les cellules quiescentes Pax7+ triées au FACS sont ensuite mises culture à 37°C sous 5% de CO2, amplifiées par prolifération à une concentration de 8 000/cm 2 . Les boîtes en plastique TPP R sont précédemment revêtues de gélatine permettant l'adhésion des cellules. La composition du milieu de prolifération est la suivante : DMEM / F-12 (Dulbecco's Modified Eagle Medium:Nutrient Mixture F-12, L-glutamine, HEPES, Phenol Red) contenant 1% Anti-Antimycotique (Life Technologies), et 1% de L-glutamine (Life Technologies). c)-La transfection des cellules satellites par siRNA Afin de déréguler l'expression de certains gènes d'intérêt, j'ai effectué des transfections par Lipofectamine RNAiMAX (life Technologies) sur des cellules satellites en prolifération à 8000, 2% d'Ultroser G (PALL Life Sciences)

. Antimycotique, Life Technologies), et 1% de L-glutamine (Life Technologies)

R. Bonaldo, P. Sandri, M. Charbonney, E. Speight, P. Masszi et al., Cellular and molecular mechanisms of muscle atrophy, Disease Models & Mechanisms, vol.6, issue.1, pp.25-39, 2011.
DOI : 10.1242/dmm.010389

O. Geneste, J. W. Copeland, and R. Treisman, LIM kinase and Diaphanous cooperate to regulate serum response factor and actin dynamics, The Journal of Cell Biology, vol.113, issue.5, pp.831-838, 2002.
DOI : 10.1038/31735

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2173419

J. M. Giger, P. W. Bodell, M. Zeng, K. M. Baldwin, and F. Haddad, Rapid muscle atrophy response to unloading: pretranslational processes involving MHC and actin, Journal of Applied Physiology, vol.107, issue.4, pp.1204-1212, 2009.
DOI : 10.1152/japplphysiol.00344.2009

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2763827

R. Grosse, M. K. Vartiainen, A. Guerci, C. Lahoute, ?. He et al., To be or not to be assembled: progressing into nuclear actin filaments, Nature Reviews Molecular Cell Biology, vol.5, issue.11, pp.693-697, 2012.
DOI : 10.1038/nrm3681

S. Guettler, M. K. Vartiainen, F. Miralles, B. Larijani, R. Treisman et al., RPEL motifs link the serum response factor cofactor MAL but not myocardin to Rho signaling via actin binding Premature aging in skeletal muscle lacking serum response factor The kinase domain of titin controls muscle gene expression and protein turnover, Mol. Cell. Biol. PLoS ONE Science, vol.15, issue.308, pp.25-37, 2005.

T. Minami, K. Kuwahara, Y. Nakagawa, M. Takaoka, H. Kinoshita et al., Reciprocal expression of MRTF-A and myocardin is crucial for pathological vascular remodelling in mice, The EMBO Journal, vol.436, issue.23, pp.4428-4440, 2012.
DOI : 10.1038/emboj.2012.296

J. Ochala, A. M. Gustafson, M. L. Diez, G. Renaud, M. Li et al., Preferential skeletal muscle myosin loss in response to mechanical silencing in a novel rat intensive care unit model: underlying mechanisms, The Journal of Physiology, vol.6, issue.8, pp.2007-2026, 2011.
DOI : 10.1113/jphysiol.2010.202044

E. N. Olson and A. Nordheim, Linking actin dynamics and gene transcription to drive cellular motile functions, Nature Reviews Molecular Cell Biology, vol.9, issue.5, pp.353-365, 2010.
DOI : 10.1038/nrm2890

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073350

R. Paw?owski, ?. Rajakyla, E. K. Vartiainen, M. K. Treisman, and R. , An actin-regulated importin ??/??-dependent extended bipartite NLS directs nuclear import of MRTF-A, The EMBO Journal, vol.9, issue.20, pp.3448-3458, 2010.
DOI : 10.1038/emboj.2010.216

G. C. Pipes, E. E. Creemers, and E. N. Olson, The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis, Genes & Development, vol.20, issue.12, pp.1545-1556, 2006.
DOI : 10.1101/gad.1428006

C. Polge, A. E. Heng, M. Jarzaguet, S. Ventadour, A. Claustre et al., Muscle actin is polyubiquitinylated in vitro and in vivo and targeted for breakdown by the E3 ligase MuRF1, The FASEB Journal, vol.25, issue.11, pp.3790-3802, 2011.
DOI : 10.1096/fj.11-180968

G. Posern, R. Treisman, G. Posern, A. Sotiropoulos, R. Treisman et al., Actin' together: serum response factor, its cofactors and the link to signal transduction Mutant actins demonstrate a role for unpolymerized actin in control of transcription by serum response factor A nuclear actin function regulates neuronal motility by serum response factordependent gene transcription Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL Bone morphogenetic protein signaling in vascular disease: antiinflammatory action through myocardin-related transcription factor A, Trends Cell Biol. Mol. Biol. Cell J. Neurosci. Science J. Biol. Chem, vol.16, issue.287, pp.588-596, 2002.

S. Figure and S. Figure, Control and mutant mice were injected with tamoxifen 14D prior to calorie-restriction. Muscles were isolated after 7D of calorie-restriction. (B) Ratio of 7D restricted mice muscle weight to non-restricted mice muscle weight for TA and GP of control and mutant mice (n=6). (C) Dystrophin immunostaining of 7D restricted and non-restricted mice TA of control and mutant mice (Scale, 100 ?m). (D) Mean CSA of 7D restricted and non-restricted mice TA fibers to body weight for control and mutant mice Quantitative data are means±SEM, pp.3-4

S. Figure, dystrophin (green) and DAPI immunostaining on contralateral or 7D postdenervation TA of control or Srf knockout mice, or of control mice injected or not with AAV-SRFVP16 (Scale, DNase I, Texas Red), p.50

?. Intranuclear-localization-of-overexpressed-mrtf-a-gfp-in and T. , Nuclei are visualized by H2B-mCherry (Scale, 2 ?m) Plot profiles corresponding to normalized fluorescence values (green for Mrtf-A-GFP and red for H2B-mCherry) along the yellow line are shown below each confocal image. (C) Shifted localization of overexpressed Mrtf-A-GFP in TA revealed by immunostaining for GFP and confocal imaging (x100) Nuclei are visualized by H2B-mCherry (Scale, 2 ?m) Plot profiles corresponding to normalized fluorescence values (green for Mrtf-A-GFP and red for H2B-mCherry) along the yellow line are shown below each confocal image. (D) Three-dimensional reconstitutions from confocal images of intranuclear and shifted Mrtf-A-GFP localizations (Scale, 2 ?m). (E) GFP and Emerin (gray)

. Guerci, differentiation medium (D3) using RNeasy Mini Kit (Qiagen) and treated by DNAse (Qiagen) RNA integrities were certified on bioanalyzer (Agilent) Hybridation to Mouse Gene 2_0-ST arrays (Affimetrix) and scans (GCS3000 7G expression Console software) were performed on the Genomi'c plateform (Institut Cochin, Paris) Probe data normalization and gene expression levels were processed using the Robust Multi-array Average (RMA) algorithm in expression Console software (Affimetrix) Gene ontology analysis was performed using Ingenuity (IPA) software. RNA extraction and qRT-PCR RNA extraction and quantitative real-time (qRT)-PCR analysis were performed as described previously Values were normalized using Hydroxymethylbilane synthetase (Hbms) The following primers were used : Acta1-F, 5'-CTGAGCGCAAGTACTCAGTGTGGA-3'; Acta1-R, 5'-TTCCAAAAACAGGCGCCGGCTGCA-3'; Srf-F, 5'-CACCTACCAGGTGTCGGAAT-3'; Srf-R, 5'- GCTGTGTGGATTGTGGAGGT-3'; MyoD-R, 5'-TTCCTGGGTCCAGCCTCAAC-3' ; MyoD-F, 5'- GCAGATGCACCACCAGAGTC-3'; Myogenin-R, 5'-ACGATGGACGTAAGGGAGTG-3'; Myogenin-F, 5'- GCAATGCACTGGAGTTCG-3'; Hmbs-F, 5, Total RNAs were obtained at the myoblast stage (D0), at the onset of differentiation (D1) and three days after the switching to Hmbs-R, 5'- TGCATGCTATCTGAGCCATC-3'. Western blotting analysis Western blotting was performed as described previously [156]. Immunoblots were hybridized with antibodies against Srf (Santa Cruz) and Tubulin (Millipore), 2012.

R. Almada, A. E. Wagers, and A. J. , Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease, Nature Reviews Molecular Cell Biology, vol.113, issue.5, pp.267-279, 2016.
DOI : 10.1016/j.stem.2014.12.004

B. Blaauw, R. , and C. , The role of satellite cells in muscle hypertrophy, Journal of Muscle Research and Cell Motility, vol.93, issue.1, pp.3-10, 2014.
DOI : 10.1007/s10974-014-9376-y

J. Blondelle, Y. Ohno, V. Gache, S. Guyot, S. Storck et al., , a regulator of membrane composition and fluidity, promotes myoblast fusion and skeletal muscle growth, Journal of Molecular Cell Biology, vol.7, issue.5, 2015.
DOI : 10.1093/jmcb/mjv049

A. C. Callan-jones and R. Voituriez, Actin flows in cell migration: from locomotion and polarity to trajectories, Current Opinion in Cell Biology, vol.38, pp.12-17, 2016.
DOI : 10.1016/j.ceb.2016.01.003

B. K. Cenik, N. Liu, B. Chen, S. Bezprozvannaya, E. N. Olson et al., Myocardin-related transcription factors are required for skeletal muscle development, Development, vol.143, issue.15, pp.2853-2861, 2016.
DOI : 10.1242/dev.135855

E. E. Creemers, L. B. Sutherland, J. Oh, A. C. Barbosa, and E. N. Olson, Coactivation of MEF2 by the SAP Domain Proteins Myocardin and MASTR, Molecular Cell, vol.23, issue.1, pp.83-96, 2006.
DOI : 10.1016/j.molcel.2006.05.026

N. A. Dumont, Y. X. Wang, and M. A. Rudnicki, Intrinsic and extrinsic mechanisms regulating satellite cell function, Development, vol.142, issue.9, pp.1572-1581, 2015.
DOI : 10.1242/dev.114223

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419274

I. M. Egner, J. C. Bruusgaard, and K. Gundersen, Satellite cell depletion prevents fiber hypertrophy in skeletal muscle, Development, vol.143, issue.16, pp.2898-2906, 2016.
DOI : 10.1242/dev.134411

C. S. Fry, J. D. Lee, J. R. Jackson, T. J. Kirby, S. A. Stasko et al., Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy, The FASEB Journal, vol.28, issue.4, pp.1654-1665, 2014.
DOI : 10.1096/fj.13-239426

C. Gauthier-rouviere, M. Vandromme, D. Tuil, N. Lautredou, M. Morris et al., Expression and activity of serum response factor is required for expression of the muscle-determining factor MyoD in both dividing and differentiating mouse C2C12 myoblasts., Molecular Biology of the Cell, vol.7, issue.5, pp.719-729, 1996.
DOI : 10.1091/mbc.7.5.719

S. E. Gordon, M. Flück, and F. W. Booth, Selected Contribution: Skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent, J. Appl. Physiol. Bethesda Md, vol.1165, pp.90-1174, 1985.

