CONTRIBUTION A UNE SYLVICULTURE DU PIN LARICIO (Pinus nigra subsp laricio, Maire) COMPATIBLE AVEC LA CONSERVATION DE LA SITTELLE CORSE (Sitta whiteheadi, Sharpe 1884).

Fabrice Torre

To cite this version:

Fabrice Torre. CONTRIBUTION A UNE SYLVICULTURE DU PIN LARICIO (Pinus nigra subsp laricio, Maire) COMPATIBLE AVEC LA CONSERVATION DE LA SITTELLE CORSE (Sitta whiteheadi, Sharpe 1884). Biodiversité et Ecologie. 2014. <hal-01492160>

soutenu le 3 novembre 2014 devant le jury suivant :

M. CARCAILLET Christopher - Président
M. BESNARD Aurélien - Tuteur scientifique
M. PRODON Roger - Tuteur pédagogique
M. RICHARD Franck - Rapporteur
M. DRAPEAU Pierre - Examineur
M. THIBAUT Jean-Claude - Examineur

Mémoire préparé sous la direction de :
M. PRODON Roger
Laboratoire de Biogéographie et Ecologie des Vertébrés, Directeur : M. MIAUD Claude.
Et de
M. BESNARD Aurélien
Laboratoire de Biogéographie et Ecologie des Vertébrés, Directeur : M. MIAUD Claude.
EPHE (Sciences de la Vie et de la Terre)
REMERCIEMENTS

Ce travail n’aurait pu voir le jour sans l’initiative de Jean-Claude Thibault, infatigable défenseur des oiseaux des îles à qui la Corse doit un travail immense dans ce domaine, ni l’appui de Roger Prodon, scientifique régulièrement présent en Corse, de longtemps connaisseur de son avifaune et enfin, les judicieux (et rigoureux) conseils en statistiques d’Aurélien Besnard, maître es plans d’échantillonnage et analyses complexes.

Je tiens aussi à remercier l’Office national des forêts qui m’aura permis d’accéder à ses précieuses données, et en particulier Louis Olivier son directeur régional, soucieux d’un suivi scientifique des forêts dont il assure la gestion, toute l’équipe du Service aménagement des forêts qui a toujours répondu à mes nombreuses (et parfois pénibles) sollicitations :

- Denis Soulé, promoteur de la démarche typologique des inventaires préalables aux aménagements forestiers, qui a suivi cette étude avec intérêt en prodiguant certains conseils avisés. Artisan principal des documents stratégiques de gestion de l’ONF, la forêt publique corse lui est redevable des méthodes de gestion les plus en pointe ;
- Claire Vescovali, Gisèle Fanget, Hélène Schabaver, Muriel Tiger, Nicolas Pettini et Achille Pioli, pour leur disponibilité et leurs réponses à mes questions sur les forêts qu’ils ont aménagées;
- Cathy Ori pour l’accès à la documentation de l’ONF ; Santa pour son implication dans le dossier des coupes.
- Julien Madary et Laurent Riche pour nos échanges de données et de méthodes entre sigistes ;

Une mention particulière à Sandra Guy pour avoir suivi mes (longues) pérégrinations avec abnégation et professionnalisme.

Je souhaite toujours remercier ici Eric Bruno, qui a récemment quitté l’Inventaire forestier national, mais sans qui je n’aurai pu accéder à ses données. C’est avec plaisir que je le reverrai à la soutenance à Montpellier. Merci aussi à Philippe Dreyfus qui a quitté l’INRA mais grâce à qui j’ai pu bénéficier d’informations sur les modèles de simulation de croissance comme Capsis dont il a été l’un des promoteurs.

Merci encore à l’équipe du groupe ornithologique de Corse pour nos rencontres, à Pasquale Moneglia qui m’a permis d’accéder à ses travaux dont sa thèse et qui a bien voulu me communiquer certaines de ses données, à Gilles Faggio pour les conversations au cours des longs co-voiturages de Corse à Montpellier pour assister aux cours de l’EPHE, à Jean-François Seguin, du Parc naturel régional qui, depuis, suit un plus grand voilier, le Gypaète barbu.

Je souhaite avoir un souvenir pour Félix Paolacci qui nous a quittés il y a peu. Forestier passionné, il fut ingénieur de subdivision à Corte, et, confronté aux prémisses des revendications écologiques, il ne les a pas ignorées. Un autre pour Charles Beretti, technicien de l’ONF à la retraite, avec qui, jeune ingénieur j’ai plus appris sur la forêt qu’à l’école forestière. Un enfin pour Antoine Simeoni, ancien président du Centre régional de la propriété forestière, fervent défenseur de la forêt qui a mené un difficile combat contre l’usage du feu pastoral lorsque celui-ci ne servait qu’à encaisser des primes à la vache et qui veille encore sur les reboisements de son domaine de Luzzibeu.