A. Guerci, C. Lahoute, S. Hébrard, L. Collard, D. Graindorge et al., Srf-Dependent Paracrine Signals Produced by Myofibers Control Satellite Cell-Mediated Skeletal Muscle Hypertrophy, Cell Metabolism, vol.15, issue.1, pp.25-37, 2012.
DOI : 10.1016/j.cmet.2011.12.001

URL : http://doi.org/10.1016/j.cmet.2011.12.001

P. Gunning, P. Ponte, H. Blau, and L. Kedes, alpha-skeletal and alpha-cardiac actin genes are coexpressed in adult human skeletal muscle and heart., Molecular and Cellular Biology, vol.3, issue.11, 1983.
DOI : 10.1128/MCB.3.11.1985

P. Gunning, P. Ponte, H. Blau, and L. Kedes, alpha-skeletal and alpha-cardiac actin genes are coexpressed in adult human skeletal muscle and heart., Molecular and Cellular Biology, vol.3, issue.11, 1983.
DOI : 10.1128/MCB.3.11.1985

B. Ilkovski, S. Clement, C. Sewry, K. N. North, C. et al., Defining ??-skeletal and ??-cardiac actin expression in human heart and skeletal muscle explains the absence of cardiac involvement in ACTA1 nemaline myopathy, Neuromuscular Disorders, vol.15, issue.12, pp.829-835, 2005.
DOI : 10.1016/j.nmd.2005.08.004

J. H. Kim, Y. Ren, W. P. Ng, S. Li, S. Son et al., Mechanical Tension Drives Cell Membrane Fusion, Developmental Cell, vol.32, issue.5, pp.561-573, 2015.
DOI : 10.1016/j.devcel.2015.01.005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357538

H. Koegel, L. Von-tobel, M. Schäfer, S. Alberti, E. Kremmer et al., Loss of serum response factor in keratinocytes results in hyperproliferative skin disease in mice, Journal of Clinical Investigation, vol.119, issue.4, pp.899-910, 2009.
DOI : 10.1172/JCI37771DS1

C. Lahoute, A. Sotiropoulos, M. Favier, I. Guillet-deniau, C. Charvet et al., Premature Aging in Skeletal Muscle Lacking Serum Response Factor, PLoS ONE, vol.456, issue.12, p.3910, 2008.
DOI : 10.1371/journal.pone.0003910.t001

B. V. Latinki?, B. Cooper, N. Towers, D. Sparrow, S. Kotecha et al., Distinct Enhancers Regulate Skeletal and Cardiac Muscle-Specific Expression Programs of the Cardiac ??-Actin Gene in Xenopus Embryos, Developmental Biology, vol.245, issue.1, pp.57-70, 2002.
DOI : 10.1006/dbio.2002.0639

L. Grand, F. Grifone, R. Mourikis, P. Houbron, C. Gigaud et al., Six1 regulates stem cell repair potential and self-renewal during skeletal muscle regeneration, The Journal of Cell Biology, vol.12, issue.5, pp.815-832, 2012.
DOI : 10.1083/jcb.200312007

C. Lepper, S. J. Conway, F. , and C. , Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements, Nature, vol.22, issue.7255, pp.627-631, 2009.
DOI : 10.1038/nature08209

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767162

C. Lepper, T. A. Partridge, F. , and C. , An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration, Development, vol.138, issue.17, pp.3639-3646, 2011.
DOI : 10.1242/dev.067595

L. 'honore, A. Rana, V. Arsic, N. Franckhauser, C. Lamb et al., Identification of a new hybrid serum response factor and myocyte enhancer factor 2-binding element in MyoD enhancer required for MyoD expression during myogenesis, Mol. Biol. Cell, vol.18, 1992.

S. Li, M. P. Czubryt, J. Mcanally, R. Bassel-duby, J. A. Richardson et al., Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice, Proceedings of the National Academy of Sciences, vol.15, issue.3, pp.1082-1087, 2005.
DOI : 10.1096/fj.00-026com

S. G. Martin, Role and organization of the actin cytoskeleton during cell-cell fusion, Seminars in Cell & Developmental Biology, vol.60, 2016.
DOI : 10.1016/j.semcdb.2016.07.025

J. J. Mccarthy, J. Mula, M. Miyazaki, R. Erfani, K. Garrison et al., Effective fiber hypertrophy in satellite cell-depleted skeletal muscle, Development, vol.138, issue.17, pp.3657-3666, 2011.
DOI : 10.1242/dev.068858

S. M. Meadows, A. S. Warkman, M. C. Salanga, E. M. Small, and P. A. Krieg, The myocardinrelated transcription factor, MASTR, cooperates with MyoD to activate skeletal muscle gene expression, Proc. Natl. Acad. Sci. 105, pp.1545-1550, 2008.

J. M. Miano, N. Ramanan, M. A. Georger, K. L. De-mesy-bentley, R. L. Emerson et al., Restricted inactivation of serum response factor to the cardiovascular system, Proceedings of the National Academy of Sciences, vol.100, issue.12, pp.17132-17137, 2004.
DOI : 10.1073/pnas.1232341100

J. M. Miano, X. Long, and K. Fujiwara, Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus, AJP: Cell Physiology, vol.292, issue.1, pp.70-81, 2007.
DOI : 10.1152/ajpcell.00386.2006

M. H. Mokalled, A. N. Johnson, E. E. Creemers, and E. N. Olson, MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration, Genes & Development, vol.26, issue.2, pp.190-202, 2012.
DOI : 10.1101/gad.179663.111

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273842

D. Montarras, J. Morgan, C. Collins, F. Relaix, S. Zaffran et al., Direct Isolation of Satellite Cells for Skeletal Muscle Regeneration, Science, vol.309, issue.5743, pp.2064-2067, 2005.
DOI : 10.1126/science.1114758

URL : https://hal.archives-ouvertes.fr/pasteur-00181349

D. Montarras, A. L-'honoré, and M. Buckingham, Lying low but ready for action: the quiescent muscle satellite cell, FEBS Journal, vol.482, issue.17, pp.4036-4050, 2013.
DOI : 10.1111/febs.12372

I. Moretti, S. Ciciliot, K. A. Dyar, R. Abraham, M. Murgia et al., MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity, Nature Communications, vol.102, p.12397, 2016.
DOI : 10.1038/ncomms12397

URL : https://hal.archives-ouvertes.fr/hal-01438131

A. Nordheim, SRF regulation ??? actin branches out, Nature Reviews Molecular Cell Biology, vol.156, issue.6, pp.368-368, 2014.
DOI : 10.1038/nrm3803

K. J. Nowak, G. Ravenscroft, C. Jackaman, A. Filipovska, S. M. Davies et al., Rescue of skeletal muscle ??-actin???null mice by cardiac (fetal) ??-actin, The Journal of Cell Biology, vol.261, issue.5, pp.903-915, 2009.
DOI : 10.1083/jcb.200812132.dv

S. J. Nowak, P. C. Nahirney, A. Hadjantonakis, and M. K. Baylies, Nap1-mediated actin remodeling is essential for mammalian myoblast fusion, Journal of Cell Science, vol.122, issue.18, pp.3282-3293, 2009.
DOI : 10.1242/jcs.047597

E. N. Olson and A. Nordheim, Linking actin dynamics and gene transcription to drive cellular motile functions, Nature Reviews Molecular Cell Biology, vol.9, issue.5, pp.353-365, 2010.
DOI : 10.1038/nrm2890

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073350

A. Parlakian, D. Tuil, G. Hamard, G. Tavernier, D. Hentzen et al., Targeted Inactivation of Serum Response Factor in the Developing Heart Results in Myocardial Defects and Embryonic Lethality, Molecular and Cellular Biology, vol.24, issue.12, pp.5281-5289, 2004.
DOI : 10.1128/MCB.24.12.5281-5289.2004

A. Parlakian, C. Charvet, B. Escoubet, M. Mericskay, J. D. Molkentin et al., Temporally Controlled Onset of Dilated Cardiomyopathy Through Disruption of the SRF Gene in Adult Heart, Circulation, vol.112, pp.2930-2939, 2005.
DOI : 10.1161/CIRCULATIONAHA.105.533778

URL : https://hal.archives-ouvertes.fr/hal-00068383

B. M. Paterson, E. , and J. D. , alpha-Cardiac actin is the major sarcomeric isoform expressed in embryonic avian skeletal muscle, Science, vol.224, issue.4656, pp.1436-1438, 1984.
DOI : 10.1126/science.6729461

G. C. Pipes, E. E. Creemers, and E. N. Olson, The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis, Genes & Development, vol.20, issue.12, pp.1545-1556, 2006.
DOI : 10.1101/gad.1428006

G. Posern and R. Treisman, Actin??? together: serum response factor, its cofactors and the link to signal transduction, Trends in Cell Biology, vol.16, issue.11, pp.588-596, 2006.
DOI : 10.1016/j.tcb.2006.09.008

R. Sambasivan, B. Gayraud-morel, G. Dumas, C. Cimper, S. Paisant et al., Distinct Regulatory Cascades Govern Extraocular and Pharyngeal Arch Muscle Progenitor Cell Fates, Developmental Cell, vol.16, issue.6, pp.810-821, 2009.
DOI : 10.1016/j.devcel.2009.05.008

URL : https://hal.archives-ouvertes.fr/hal-00428975

R. Sambasivan, R. Yao, A. Kissenpfennig, L. Van-wittenberghe, A. Paldi et al., Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration, Development, vol.138, issue.19, pp.4333-4333, 2011.
DOI : 10.1242/dev.073601

URL : https://hal.archives-ouvertes.fr/hal-00667781

G. Schratt, B. Weinhold, A. S. Lundberg, S. Schuck, J. Berger et al., Serum Response Factor Is Required for Immediate-Early Gene Activation yet Is Dispensable for Proliferation of Embryonic Stem Cells, Molecular and Cellular Biology, vol.21, issue.8, pp.2933-2943, 2001.
DOI : 10.1128/MCB.21.8.2933-2943.2001

P. Seale, L. A. Sabourin, A. Girgis-gabardo, A. Mansouri, P. Gruss et al., Pax7 Is Required for the Specification of Myogenic Satellite Cells, Cell, vol.102, issue.6, pp.777-786, 2000.
DOI : 10.1016/S0092-8674(00)00066-0

D. Segal, N. Dhanyasi, E. D. Schejter, and B. Shilo, Adhesion and Fusion of Muscle Cells Are Promoted by Filopodia, Developmental Cell, vol.38, issue.3, pp.291-304, 2016.
DOI : 10.1016/j.devcel.2016.07.010

M. Soulez, D. Tuil, A. Kahn, and H. Gilgenkrantz, The Serum Response Factor (SRF) Is Needed for Muscle-Specific Activation of CArG Boxes, Biochemical and Biophysical Research Communications, vol.219, issue.2, pp.418-422, 1996.
DOI : 10.1006/bbrc.1996.0248

M. Soulez, C. G. Rouviere, P. Chafey, D. Hentzen, M. Vandromme et al., Growth and differentiation of C2 myogenic cells are dependent on serum response factor., Molecular and Cellular Biology, vol.16, issue.11, pp.6065-6074, 1996.
DOI : 10.1128/MCB.16.11.6065

K. Sun, M. A. Battle, R. P. Misra, D. , and S. A. , Hepatocyte expression of serum response factor is essential for liver function, hepatocyte proliferation and survival, and postnatal body growth in mice, Hepatology, vol.16, issue.Suppl 2, pp.1645-1654, 2009.
DOI : 10.1002/hep.22834

K. Swärd, K. G. Stenkula, C. Rippe, A. Alajbegovic, M. F. Gomez et al., Emerging roles of the myocardin family of proteins in lipid and glucose metabolism, The Journal of Physiology, vol.62, issue.17, 2016.
DOI : 10.1113/JP271913

T. H. Tran, X. Shi, J. Zaia, A. , and X. , Heparan Sulfate 6-O-endosulfatases (Sulfs) Coordinate the Wnt Signaling Pathways to Regulate Myoblast Fusion during Skeletal Muscle Regeneration, Journal of Biological Chemistry, vol.287, issue.39, 2012.
DOI : 10.1074/jbc.M112.353243

R. Treisman, Identification and purification of a polypeptide that binds to the c-fos serum response element, EMBO J, vol.6, p.2711, 1987.

M. Vandromme, C. Gauthier-rouvière, G. Carnac, N. Lamb, and A. Fernandez, Serum response factor p67SRF is expressed and required during myogenic differentiation of both mouse C2 and rat L6 muscle cell lines, The Journal of Cell Biology, vol.118, issue.6, pp.1489-1500, 1992.
DOI : 10.1083/jcb.118.6.1489

E. Vasyutina, B. Martarelli, C. Brakebusch, H. Wende, and C. Birchmeier, The small Gproteins Rac1 and Cdc42 are essential for myoblast fusion in the mouse, Proc. Natl. Acad. Sci, pp.8935-8940, 2009.

M. T. Webster, U. Manor, J. Lippincott-schwartz, F. , and C. , Intravital Imaging Reveals Ghost Fibers as Architectural Units Guiding Myogenic Progenitors during Regeneration, Cell Stem Cell, vol.18, issue.2, pp.243-252, 2016.
DOI : 10.1016/j.stem.2015.11.005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744135

D. Werth, G. Grassi, N. Konjer, B. Dapas, R. Farra et al., Proliferation of human primary vascular smooth muscle cells depends on serum response factor, European Journal of Cell Biology, vol.89, issue.2-3, pp.216-224, 2010.
DOI : 10.1016/j.ejcb.2009.12.002

H. Yin, F. Price, M. A. Rudnicki, F. Sasaki, M. Kasagi et al., Grip Strength Predicts Cause-Specific Mortality in Middle-Aged and Elderly Persons Influence of exercise and aging on extracellular matrix composition in the skeletal muscle stem cell niche Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage Building Muscle : Molecular Regulation of Myogenesis Building Muscle : Molecular Regulation of Myogenesis A common somitic origin for embryonic muscle progenitors and satellite cells Lineage analysis of the avian dermomyotome sheet reveals the existence of single cells with both dermal and muscle progenitor fates Looking back to the embryo : defining transcriptional networks in adult myogenesis Intrinsic and extrinsic mechanisms regulating satellite cell function Satellite Cell of Skeletal Muscle Fibers, Satellite cells and the muscle stem cell niche, pp.23-67, 1961.

H. Clevers, What is an adult stem cell?, Science, vol.77, issue.6, pp.1319-1339, 2015.
DOI : 10.1530/ERC-15-0195

T. Zhang, S. Günther, M. Looso, C. Künne, M. Krüger et al., Prmt5 is a regulator of muscle stem cell expansion in adult mice, Nature Communications, vol.20, p.7140, 2015.
DOI : 10.1038/ncomms8140

T. H. Cheung, N. L. Quach, G. W. Charville, L. Liu, L. Park et al., Maintenance of muscle stem-cell quiescence by microRNA-489, Nature, vol.29, issue.7386, pp.524-532, 2012.
DOI : 10.1038/nature10834

K. Kuroda, S. Tani, S. Minoguchi, T. Honjo, J. B. Chem et al., Delta-induced Notch Signaling Mediated by RBP-J Inhibits MyoD Expression and Myogenesis, Journal of Biological Chemistry, vol.274, issue.11, pp.7238-7244, 1999.
DOI : 10.1074/jbc.274.11.7238

L. Machado and F. Relaix, Heterochromatin compaction is regulated by Suv4-20h1 to maintains skeletal muscle stem cells quiescence, Stem Cell Investigation, pp.4-6, 2016.
DOI : 10.21037/sci.2016.06.04

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958057

P. Bonaldo and M. Sandri, Cellular and molecular mechanisms of muscle atrophy, Disease Models & Mechanisms, vol.6, issue.1, pp.25-39
DOI : 10.1242/dmm.010389

S. Schiaffino and C. Reggiani, Fiber Types in Mammalian Skeletal Muscles, Physiological Reviews, vol.91, issue.4, pp.1447-531, 2011.
DOI : 10.1152/physrev.00031.2010

S. Gudbjarnason, P. Mathes, and G. Ravens, Functional compartmentation of ATP and creatine phosphate in heart muscle, Journal of Molecular and Cellular Cardiology, vol.1, issue.3, pp.325-339, 1970.
DOI : 10.1016/0022-2828(70)90009-X

S. Bessman, Hexokinase acceptor theory of insulin action. New evidence, Isr J Med Sci, vol.8, issue.3, pp.344-349, 1972.

K. Lohmann, Über die enzymatische aufspaltung der kreatinphosphorsäure;Zugleich ein beitrag zum chemismus der muskelkontrakion, Biochem, vol.271, pp.264-277, 1934.

H. R. Scholte, The separation and enzymatic characterization of inner and outer membranes of rat-heart mitochondria, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.330, issue.3, pp.330283-93, 1973.
DOI : 10.1016/0005-2736(73)90233-2

M. Wyss, J. Smeitink, R. Wevers, and T. Wallimann, Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1102, issue.2, pp.1102119-66, 1992.
DOI : 10.1016/0005-2728(92)90096-K

R. Ventura-clapier, A. Kaasik, and V. Veksler, Structural and functional adaptations of striated muscles to CK deficiency, Molecular and Cellular Biochemistry, vol.256, issue.1/2, pp.256-257, 2004.
DOI : 10.1023/B:MCBI.0000009857.69730.97

V. Saks, A. Kuznetsov, M. Vendelin, K. Guerrero, L. Kay et al., Functional coupling as a basic mechanism of feedback regulation of cardiac energy metabolism, Molecular and Cellular Biochemistry, vol.256, issue.1/2, pp.256-257, 2004.
DOI : 10.1023/B:MCBI.0000009868.92189.fb

URL : https://hal.archives-ouvertes.fr/inserm-00391052

T. Wallimann, M. Dolder, U. Schlattner, M. Eder, T. Hornemann et al., Creatine kinase: An enzyme with a central role in cellular energy metabolism, Magnetic Resonance Materials in Biology, Physics, and Medicine, vol.6, issue.2-3, pp.116-125, 1998.
DOI : 10.1016/S1352-8661(98)00034-9

URL : https://hal.archives-ouvertes.fr/inserm-00390795

L. Guimarães-ferreira, Role of the phosphocreatine system on energetic homeostasis in skeletal and cardiac muscles Papel do sistema da fosfocreatina na homeostase energética das musculaturas esquelética e cardíaca, pp.126-157, 2014.

I. Momken, P. Lechêne, N. Koulmann, D. Fortin, P. Mateo et al., Impaired voluntary running capacity of creatine kinase-deficient mice, The Journal of Physiology, vol.194, issue.257, pp.951-964, 2005.
DOI : 10.1113/jphysiol.2005.086397

URL : https://hal.archives-ouvertes.fr/inserm-00290115

P. Dzeja and A. Terzic, Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing, International Journal of Molecular Sciences, vol.20, issue.134, pp.1729-1772, 2009.
DOI : 10.3390/ijms10041729

URL : http://doi.org/10.3390/ijms10041729

P. Dzeja, A. Kalvenas, A. Toleikis, and A. Praskevicius, The effect of adenylate kinase activity on the rate and efficiency of energy transport from mitochondria to hexokinase, Biochem Int, issue.2, pp.10259-65, 1985.

P. Dzeja, R. Zeleznikar, and N. Goldberg, Suppression of Creatine Kinase-catalyzed Phosphotransfer Results in Increased Phosphoryl Transfer by Adenylate Kinase in Intact Skeletal Muscle, J. Biol. Chem, pp.12847-12851, 1996.

E. Janssen, P. P. Dzeja, F. Oerlemans, W. Simonetti, . Heerschap et al., Adenylate kinase 1 gene deletion disrupts muscle energetic economy despite metabolic rearrangement, The EMBO Journal, vol.19, issue.23, pp.6371-6381, 2000.
DOI : 10.1093/emboj/19.23.6371

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC305872

R. Zeleznikar, P. Dzeja, and N. Goldberg, Adenylate Kinase-catalyzed Phosphoryl Transfer Couples ATP Utilization with Its Generation by Glycolysis in Intact Muscle, J. Biol. Chem, issue.13, pp.2707311-2707320, 1995.

R. , T. Jagoe, and A. L. Goldberg, What do we really know about the ubiquitinproteasome pathway in muscle atrophy?, Opin Clin Nutr Metab Care, issue.3, pp.4183-90, 2001.

C. Rommel, S. Bodine, and B. Clarke, Mediation of IGF-1-induced skeletal myotube hypertrophy by PI (3) K/Akt/mTOR and PI (3) K/Akt/GSK3 pathways, Nat. Cell Biol, vol.3, 1009.

S. C. Bodine, T. N. Stitt, M. Gonzalez, W. O. Kline, G. L. Stover et al., Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo, Nature Cell Biology, vol.3, issue.11, pp.1014-1019, 2001.
DOI : 10.1038/ncb1101-1014

M. Coleman, F. Demayo, K. Yin, H. Lee, R. Geske et al., Myogenic vector expression of Insulin-like Growth Factor I stimulates mucle cell differentiation and myofiber hypertrophy transgenic mice, J Biol Chem, pp.19-12109, 1995.