Une pensée pour feu mon père qui m’a incité à venir travailler en Corse, une Corse qu’il voyait avec les yeux de la diaspora, une pour ma mère qui a supporté sa perte et s’est régulièrement inquiétée de l’avancement de ce travail, une pour mes tantes qui vieillissent tout doucement à Cuttoli-Corticchiato et restent toujours autant généreuses avec la famille que lorsque j’ai débarqué dans l’île (il y a longtemps).

Merci à mes frères Claude et Jean-Paul pour la relecture de ce mémoire et leurs conseils avisés et à Daniel et Christian qui doivent toujours se demander pourquoi je me suis lancé dans cette aventure à mon âge.

Enfin, beaucoup de remerciements à mes deux enfants Juliette et Matteu, dont j’ai sacrifié un temps certain d’activités ludiques que nous aurions pu partager au profit de cette étude. J’espère qu’adultes, ils entendront encore, avec les leurs, le chant de la sittelle corse en forêt de pins laricii.
TABLE DES MATIERES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE DES MATIERES</td>
<td>1</td>
</tr>
<tr>
<td>LISTE DES FIGURES</td>
<td>3</td>
</tr>
<tr>
<td>LISTE DES TABLEAUX</td>
<td>5</td>
</tr>
<tr>
<td>LISTE DES VARIABLES</td>
<td>8</td>
</tr>
<tr>
<td>GLOSSAIRE</td>
<td>11</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>25</td>
</tr>
<tr>
<td>2 LA SITTELLE CORSE</td>
<td>27</td>
</tr>
<tr>
<td>2.1 DESCRIPTION ET TAXONOMIE</td>
<td>27</td>
</tr>
<tr>
<td>2.2 DISTRIBUTION GEOGRAPHIQUE</td>
<td>28</td>
</tr>
<tr>
<td>2.3 EFFECTIF</td>
<td>29</td>
</tr>
<tr>
<td>2.4 HABITAT</td>
<td>29</td>
</tr>
<tr>
<td>2.5 BIOLOGIE</td>
<td>30</td>
</tr>
<tr>
<td>2.5.1 Alimentation</td>
<td>30</td>
</tr>
<tr>
<td>2.5.2 Reproduction</td>
<td>31</td>
</tr>
<tr>
<td>2.6 STATUT DE PROTECTION</td>
<td>32</td>
</tr>
<tr>
<td>3 LES FORETS ETUDEES</td>
<td>32</td>
</tr>
<tr>
<td>3.1 DESCRIPTION ET GESTION DU MASSIF D’AITONE-VALDUNIELLU</td>
<td>33</td>
</tr>
<tr>
<td>3.1.1 La forêt territoriale d’Aitone</td>
<td>33</td>
</tr>
<tr>
<td>3.1.2 La forêt territoriale de Valduniellu</td>
<td>34</td>
</tr>
<tr>
<td>3.2 DESCRIPTION ET GESTION DU MASSIF DE ROSPA-SORBA</td>
<td>34</td>
</tr>
<tr>
<td>3.2.1 La forêt territoriale de Rospa-Sorba</td>
<td>35</td>
</tr>
<tr>
<td>3.2.2 La forêt communale de Rospigliani</td>
<td>35</td>
</tr>
<tr>
<td>3.2.3 La forêt communale de Noceta</td>
<td>36</td>
</tr>
<tr>
<td>3.2.4 La forêt communale de Vezzani (montagne)</td>
<td>36</td>
</tr>
<tr>
<td>4 LA METHODOLOGIE</td>
<td>38</td>
</tr>
<tr>
<td>4.1 LES DONNEES « SITTELLE »</td>
<td>38</td>
</tr>
<tr>
<td>4.1.1 Massif forestier d’Aitone-Valduniellu</td>
<td>38</td>
</tr>
<tr>
<td>4.1.2 Massif forestier de Rospa-Sorba</td>
<td>38</td>
</tr>
<tr>
<td>4.2 LES DONNEES « FORETS »</td>
<td>38</td>
</tr>
<tr>
<td>4.2.1 Données cartographiques et typologies correspondantes</td>
<td>38</td>
</tr>
<tr>
<td>4.2.1.1 Données de l’Inventaire forestier national (IFN)</td>
<td>38</td>
</tr>
<tr>
<td>4.2.1.2 Données de l’Office national des forêts (ONF)</td>
<td>39</td>
</tr>
<tr>
<td>4.2.2 Données des placettes dendrométriques et variables correspondantes</td>
<td>41</td>
</tr>
<tr>
<td>4.2.2.1 Données provenant du dispositif Villard dans le massif d’Aitone-Valduniellu</td>
<td>41</td>
</tr>
<tr>
<td>4.2.2.2 Données provenant des inventaires préalables aux aménagements de l’ONF procédant de la nouvelle méthodologie</td>
<td>42</td>
</tr>
<tr>
<td>4.2.3 Autres données utilisées</td>
<td>45</td>
</tr>
<tr>
<td>4.3 METHODES SIG (SYSTEME D’INFORMATION GEOGRAPHIQUE) ET LOGICIELS UTILISES</td>
<td>45</td>
</tr>
<tr>
<td>4.3.1 Massif forestier d’Aitone-Valduniellu</td>
<td>45</td>
</tr>
<tr>
<td>4.3.2 Massif forestier de Rospa-Sorba</td>
<td>46</td>
</tr>
<tr>
<td>4.4 METHODES STATISTIQUES ET LOGICIELS UTILISES</td>
<td>46</td>
</tr>
<tr>
<td>4.4.1 Massif forestier d’Aitone-Valduniellu</td>
<td>46</td>
</tr>
<tr>
<td>4.4.2 Massif forestier de Rospa-Sorba</td>
<td>48</td>
</tr>
<tr>
<td>5 LES ANALYSES ET LES RESULTATS</td>
<td>49</td>
</tr>
<tr>
<td>5.1 LE MASSIF FORESTIER D’AITONE-VALDUNIELLU</td>
<td>49</td>
</tr>
<tr>
<td>5.1.1 Comparaison des variables qualitatives</td>
<td>49</td>
</tr>
<tr>
<td>5.1.2 Comparaison des variables quantitatives</td>
<td>51</td>
</tr>
<tr>
<td>5.1.2.1 Comparaison des échantillons absence/présence</td>
<td>52</td>
</tr>
<tr>
<td>5.1.2.2 Analyse en composantes principales</td>
<td>53</td>
</tr>
<tr>
<td>5.1.2.3 Classifications</td>
<td>54</td>
</tr>
<tr>
<td>5.1.2.4 Comparaison des objets centraux des deux classifications</td>
<td>57</td>
</tr>
<tr>
<td>5.1.2.5 Régression logistique</td>
<td>58</td>
</tr>
</tbody>
</table>