C. Lipina, H. Kendall, A. Mcpherron, P. Taylor, and H. Hundal, Mechanisms involved in the enhancement of mammalian target of rapamycin signalling and hypertrophy in skeletal muscle of myostatin-deficient mice, FEBS Letters, vol.33, issue.11, pp.584-2403, 2010.
DOI : 10.1016/j.febslet.2010.04.039

C. Barbé, S. Kalista, A. Loumaye, O. Ritvos, P. Lause et al., Role of IGF-I in follistatin-induced skeletal muscle hypertrophy, American Journal of Physiology - Endocrinology And Metabolism, vol.309, issue.6, pp.309-557, 1995.
DOI : 10.1152/ajpendo.00098.2015

D. J. Glass, Signaling pathways perturbing muscle mass, Current Opinion in Clinical Nutrition and Metabolic Care, vol.13, issue.3, pp.225-229, 2010.
DOI : 10.1097/MCO.0b013e32833862df

D. C. Fingar, S. Salama, C. Tsou, E. Harlow, and J. Blenis, Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E, Genes & Development, vol.16, issue.12, pp.1472-1487, 2002.
DOI : 10.1101/gad.995802

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC186342

M. Sandri, Signaling in Muscle Atrophy and Hypertrophy, Physiology, vol.23, issue.3, pp.160-70, 2008.
DOI : 10.1152/physiol.00041.2007

L. R. Smith, R. L. Meyer, and . Lieber, Systems analysis of biological networks in skeletal muscle function, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol.589, issue.1, pp.55-71, 2013.
DOI : 10.1002/wsbm.1197

S. Schiaffino, K. A. Dyar, S. Ciciliot, B. Blaauw, and M. Sandri, Mechanisms regulating skeletal muscle growth and atrophy, FEBS Journal, vol.163, issue.17, pp.4294-4314, 2013.
DOI : 10.1111/febs.12253

B. F. Miller, J. L. Olesen, M. Hansen, S. Døssing, R. M. Crameri et al., Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise, The Journal of Physiology, vol.31, issue.3, pp.1021-1033, 2005.
DOI : 10.1113/jphysiol.2005.093690

J. W. Frey, B. L. Jacobs, C. A. Goodman, and T. A. Hornberger, A role for Raptor phosphorylation in the mechanical activation of mTOR signaling, Cellular Signalling, vol.26, issue.2, pp.313-322, 2014.
DOI : 10.1016/j.cellsig.2013.11.009

G. Milan, V. Romanello, F. Pescatore, A. Armani, J. Paik et al., Regulation of autophagy and the ubiquitin???proteasome system by the FoxO transcriptional network during muscle atrophy, Nature Communications, vol.98, p.6670, 2015.
DOI : 10.1096/fj.10-168799

M. Sandri, C. Sandri, A. Gilbert, C. Skurk, and E. Calabria, Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy, Cell, vol.117, issue.3, pp.1-2, 2004.
DOI : 10.1016/S0092-8674(04)00400-3

T. N. Stitt, D. Drujan, B. A. Clarke, F. Panaro, Y. Timofeyva et al., The IGF-1/PI3K/Akt Pathway Prevents Expression of Muscle Atrophy-Induced Ubiquitin Ligases by Inhibiting FOXO Transcription Factors, Molecular Cell, vol.14, issue.3, pp.395-403, 2004.
DOI : 10.1016/S1097-2765(04)00211-4

J. L. Ruas, J. P. White, R. R. Rao, S. Kleiner, K. T. Brannan et al., A PGC-1alpha isoform induced by resistance training regulates skeletal muscle hypertrophy, Cell, issue.6, pp.1511319-1511322, 2012.

A. M. Bennett and N. K. Tonks, Regulation of Distinct Stages of Skeletal Muscle Differentiation by Mitogen-Activated Protein Kinases, Science, vol.278, issue.5341, pp.1288-1291, 1997.
DOI : 10.1126/science.278.5341.1288

F. Lluís, E. Ballestar, M. Suelves, M. Esteller, and P. Muñoz-cánoves, E47 phosphorylation by p38 MAPK promotes MyoD/E47 association and muscle-specific gene transcription, The EMBO Journal, vol.87, issue.5, pp.974-84, 2005.
DOI : 10.1074/jbc.274.8.5193

H. Amthor, G. Nicholas, I. Mckinnell, C. F. Kemp, M. Sharma et al., Follistatin complexes Myostatin and antagonises Myostatin-mediated inhibition of myogenesis, Developmental Biology, vol.270, issue.1, pp.19-30, 2004.
DOI : 10.1016/j.ydbio.2004.01.046

W. M. Hoogaars, E. Mouisel, A. Pasternack, J. J. Hulmi, K. Relizani et al., Combined effect of AAV-U7- induced dystrophin exon skipping and soluble activin Type IIB receptor in mdx mice Hum

S. J. Lee and C. Mcpherron, Regulation of myostatin activity and muscle growth, Proceedings of the National Academy of Sciences, vol.233, issue.2, pp.9306-9317, 2001.
DOI : 10.1006/excr.1997.3575

L. Grobet, D. Pirottin, F. Farnir, D. Poncelet, L. J. Royo et al., Modulating skeletal muscle mass by postnatal, muscle-specific inactivation of the myostatin gene, genesis, vol.296, issue.4, pp.227-238, 2003.
DOI : 10.1002/gene.10188

A. Mcpherron, A. Lawler, and L. Sj, Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member, Nature, issue.6628, pp.38783-90, 1997.

C. E. Winbanks, J. L. Chen, H. Qian, Y. Liu, B. C. Bernardo et al., The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass, The Journal of Cell Biology, vol.203, issue.2, pp.345-57, 2013.
DOI : 10.1016/S0092-8674(00)80133-6

S. Kalista, O. Schakman, H. Gilson, P. Lause, B. Demeulder et al., The Type 1 Insulin-Like Growth Factor Receptor (IGF-IR) Pathway Is Mandatory for the Follistatin-Induced Skeletal Muscle Hypertrophy, Endocrinology, vol.153, issue.1, pp.241-253, 2012.
DOI : 10.1210/en.2011-1687

C. E. Winbanks, K. L. Weeks, R. E. Thomson, P. V. Sepulveda, C. Beyer et al., Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin, The Journal of Cell Biology, vol.272, issue.7, pp.997-1008, 2012.
DOI : 10.1126/science.1069525

U. Andersson, K. Filipsson, C. R. Abbott, A. Woods, K. Smith et al., Accelerated Publication AMP-activated Protein Kinase Plays a Role in the Control of Food Intake *, pp.12005-12009, 2004.

C. Semsarian, M. Wu, Y. Ju, T. Marciniec, T. Yeoh et al., Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway, Nature, vol.400, issue.6744, pp.576-581, 1999.

K. Sakuma, J. Nishikawa, R. Nakao, K. Watanabe, T. Totsuka et al., Calcineurin is a potent regulator for skeletal muscle regeneration by association with NFATc1 and GATA-2, Acta Neuropathol, vol.105, issue.3, pp.271-280, 2003.

B. B. Friday, P. O. Mitchell, K. M. Kegley, and G. K. Pavlath, Calcineurin initiates skeletal muscle differentiation by activating MEF2 and MyoD, Differentiation, vol.71, issue.3, pp.217-227, 2003.
DOI : 10.1046/j.1432-0436.2003.710303.x

B. Friday, V. Horsley, and G. Pavlath, Calcineurin Activity Is Required for the Initiation of Skeletal Muscle Differentiation, The Journal of Cell Biology, vol.11, issue.3, pp.657-665, 2000.
DOI : 10.1101/gad.13.2.213

B. Friday and G. Pavlath, A calcineurin- and NFAT-dependent pathway regulates Myf5 gene expression in skeletal muscle reserve cells, J. Cell Sci, vol.114, pp.303-313, 2001.

M. D. Mavalli, D. J. Digirolamo, Y. Fan, R. C. Riddle, K. S. Campbell et al., Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice, Journal of Clinical Investigation, vol.120, issue.11, pp.4007-4020, 2010.
DOI : 10.1172/JCI42447DS1

I. M. Egner, J. C. Bruusgaard, and K. Gundersen, Satellite cell depletion prevents fiber hypertrophy in skeletal muscle, Development, vol.143, issue.16, pp.2898-2906, 2016.
DOI : 10.1242/dev.134411

J. J. Mccarthy, J. Mula, M. Miyazaki, R. Erfani, K. Garrison et al., Effective fiber hypertrophy in satellite cell-depleted skeletal muscle, Development, vol.138, issue.17, pp.3657-3666, 2011.
DOI : 10.1242/dev.068858

H. Amthor, A. Otto, A. Vulin, A. Rochat, J. Dumonceaux et al., Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity, Proceedings of the National Academy of Sciences, vol.31, issue.10, pp.7479-7484, 2009.
DOI : 10.1007/BF02634119

R. Qaisar, G. Renaud, K. Morine, E. R. Barton, H. L. Sweeney et al., Is functional hypertrophy and specific force coupled with the addition of myonuclei at the single muscle fiber level?, The FASEB Journal, vol.26, issue.3, pp.1077-1085, 2012.
DOI : 10.1096/fj.11-192195

A. Raffaello, G. Milan, E. Masiero, S. Carnio, D. Lee et al., JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy, The Journal of Cell Biology, vol.66, issue.1, pp.101-113, 2010.
DOI : 10.1016/j.cmet.2007.11.004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953439

J. C. Bruusgaard, A. S. Brack, S. M. Hughes, and K. Gundersen, Muscle hypertrophy induced by the Ski protein: cyto-architecture and ultrastructure, Acta Physiologica Scandinavica, vol.4, issue.5, pp.141-149, 2005.
DOI : 10.1016/j.cyto.2004.03.007

R. Qaisar and L. Larsson, What determines myonuclear domain size?, Indian J Physiol Pharmacol, issue.1, pp.581-593, 2014.

S. B. Chargé, A. S. Brack, and S. M. Hughes, Aging-related satellite cell differentiation defect occurs prematurely after Ski-induced muscle hypertrophy, AJP: Cell Physiology, vol.283, issue.4, pp.1228-1241, 2002.
DOI : 10.1152/ajpcell.00206.2002

C. L. Mendias, E. Kayupov, J. R. Bradley, S. Brooks, and D. R. Claflin, Decreased specific force and power production of muscle fibers from myostatin-deficient mice are associated with a suppression of protein degradation, Journal of Applied Physiology, vol.111, issue.1, pp.185-191, 1985.
DOI : 10.1152/japplphysiol.00126.2011

H. Amthor, R. Macharia, R. Navarrete, M. Schuelke, S. C. Brown et al., Lack of myostatin results in excessive muscle growth but impaired force generation, Proceedings of the National Academy of Sciences, vol.147, issue.2, pp.1835-1875, 2007.
DOI : 10.1007/s003359900843

T. A. Washington, J. P. White, J. M. Davis, L. B. Wilson, L. L. Lowe et al., Skeletal muscle mass recovery from atrophy in IL-6 knockout mice, Acta Physiologica, vol.278, issue.Pt 2, pp.657-669, 2011.
DOI : 10.1111/j.1748-1716.2011.02281.x

M. J. Puppa, J. P. White, K. T. Velázquez, K. A. Baltgalvis, S. Sato et al., mouse, Journal of Cachexia, Sarcopenia and Muscle, vol.1, issue.2, pp.117-137, 2012.
DOI : 10.1007/s13539-011-0047-1

A. Guerci, C. Lahoute, S. Hebrard, L. Collard, D. Graindorge et al., Srf-Dependent Paracrine Signals Produced by Myofibers Control Satellite Cell-Mediated Skeletal Muscle Hypertrophy, Cell Metabolism, vol.15, issue.1, pp.25-37, 2012.
DOI : 10.1016/j.cmet.2011.12.001

URL : http://doi.org/10.1016/j.cmet.2011.12.001

B. K. Pedersen and M. A. Febbraio, Muscle as an Endocrine Organ: Focus on Muscle-Derived Interleukin-6, Physiological Reviews, vol.88, issue.4, pp.1379-406, 2008.
DOI : 10.1152/physrev.90100.2007

Y. Aida, K. Honda, S. Tanigawa, G. Nakayama, H. Matsumura et al., IL-6 and soluble IL-6 receptor stimulate the production of MMPs and their inhibitors via JAK???STAT and ERK???MAPK signalling in human chondrocytes, Cell Biology International, vol.5, issue.4, pp.367-376, 2012.
DOI : 10.1074/jbc.M000907200

W. J. Evans, Skeletal muscle loss: cachexia, sarcopenia, and inactivity, American Journal of Clinical Nutrition, vol.91, issue.4, pp.1123-1127, 2010.
DOI : 10.3945/ajcn.2010.28608A

N. A. Stephens, I. J. Gallagher, O. Rooyackers, R. J. Skipworth, B. H. Tan et al., Using transcriptomics to identify and validate novel biomarkers of human skeletal muscle cancer cachexia, Genome Medicine, vol.2, issue.1, p.1, 2010.
DOI : 10.1186/gm122

L. C. O-'brien and A. S. Gorgey, Skeletal muscle mitochondrial health and spinal cord injury, World J. Orthop, vol.7, issue.10, pp.628-637, 2016.

M. A. Pellegrino, J. Desaphy, L. Brocca, S. Pierno, D. C. Camerino et al., Redox homeostasis, oxidative stress and disuse muscle atrophy, The Journal of Physiology, vol.95, issue.1, pp.2147-60, 2011.
DOI : 10.1113/jphysiol.2010.203232

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098694

S. K. Powers, E. E. Talbert, and P. J. Adhihetty, Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle, The Journal of Physiology, vol.31, issue.9, pp.2129-2138, 2011.
DOI : 10.1113/jphysiol.2010.201327

L. Zuo and B. K. Pannell, Redox Characterization of Functioning Skeletal Muscle, Frontiers in Physiology, vol.214, issue.NOV, pp.1-9, 2015.
DOI : 10.1111/apha.12515

S. H. Lecker, A. L. Goldberg, and W. E. Mitch, Protein Degradation by the Ubiquitin-Proteasome Pathway in Normal and Disease States, Journal of the American Society of Nephrology, vol.17, issue.7, pp.1807-1819, 2006.
DOI : 10.1681/ASN.2006010083

E. Glover, N. Yasuda, M. Tarnopolsky, A. Abadi, and S. Phillips, Little change in markers of protein breakdown and oxidative stress in humans in immobilization-induced skeletal muscle atrophy, Applied Physiology, Nutrition, and Metabolism, vol.35, issue.2, pp.35125-35158, 2010.
DOI : 10.1139/H09-137

N. Mizushima, B. Levine, A. M. Cuervo, and D. J. Klionsky, Autophagy fights disease through cellular self-digestion, Nature, vol.120, issue.7182, pp.1069-75, 2008.
DOI : 10.1038/nature06639

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2670399

M. Sandri, Protein breakdown in muscle wasting : Role of autophagy-lysosome, Biol. Cell, vol.45, pp.2121-2129, 2013.

D. Voges, P. Zwickl, and W. Baumeister, The 26S Proteasome: A Molecular Machine Designed for Controlled Proteolysis, Annual Review of Biochemistry, vol.68, issue.1, pp.1015-68, 1999.
DOI : 10.1146/annurev.biochem.68.1.1015

S. C. Bodine, E. Latres, S. Baumhueter, V. K. Lai, L. Nunez et al., Identification of Ubiquitin Ligases Required for Skeletal Muscle Atrophy, Science, vol.294, issue.5547, pp.2941704-2941712, 2001.
DOI : 10.1126/science.1065874

S. W. Jones, R. J. Hill, P. Krasney, B. O. Conner, N. Peirce et al., The Regulation of Skeletal Muscle Mass, pp.1-27, 2004.

C. L. Wu, S. C. Kandarian, and R. W. Jackman, Identification of Genes that Elicit Disuse Muscle Atrophy via the Transcription Factors p50 and Bcl-3, PLoS ONE, vol.3, issue.1, 2011.
DOI : 10.1371/journal.pone.0016171.s003

S. K. Powers, A. J. Smuder, and D. S. Criswell, Mechanistic Links Between Oxidative Stress and Disuse Muscle Atrophy, Antioxidants & Redox Signaling, vol.15, issue.9, pp.2519-2547, 2011.
DOI : 10.1089/ars.2011.3973

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3208252

S. K. Powers, A. Smuder, and A. Judge, Oxidative stress and disuse muscle atrophy, Current Opinion in Clinical Nutrition and Metabolic Care, vol.15, issue.3, pp.15240-15245, 2012.
DOI : 10.1097/MCO.0b013e328352b4c2

M. Taveau, N. Bourg, G. Sillon, C. Roudaut, M. Bartoli et al., Calpain 3 Is Activated through Autolysis within the Active Site and Lyses Sarcomeric and Sarcolemmal Components, Molecular and Cellular Biology, vol.23, issue.24, pp.9127-9135, 2003.
DOI : 10.1128/MCB.23.24.9127-9135.2003

D. E. Goll, V. F. Thompson, H. Li, W. Wei, and J. Cong, The Calpain System, Physiological Reviews, vol.83, issue.3, pp.731-801, 2003.
DOI : 10.1152/physrev.00029.2002

I. Hajimohammadreza, K. J. Raser, R. Nath, R. Nadimpalli, M. Scott et al., Neuronal Nitric Oxide Synthase and Calmodulin-Dependent Protein Kinase ha Undergo Neurotoxin-Induced Proteolysis, pp.1006-1013, 1997.
DOI : 10.1046/j.1471-4159.1997.69031006.x

E. Tallant, L. Brumley, and R. Wallace, Activation of a calmodulin-dependent phosphatase by a Ca2+-dependent protease, Biochemistry, issue.6, pp.272205-272216, 1988.

J. Du, X. Wang, C. Miereles, J. L. Bailey, R. Debigare et al., Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions, Journal of Clinical Investigation, vol.113, issue.1, pp.115-123, 2004.
DOI : 10.1172/JCI18330

J. M. Mcclung, A. N. Kavazis, K. C. Deruisseau, D. J. Falk, M. A. Deering et al., Caspase-3 Regulation of Diaphragm Myonuclear Domain during Mechanical Ventilation???induced Atrophy, American Journal of Respiratory and Critical Care Medicine, vol.175, issue.2, pp.150-159, 2007.
DOI : 10.1164/rccm.200601-142OC

L. Dalla-libera, B. Ravara, V. Gobbo, E. Tarricone, M. Vitadello et al., A transient antioxidant stress response accompanies the onset of disuse atrophy in human skeletal muscle, Journal of Applied Physiology, vol.107, issue.2, pp.549-57, 2009.
DOI : 10.1152/japplphysiol.00280.2009

K. Reich, Y. Chen, P. D. Thompson, E. P. Hoffman, and P. M. Clarkson, Forty-eight hours of unloading and 24 h of reloading lead to changes in global gene expression patterns related to ubiquitination and oxidative stress in humans, Journal of Applied Physiology, vol.109, issue.5, pp.1404-1415, 2010.
DOI : 10.1152/japplphysiol.00444.2010

J. Papaconstantinou, Insulin/IGF-1 and ROS signaling pathway cross-talk in aging and longevity determination, Molecular and Cellular Endocrinology, vol.299, issue.1, pp.29989-100, 2009.
DOI : 10.1016/j.mce.2008.11.025

P. A. Tesch, F. Von-walden, T. Gustafsson, R. M. Linnehan, and T. A. Trappe, Skeletal muscle proteolysis in response to short-term unloading in humans, Journal of Applied Physiology, vol.105, issue.3, pp.902-906, 2008.
DOI : 10.1152/japplphysiol.90558.2008

M. T. Webster, U. Manor, J. Lippincott-schwartz, and C. M. Fan, Intravital Imaging Reveals Ghost Fibers as Architectural Units Guiding Myogenic Progenitors during Regeneration, Cell Stem Cell, vol.18, issue.2, pp.243-252, 2016.
DOI : 10.1016/j.stem.2015.11.005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744135

P. Seale, L. A. Sabourin, A. Girgis-gabardo, A. Mansouri, P. Gruss et al., Pax7 Is Required for the Specification of Myogenic Satellite Cells, Cell, vol.102, issue.6, pp.777-786, 2000.
DOI : 10.1016/S0092-8674(00)00066-0

A. Otto, C. Schmidt, G. Luke, S. Allen, P. Valasek et al., Canonical Wnt signalling induces satellite-cell proliferation during adult skeletal muscle regeneration, Journal of Cell Science, vol.121, issue.17, pp.2939-2950, 2008.
DOI : 10.1242/jcs.026534

M. Murphy, A. Keefe, J. Lawson, S. Flygare, M. Yandell et al., Transiently Active Wnt/??-Catenin Signaling Is Not Required but Must Be Silenced for Stem Cell Function during Muscle Regeneration, Stem Cell Reports, vol.3, issue.3, pp.3475-88, 2014.
DOI : 10.1016/j.stemcr.2014.06.019

M. A. Frenette and . Rudnicki, Inhibition of JAK-STAT signaling stimulates adult satellite cell function, Nat. Med, vol.20, issue.10, pp.1174-81, 2014.

M. T. Tierney, T. Aydogdu, D. Sala, B. Malecova, S. Gatto et al., STAT3 signaling controls satellite cell expansion and skeletal muscle repair, Nature Medicine, vol.20, issue.10, pp.1182-1188, 2014.
DOI : 10.1038/nm.3656

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332844

I. M. Conboy and T. A. Rando, The Regulation of Notch Signaling Controls Satellite Cell Activation and Cell Fate Determination in Postnatal Myogenesis, Dev. Cell, vol.10, issue.2, pp.1-13, 2002.

T. Kitamoto and K. Hanaoka, Notch3 Null Mutation in Mice Causes Muscle Hyperplasia by Repetitive Muscle Regeneration, STEM CELLS, vol.15, issue.12, pp.2205-2216, 2010.
DOI : 10.1002/stem.547

L. Arnold, A. Henry, F. Poron, Y. Baba-amer, N. Van-rooijen et al., Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis, The Journal of Experimental Medicine, vol.148, issue.5, pp.1057-1069, 2007.
DOI : 10.1016/0022-1759(94)90012-4

URL : https://hal.archives-ouvertes.fr/inserm-00136917

J. G. Tidball, Inflammation in Skeletal Muscle Regeneration Advances i, no. Skeletal Muscle Repair and Regeneration, Skelet. Muscle Repair Regen, pp.243-268, 2008.

J. E. Heredia, L. Mukundan, F. M. Chen, A. A. Mueller, R. C. Deo et al., Type 2 Innate Signals Stimulate Fibro/Adipogenic Progenitors to Facilitate Muscle Regeneration, Cell, vol.153, issue.2, pp.376-388, 2013.
DOI : 10.1016/j.cell.2013.02.053

URL : http://doi.org/10.1016/j.cell.2013.02.053

D. Burzyn, W. Kuswanto, D. Kolodin, J. L. Shadrach, M. Cerletti et al., A Special Population of Regulatory T Cells Potentiates Muscle Repair, Cell, vol.155, issue.6, pp.1282-1295, 2013.
DOI : 10.1016/j.cell.2013.10.054

S. A. Villalta, W. Rosenthal, L. Martinez, A. Kaur, J. G. Tidball et al., Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy, Science Translational Medicine, vol.12, issue.3, pp.1-22, 2016.
DOI : 10.1186/1471-230X-12-97

S. P. Gadani, J. T. Walsh, J. Zheng, J. Kipnis, S. P. Gadani et al., The Glia-Derived Alarmin IL-33 Orchestrates the Immune Response and Promotes Recovery following CNS Injury, Neuron, vol.85, issue.4, pp.703-709, 2015.
DOI : 10.1016/j.neuron.2015.01.013

D. Kolodin, N. Van-panhuys, C. Li, A. M. Magnuson, D. Cipolletta et al., Antigen- and Cytokine-Driven Accumulation of Regulatory T Cells in Visceral Adipose Tissue of Lean Mice, Cell Metabolism, vol.21, issue.4, pp.543-557, 2015.
DOI : 10.1016/j.cmet.2015.03.005

K. K. Hak, S. L. Yong, U. Sivaprasad, A. Malhotra, and A. Dutta, Muscle-specific microRNA miR- 206 promotes muscle differentiation, J. Cell Biol, vol.174, issue.5, pp.677-687, 2006.

M. Cesana, D. Cacchiarelli, I. Legnini, T. Santini, O. Sthandier et al., A Long Noncoding RNA Controls Muscle Differentiation by Functioning as a Competing Endogenous RNA, Cell, vol.147, issue.2, pp.358-369, 2011.
DOI : 10.1016/j.cell.2011.09.028

J. Chen, E. Mandel, J. Thomson, Q. Wu, T. Callis et al., The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation, Nature Genetics, vol.132, issue.2, pp.38228-38261, 2006.
DOI : 10.1038/ng1725

J. Lu, T. A. Mckinsey, C. Zhang, and E. N. Olson, Regulation of Skeletal Myogenesis by Association of the MEF2 Transcription Factor with Class II Histone Deacetylases, Molecular Cell, vol.6, issue.2, pp.233-244, 2000.
DOI : 10.1016/S1097-2765(00)00025-3

T. Mckinsey, C. L. Zhang, J. Lu, and E. N. Olson, Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation, Nature, vol.408, issue.6808, pp.106-111, 2000.

R. Treisman, Identification and purification of a polypeptide that binds to the c-fos serum response element, EMBO J, vol.6, issue.9, p.2711, 1987.

R. Treisman and A. Klug, Identification and purification of a polypeptide that binds to the cfos serum response element, EMBO J, vol.6, issue.9, pp.2711-2717, 1987.

G. Posern and R. Treisman, Actin??? together: serum response factor, its cofactors and the link to signal transduction, Trends in Cell Biology, vol.16, issue.11, pp.588-596, 2006.
DOI : 10.1016/j.tcb.2006.09.008

R. Treisman, Inside the MADS box, Nature, vol.376, issue.6540, pp.376468-376477, 1995.
DOI : 10.1038/376468a0

G. Schratt, B. Weinhold, A. S. Lundberg, S. Schuck, J. R. Berger et al., Serum Response Factor Is Required for Immediate-Early Gene Activation yet Is Dispensable for Proliferation of, Embryonic Stem Cells, vol.21, issue.8, pp.2933-2943, 2001.

S. Bahrami and F. Drablos, Gene regulation in the immediate-early response process Advances in Biological Regulation, pp.37-49, 2016.

C. Gauthier-rouviere, M. Vandromme, D. Tuil, N. Lautredou, M. Morris et al., Expression and activity of serum response factor is required for expression of the muscle-determining factor MyoD in both dividing and differentiating mouse C2C12 myoblasts., Molecular Biology of the Cell, vol.7, issue.5, pp.719-729, 1996.
DOI : 10.1091/mbc.7.5.719

M. Soulez, D. Tuil, A. Kahn, and H. Gilgenkrantz, The Serum Response Factor (SRF) Is Needed for Muscle-Specific Activation of CArG Boxes, Biochemical and Biophysical Research Communications, vol.219, issue.2, pp.418-422, 1996.
DOI : 10.1006/bbrc.1996.0248

F. Miralles, G. Posern, A. I. Zaromytidou, and R. Treisman, Actin Dynamics Control SRF Activity by Regulation of Its Coactivator MAL, Cell, vol.113, issue.3, pp.329-342, 2003.
DOI : 10.1016/S0092-8674(03)00278-2

E. N. Olson and A. Nordheim, Linking actin dynamics and gene transcription to drive cellular motile functions, Nature Reviews Molecular Cell Biology, vol.9, issue.5, pp.353-365, 2010.
DOI : 10.1038/nrm2890

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073350

A. Sotiropoulos, D. Gineitis, J. Copeland, and R. Treisman, Signal-Regulated Activation of Serum Response Factor Is Mediated by Changes in Actin Dynamics, Cell, vol.98, issue.2, pp.159-169, 1999.
DOI : 10.1016/S0092-8674(00)81011-9

S. Yang, P. Shore, N. Willingham, J. H. Lakey, and A. D. Sharrocks, The mechanism of phosphorylation-inducible activation of the ETS-domain transcription factor Elk-1, The EMBO Journal, vol.18, issue.20, pp.5666-5674, 1999.
DOI : 10.1093/emboj/18.20.5666

G. Buchwalter, C. Gross, and B. Wasylyk, Ets ternary complex transcription factors, Gene, vol.324, issue.12, pp.1-14, 2004.
DOI : 10.1016/j.gene.2003.09.028

P. E. Shaw, H. Schröter, and A. Nordheim, The ability of a ternary complex to form over the serum response element correlates with serum inducibility of the human c-fos promoter, Cell, vol.56, issue.4, pp.563-572, 1989.
DOI : 10.1016/0092-8674(89)90579-5

M. A. Price, A. E. Rogers, and R. Treisman, Comparative analysis of the ternary complex factors Elk-i, SAP-la and SAP-2, Embo J, vol.14, issue.11, pp.2589-2601, 1995.

R. Hipskind, V. Roa, C. Muller, E. Raddy, and A. Nordheim, Ets-related protein Elk-1 is homologous to the c-fos regulatory factor p62TCF, Nature, vol.354, issue.6354, pp.354531-354535, 1991.
DOI : 10.1038/354531a0

A. Zaromytidou, F. Miralles, and R. Treisman, MAL and Ternary Complex Factor Use Different Mechanisms To Contact a Common Surface on the Serum Response Factor DNA-Binding Domain, Molecular and Cellular Biology, vol.26, issue.11, pp.4134-4182, 2006.
DOI : 10.1128/MCB.01902-05

R. Treisman, The SRE: a growth factor responsive transcriptional regulator, Semin Cancer Biol., p, vol.1, issue.1, pp.47-58, 1990.

A. Minty and L. Kedes, Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionarily conserved repeated motif., Molecular and Cellular Biology, vol.6, issue.6, pp.2125-2136, 1986.
DOI : 10.1128/MCB.6.6.2125

H. Ernst, K. Walsh, C. Harrison, and N. Rosenthal, The myosin light chain enhancer and the skeletal actin promoter share a binding site for factors involved in muscle-specific gene expression., Molecular and Cellular Biology, vol.11, issue.7, pp.3735-3779, 1991.
DOI : 10.1128/MCB.11.7.3735

G. C. Pipes, E. E. Creemers, and E. N. Olson, The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis, Genes & Development, vol.20, issue.12, pp.1545-1556, 2006.
DOI : 10.1101/gad.1428006

H. J. Klamut, S. B. Gangopadhyay, R. G. Worton, and P. N. Ray, Molecular and functional analysis of the muscle-specific promoter region of the Duchenne muscular dystrophy gene., Molecular and Cellular Biology, vol.10, issue.1, pp.193-205, 1990.
DOI : 10.1128/MCB.10.1.193

C. Charvet, C. Houbron, A. Parlakian, J. Giordani, C. Lahoute et al., New Role for Serum Response Factor in Postnatal Skeletal Muscle Growth and Regeneration via the Interleukin 4 and Insulin-Like Growth Factor 1 Pathways, Molecular and Cellular Biology, vol.26, issue.17, pp.6664-6674, 2006.
DOI : 10.1128/MCB.00138-06

M. Soulez, C. G. Rouviere, P. Chafey, D. Hentzen, M. Vandromme et al., Growth and differentiation of C2 myogenic cells are dependent on serum response factor., Molecular and Cellular Biology, vol.16, issue.11, pp.6065-6074, 1996.
DOI : 10.1128/MCB.16.11.6065

M. Vandromme, C. Gauthier-rouvière, G. Carnac, N. Lamb, and A. Fernandez, Serum response factor p67SRF is expressed and required during myogenic differentiation of both mouse C2 and rat L6 muscle cell lines, The Journal of Cell Biology, vol.118, issue.6, pp.1489-1500, 1992.
DOI : 10.1083/jcb.118.6.1489

C. Gauthier-rouviere, M. Vandromme, D. Tuil, N. Lautredou, M. Morris et al., Expression and activity of serum response factor is required for expression of the muscle-determining factor MyoD in both dividing and differentiating mouse C2C12 myoblasts., Molecular Biology of the Cell, vol.7, issue.5, pp.719-729, 1996.
DOI : 10.1091/mbc.7.5.719

S. Arsenian, B. Weinhold, M. Oelgeschläger, U. Rüther, and . Nordheim, Serum response factor is essential for mesoderm formation during mouse embryogenesis, The EMBO Journal, vol.54, issue.21, pp.6289-6299, 1998.
DOI : 10.1093/emboj/17.21.6289

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1170954

C. Charvet, C. Houbron, A. Parlakian, J. Giordani, C. Lahoute et al., New Role for Serum Response Factor in Postnatal Skeletal Muscle Growth and Regeneration via the Interleukin 4 and Insulin-Like Growth Factor 1 Pathways, Molecular and Cellular Biology, vol.26, issue.17, pp.6664-6674, 2006.
DOI : 10.1128/MCB.00138-06

C. Lahoute, A. Sotiropoulos, M. Favier, I. Guillet-deniau, C. Charvet et al., Premature Aging in Skeletal Muscle Lacking Serum Response Factor, PLoS ONE, vol.456, issue.12, p.3910, 2008.
DOI : 10.1371/journal.pone.0003910.t001

L. Collard, G. Herledan, A. Pincini, A. Guerci, V. Randrianarison-huetz et al., Nuclear actin and myocardin-related transcription factors control disuse muscle atrophy through regulation of Srf activity, Journal of Cell Science, vol.127, issue.24, pp.5157-5163, 2014.
DOI : 10.1242/jcs.155911

A. Parlakian, D. Tuil, G. Hamard, G. Tavernier, D. Hentzen et al., Targeted Inactivation of Serum Response Factor in the Developing Heart Results in Myocardial Defects and Embryonic Lethality, Molecular and Cellular Biology, vol.24, issue.12, pp.5281-5289, 2004.
DOI : 10.1128/MCB.24.12.5281-5289.2004

C. Lepper, S. J. Conway, and C. Fan, Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements, Nature, vol.22, issue.7255, pp.627-631, 2009.
DOI : 10.1038/nature08209

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767162

R. Sambasivan, B. Gayraud-morel, G. Dumas, C. Cimper, S. Paisant et al., Distinct Regulatory Cascades Govern Extraocular and Pharyngeal Arch Muscle Progenitor Cell Fates, Developmental Cell, vol.16, issue.6, pp.810-821, 2009.
DOI : 10.1016/j.devcel.2009.05.008

URL : https://hal.archives-ouvertes.fr/hal-00428975

P. Topilko, S. Schneider-maunoury, G. Levi, D. Trembleau, M. Gourdji et al., Multiple Pituitary and Ovarian Defects in Krox-24 (NGFI-A, Egr-1)-Targeted Mice, Molecular Endocrinology, vol.12, issue.1, pp.107-122, 1998.
DOI : 10.1210/me.12.1.107

F. Medja, S. Allouche, P. Frachon, C. Jardel, M. Malgat et al., Development and implementation of standardized respiratory chain spectrophotometric assays for clinical diagnosis, Mitochondrion, vol.9, issue.5, pp.331-339, 2009.
DOI : 10.1016/j.mito.2009.05.001

URL : https://hal.archives-ouvertes.fr/inserm-00516056

S. C. Bodine, V. K. Lai, L. Nunez, and B. A. Clarke, Skeletal Muscle Atrophy Identification of Ubiquitin Ligases Required for Skeletal Muscle Atrophy, Science, vol.80, issue.1704, pp.1704-1708, 2001.

H. Beck, K. Flynn, K. S. Lindenberg, H. Schwarz, F. Bradke et al., Serum Response Factor (SRF)-cofilin-actin signaling axis modulates mitochondrial dynamics, Proc. Natl. Acad. Sci, pp.2523-2555, 2012.
DOI : 10.1038/sj.emboj.7600543

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3458318

D. G. Hardie, AMPK: positive and negative regulation, and its role in whole-body energy homeostasis, Current Opinion in Cell Biology, vol.33, pp.1-7, 2014.
DOI : 10.1016/j.ceb.2014.09.004

W. J. Lee, M. Kim, H. S. Park, H. S. Kim, M. J. Jeon et al., AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPAR?? and PGC-1, Biochemical and Biophysical Research Communications, vol.340, issue.1, pp.291-295, 2006.
DOI : 10.1016/j.bbrc.2005.12.011

Z. Wu, P. Puigserver, U. Andersson, C. Zhang, G. Adelmant et al., Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1, Cell, vol.98, issue.1, pp.115-124, 1999.
DOI : 10.1016/S0092-8674(00)80611-X

B. G. Teodoro, I. H. Sampaio, L. H. Bomfim, A. L. Queiroz, L. R. Silveira et al., Long-chain acyl-CoA synthetase 6 regulates lipid synthesis and mitochondrial oxidative capacity in human and rat skeletal muscle, The Journal of Physiology, vol.21, issue.3, pp.1-27, 2016.
DOI : 10.1113/JP272962

J. S. Ju, A. S. Varadhachary, S. E. Miller, and C. C. , Quantitation of "autophagic flux" in mature skeletal muscle, Autophagy, vol.6, issue.7, pp.929-935, 2010.
DOI : 10.1083/jcb.200908115

M. Schneider, W. Mclellan, F. Black, and T. Parker, Growth factors, growth factor response elements, and the cardiac phenotype, Basic Res Cardiol, vol.87, issue.2, pp.33-48, 1992.
DOI : 10.1007/978-3-642-72477-0_4

S. M. Hindi, M. M. Tajrishi, and A. Kumar, Signaling Mechanisms in Mammalian Myoblast Fusion, Science Signaling, vol.285, issue.8, p.2, 2013.
DOI : 10.1074/jbc.M109.075606

S. J. Nowak, P. C. Nahirney, A. Hadjantonakis, and M. K. Baylies, Nap1-mediated actin remodeling is essential for mammalian myoblast fusion, Journal of Cell Science, vol.122, issue.18, pp.3282-3293, 2009.
DOI : 10.1242/jcs.047597

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736864

B. Knöll and A. Nordheim, Functional versatility of transcription factors in the nervous system: the SRF paradigm, Trends in Neurosciences, vol.32, issue.8, pp.32432-32474, 2009.
DOI : 10.1016/j.tins.2009.05.004

S. Kharbanda, A. Saleem, E. Rubin, V. Sukhatme, J. Blenis et al., Activation of the early growth response 1 gene and nuclear pp90rsk in human myeloid leukemia cells by 1-(beta-Darabinofuranosyl )cytosine, Biochemistry, issue.35, pp.329137-329179, 1993.

R. Mackinnon, G. Kannourakis, M. Wall, and L. Campbell, A cryptic deletion in 5q31.2 provides further evidence for a minimally deleted region in myelodysplastic syndromes, Cancer Genetics, vol.204, issue.4, pp.204187-94, 2011.
DOI : 10.1016/j.cancergen.2011.02.001

J. M. Brown, K. Nemeth, N. M. Kushnir-sukhov, D. D. Metcalfe, and E. Mezey, Bone marrow stromal cells inhibit mast cell function via a COX2-dependent mechanism, Clinical & Experimental Allergy, vol.6, issue.4, pp.526-534, 2011.
DOI : 10.1111/j.1365-2222.2010.03685.x

J. Li, J. Zhou, D. Zhang, Y. Song, J. She et al., PI3K/AKT signalling to reduce the severity of ischaemia/reperfusion-induced lung injury, Journal of Cellular and Molecular Medicine, vol.9, issue.10, pp.2341-2351, 2015.
DOI : 10.1111/jcmm.12638

U. Philippar, G. Schratt, C. Dieterich, J. M. Müller, P. Galgóczy et al., The SRF Target Gene Fhl2 Antagonizes RhoA/MAL-Dependent Activation of SRF, Molecular Cell, vol.16, issue.6, pp.867-880, 2004.
DOI : 10.1016/j.molcel.2004.11.039

J. S. Hinson, M. D. Medlin, J. M. Taylor, and C. P. Mack, Regulation of myocardin factor protein stability by the LIM-only protein FHL2, AJP: Heart and Circulatory Physiology, vol.295, issue.3, pp.1067-1075, 2008.
DOI : 10.1152/ajpheart.91421.2007

M. Shibanuma, J. Mashimo, T. Kuroki, and K. Nose, Characterization of the TGF beta 1- inducible hic-5 gene that encodes a putative novel zinc finger protein and its possible involvement in cellular senescence, J. Biol. Chem, vol.269, issue.43, pp.26767-26774, 1994.

S. M. Thomas, M. Hagel, and C. E. Turner, Characterization of a focal adhesion protein, Hic-5, that shares extensive homology with paxillin, J. Cell Sci, vol.112, pp.181-190, 1999.

X. Wang, G. Hu, C. Betts, E. Y. Harmon, R. S. Keller et al., Transforming growth factor-béta1-induced transcript 1 protein, a novel marker for smooth muscle contractile phenotype, is regulated by serum response factor/myocardin protein, J

J. Kim-kaneyama, W. Suzuki, K. Ichikawa, T. Ohki, Y. Kohno et al., Uni-axial stretching regulates intracellular localization of Hic-5 expressed in smooth-muscle cells in vivo, Journal of Cell Science, vol.118, issue.5, pp.937-949, 2005.
DOI : 10.1242/jcs.01683

N. Nishiya, Y. Iwabuchi, M. Shibanuma, J. F. Côté, M. L. Tremblay et al., Hic-5, a Paxillin Homologue, Binds to the Protein-tyrosine Phosphatase PEST (PTP-PEST) through Its LIM 3 Domain, Journal of Biological Chemistry, vol.274, issue.14, pp.9847-9853, 1999.
DOI : 10.1074/jbc.274.14.9847

E. Yund, J. Hill, and R. Keller, Hic-5 is required for fetal gene expression and cytoskeletal organization of neonatal cardiac myocytes, Journal of Molecular and Cellular Cardiology, vol.47, issue.4, pp.47520-47527, 2009.
DOI : 10.1016/j.yjmcc.2009.06.006

Y. Wang, Z. Zhang, H. Shen, Y. Lu, H. Li et al., TGF-??1/Smad7 Signaling Stimulates Renal Tubulointerstitial Fibrosis Induced by AAI, Journal of Receptors and Signal Transduction, vol.9, issue.4, pp.413-428, 2008.
DOI : 10.1097/01.ASN.0000014252.37680.E4

X. Yuan, L. Liu, Q. Fu, and C. Wang, Effects of Ligustrazine on Ureteral Obstruction-induced Renal Tubulointerstitial Fibrosis, Phytotherapy Research, vol.20, issue.5, pp.697-703, 2011.
DOI : 10.1002/ptr.3630

L. B. Bindels and N. M. Delzenne, Muscle wasting: The gut microbiota as a new therapeutic target?, The International Journal of Biochemistry & Cell Biology, vol.45, issue.10, pp.2186-2190, 2013.
DOI : 10.1016/j.biocel.2013.06.021

N. Mizushima and T. Yoshimori, How to Interpret LC3 Immunoblotting, Autophagy, vol.3, issue.6, pp.542-545, 2007.
DOI : 10.4161/auto.4600

K. Sakuma and A. Yamaguchi, Serum Response Factor (SRF)-Dependent Signaling in Regenerating, Hypertrophied, and Pahological Skeletal Muscle, Front. Pathol. Genet, vol.1, issue.1, pp.1-8, 2013.

G. Schratt, U. Philippar, J. Berger, H. Schwarz, O. Heidenreich et al., Serum response factor is crucial for actin cytoskeletal organization and focal adhesion assembly in embryonic stem cells, The Journal of Cell Biology, vol.125, issue.4, pp.737-750, 2002.
DOI : 10.1161/01.RES.82.5.566

P. K. Mattila and P. Lappalainen, Filopodia: molecular architecture and cellular functions, Nature Reviews Molecular Cell Biology, vol.19, issue.6, pp.446-454, 2008.
DOI : 10.1038/nrm2406

E. Chen, Invasive Podosomes and Myoblast Fusion, pp.235-58, 2011.
DOI : 10.1016/B978-0-12-385891-7.00010-6

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4373657

S. H. Xiaozhong, K. M. Bowlin, and D. J. Garry, Fhl2 interacts with foxk1 and corepresses foxo4 activity in myogenic progenitors, Stem Cells, vol.28, issue.3, pp.462-469, 2010.

Z. L. Gao, R. Deblis, H. Glenn, and L. M. Schwartz, Differential roles of HIC-5 isoforms in the regulation of cell death and myotube formation during myogenesis, Experimental Cell Research, vol.313, issue.19, pp.4000-4014, 2007.
DOI : 10.1016/j.yexcr.2007.05.023

B. Blaauw and C. Reggiani, The role of satellite cells in muscle hypertrophy, Journal of Muscle Research and Cell Motility, vol.93, issue.1, pp.3-10, 2014.
DOI : 10.1007/s10974-014-9376-y

H. Yin, F. Price, and M. A. Rudnicki, Satellite Cells and the Muscle Stem Cell Niche, Physiological Reviews, vol.93, issue.1, pp.23-67, 2013.
DOI : 10.1152/physrev.00043.2011

N. A. Dumont, Y. X. Wang, and M. A. Rudnicki, Intrinsic and extrinsic mechanisms regulating satellite cell function, Development, vol.142, issue.9, pp.1572-1581, 2015.
DOI : 10.1242/dev.114223

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419274

I. Moretti, S. Ciciliot, K. A. Dyar, R. Abraham, M. Murgia et al., MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity, MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity, p.12397, 2016.
DOI : 10.1038/ncomms12397

URL : https://hal.archives-ouvertes.fr/hal-01438131

A. E. Almada and A. J. Wagers, Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease, Nature Reviews Molecular Cell Biology, vol.113, issue.5, pp.267-279, 2016.
DOI : 10.1016/j.stem.2014.12.004

C. Lepper, T. A. Partridge, and C. Fan, An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration, Development, vol.138, issue.17, pp.3639-3646, 2011.
DOI : 10.1242/dev.067595

R. Sambasivan, R. Yao, A. Kissenpfennig, L. Van-wittenberghe, A. Paldi et al., Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration, Development, vol.138, issue.19, pp.4333-4333, 2011.
DOI : 10.1242/dev.073601

URL : https://hal.archives-ouvertes.fr/hal-00667781

C. Esnault, A. Stewart, F. Gualdrini, P. East, S. Horswell et al., Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts, Genes & Development, vol.28, issue.9, pp.943-958, 2014.
DOI : 10.1101/gad.239327.114

J. M. Miano, X. Long, and K. Fujiwara, Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus, AJP: Cell Physiology, vol.292, issue.1, pp.70-81, 2007.
DOI : 10.1152/ajpcell.00386.2006

A. L. 'honore, V. Rana, N. Arsic, C. Franckhauser, N. J. Lamb et al., Identification of a new hybrid serum response factor and myocyte enhancer factor 2-binding element in MyoD enhancer required for MyoD expression during myogenesis, Mol. Biol. Cell, vol.18, issue.6, 1992.

L. Collard, G. Herledan, A. Pincini, A. Guerci, V. Randrianarison-huetz et al., Nuclear actin and myocardin-related transcription factors control disuse muscle atrophy through regulation of Srf activity, Journal of Cell Science, vol.127, issue.24, pp.5157-5163, 2014.
DOI : 10.1242/jcs.155911

A. Parlakian, C. Charvet, B. Escoubet, M. Mericskay, J. D. Molkentin et al., Temporally Controlled Onset of Dilated Cardiomyopathy Through Disruption of the SRF Gene in Adult Heart, Circulation, vol.112, issue.19, pp.2930-2939, 2005.
DOI : 10.1161/CIRCULATIONAHA.105.533778

URL : https://hal.archives-ouvertes.fr/hal-00068383

P. Gunning, P. Ponte, H. Blau, and L. Kedes, alpha-skeletal and alpha-cardiac actin genes are coexpressed in adult human skeletal muscle and heart., Molecular and Cellular Biology, vol.3, issue.11, pp.1985-1995, 1983.
DOI : 10.1128/MCB.3.11.1985

B. M. Paterson and J. D. Eldridge, alpha-Cardiac actin is the major sarcomeric isoform expressed in embryonic avian skeletal muscle, Science, vol.224, issue.4656, pp.1436-1438, 1984.
DOI : 10.1126/science.6729461

S. G. Martin, Role and organization of the actin cytoskeleton during cell-cell fusion, Seminars in Cell & Developmental Biology, vol.60, 2016.
DOI : 10.1016/j.semcdb.2016.07.025

D. Segal, N. Dhanyasi, E. D. Schejter, and B. Shilo, Adhesion and Fusion of Muscle Cells Are Promoted by Filopodia, Developmental Cell, vol.38, issue.3, pp.291-304, 2016.
DOI : 10.1016/j.devcel.2016.07.010

E. Vasyutina, B. Martarelli, C. Brakebusch, H. Wende, and C. Birchmeier, The small G-proteins Rac1 and Cdc42 are essential for myoblast fusion in the mouse, Proc. Natl. Acad. Sci, pp.8935-8940, 2009.
DOI : 10.1016/S0960-9822(02)01069-2

F. Le-grand, R. Grifone, P. Mourikis, C. Houbron, C. Gigaud et al., Six1 regulates stem cell repair potential and self-renewal during skeletal muscle regeneration, The Journal of Cell Biology, vol.12, issue.5, pp.815-832, 2012.
DOI : 10.1083/jcb.200312007

D. Montarras, J. Morgan, C. Collins, F. Relaix, S. Zaffran et al., Direct Isolation of Satellite Cells for Skeletal Muscle Regeneration, Science, vol.309, issue.5743, pp.2064-2067, 2005.
DOI : 10.1126/science.1114758

URL : https://hal.archives-ouvertes.fr/pasteur-00181349

S. E. Gordon, M. Flück, and F. W. Booth, Selected Contribution: Skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent, J. Appl. Physiol, vol.90, issue.1165, pp.1174-1183, 1985.

H. Koegel, L. Von-tobel, M. Schäfer, S. Alberti, E. Kremmer et al., Loss of serum response factor in keratinocytes results in hyperproliferative skin disease in mice, Journal of Clinical Investigation, vol.119, issue.4, pp.899-910, 2009.
DOI : 10.1172/JCI37771DS1

K. Sun, M. A. Battle, R. P. Misra, and S. A. Duncan, Hepatocyte expression of serum response factor is essential for liver function, hepatocyte proliferation and survival, and postnatal body growth in mice, Hepatology, vol.16, issue.Suppl 2, pp.1645-1654, 2009.
DOI : 10.1002/hep.22834

D. Werth, G. Grassi, N. Konjer, B. Dapas, R. Farra et al., Proliferation of human primary vascular smooth muscle cells depends on serum response factor, European Journal of Cell Biology, vol.89, issue.2-3, pp.2-3, 2010.
DOI : 10.1016/j.ejcb.2009.12.002

B. K. Cenik, N. Liu, B. Chen, S. Bezprozvannaya, E. N. Olson et al., Myocardin-related transcription factors are required for skeletal muscle development, Development, vol.143, issue.15, pp.2853-2861, 2016.
DOI : 10.1242/dev.135855

M. H. Mokalled, A. N. Johnson, E. E. Creemers, and E. N. Olson, MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration, Genes & Development, vol.26, issue.2, pp.190-202, 2012.
DOI : 10.1101/gad.179663.111

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273842

G. Schratt, B. Weinhold, A. S. Lundberg, S. Schuck, J. Berger et al., Serum Response Factor Is Required for Immediate-Early Gene Activation yet Is Dispensable for Proliferation of Embryonic Stem Cells, Molecular and Cellular Biology, vol.21, issue.8, pp.2933-2943, 2001.
DOI : 10.1128/MCB.21.8.2933-2943.2001

E. E. Creemers, L. B. Sutherland, J. Oh, A. C. Barbosa, and E. N. Olson, Coactivation of MEF2 by the SAP Domain Proteins Myocardin and MASTR, Molecular Cell, vol.23, issue.1, pp.83-96, 2006.
DOI : 10.1016/j.molcel.2006.05.026

S. M. Meadows, A. S. Warkman, M. C. Salanga, E. M. Small, and P. A. Krieg, The myocardinrelated transcription factor, MASTR, cooperates with MyoD to activate skeletal muscle gene expression, Proc. Natl. Acad. Sci, pp.1545-1550, 2008.

S. Li, M. P. Czubryt, J. Mcanally, R. Bassel-duby, J. A. Richardson et al., Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice, Proceedings of the National Academy of Sciences, vol.15, issue.3, pp.1082-1087, 2005.
DOI : 10.1096/fj.00-026com

J. M. Miano, N. Ramanan, M. A. Georger, K. L. De-mesy-bentley, R. L. Emerson et al., Restricted inactivation of serum response factor to the cardiovascular system, Proceedings of the National Academy of Sciences, vol.100, issue.12, pp.17132-17137, 2004.
DOI : 10.1073/pnas.1232341100

A. Nordheim, SRF regulation ??? actin branches out, Nature Reviews Molecular Cell Biology, vol.156, issue.6, pp.368-368, 2014.
DOI : 10.1038/nrm3803

B. V. Latinki?, B. Cooper, N. Towers, D. Sparrow, S. Kotecha et al., Distinct Enhancers Regulate Skeletal and Cardiac Muscle-Specific Expression Programs of the Cardiac ??-Actin Gene in Xenopus Embryos, Developmental Biology, vol.245, issue.1, pp.57-70, 2002.
DOI : 10.1006/dbio.2002.0639

B. Ilkovski, S. Clement, C. Sewry, K. N. North, and S. T. Cooper, Defining ??-skeletal and ??-cardiac actin expression in human heart and skeletal muscle explains the absence of cardiac involvement in ACTA1 nemaline myopathy, Neuromuscular Disorders, vol.15, issue.12, pp.829-835, 2005.
DOI : 10.1016/j.nmd.2005.08.004

J. H. Kim, Y. Ren, W. P. Ng, S. Li, S. Son et al., Mechanical Tension Drives Cell Membrane Fusion, Developmental Cell, vol.32, issue.5, pp.561-573, 2015.
DOI : 10.1016/j.devcel.2015.01.005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357538

T. H. Tran, X. Shi, J. Zaia, and X. Ai, Heparan Sulfate 6-O-endosulfatases (Sulfs) Coordinate the Wnt Signaling Pathways to Regulate Myoblast Fusion during Skeletal Muscle Regeneration, Journal of Biological Chemistry, vol.287, issue.39, pp.32651-32664, 2012.
DOI : 10.1074/jbc.M112.353243

A. C. Callan-jones and R. Voituriez, Actin flows in cell migration: from locomotion and polarity to trajectories, Current Opinion in Cell Biology, vol.38, pp.12-17, 2016.
DOI : 10.1016/j.ceb.2016.01.003

K. Swärd, K. G. Stenkula, C. Rippe, A. Alajbegovic, M. F. Gomez et al., Emerging roles of the myocardin family of proteins in lipid and glucose metabolism, The Journal of Physiology, vol.62, issue.17, 2016.
DOI : 10.1113/JP271913

J. Blondelle, Y. Ohno, V. Gache, S. Guyot, S. Storck et al., , a regulator of membrane composition and fluidity, promotes myoblast fusion and skeletal muscle growth, Journal of Molecular Cell Biology, vol.7, issue.5, pp.429-440, 2015.
DOI : 10.1093/jmcb/mjv049

D. Montarras, A. , and M. Buckingham, Lying low but ready for action: the quiescent muscle satellite cell, FEBS Journal, vol.482, issue.17, pp.4036-4050, 2013.
DOI : 10.1111/febs.12372

C. S. Fry, J. D. Lee, J. R. Jackson, T. J. Kirby, S. A. Stasko et al., Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy, The FASEB Journal, vol.28, issue.4, pp.1654-1665, 2014.
DOI : 10.1096/fj.13-239426