Mémoire EPHE-SVT- TORRE 1/114
5.1.3 Répartition de la sittelle à l’échelle du massif forestier
5.1.3.1 Comparaison des placettes avec nid entre forêts.
5.1.3.2 Distribution en fonction des types de peuplements IFN
5.1.3.3 Distribution en fonction des types de peuplement ONF
5.1.3.4 Analyse de territoires pré-établis selon le calcul de Voronoï
5.1.3.5 Analyse des coupes passées

5.1.4 Premières conclusions

5.2 LE MASSIF FORESTIER DE ROSPA-SORBA
5.2.1 Analyses à partir des placettes dendrométriques les plus proches
5.2.1.1 Analyse à partir des variables quantitatives moyennes des 4 placettes typologiques les plus proches
5.2.1.2 Analyse en composantes principales suivie d’une analyse discriminante
5.2.1.3 Analyse à partir des variables qualitatives
5.2.2 Modèles de régression logistiques présence/absence
5.2.2.1 Application du modèle de régression logistique calculé pour le massif d’Aitone-Valdueniello
5.2.2.2 Modèle logistique absence/présence issu des données de la forêt de Rospa-Sorba
5.2.3 Recherche de l’influence du type de tige de Pin laricio à partir de l’analyse de territoires pré-établis selon le calcul de Voronoï
5.2.4 Analyse géostatistique de la distribution de la sittelle par la méthode du plus proche voisin
5.2.5 Recherche de l’influence du type de structure du peuplement à l’aide des méthodes d’estimation à partir d’observations ponctuelles (krigeage)

6 DISCUSSION

6.1 SYNTHESE DES RESULTATS
6.1.1 Résultats des études sur le massif d’Aitone-Valdueniello
6.1.2 Résultats des études sur le massif de Rospa-Sorba

6.2 SITTA WHITEHEADI VS SITTA CANADENSIS
6.2.1 Habitats
6.2.2 Alimentation
6.2.3 Comportement social
6.2.4 Reproduction
6.2.5 Statut de protection
6.2.6 Gestion de l’habitat de la sittelle à poitrine rousse

6.3 RECOMMANDATIONS POUR UNE GESTION FORESTIERE COMPATIBLE AVEC LA CONSERVATION DE LA SITTELLE CORSE
6.3.1 De la cueillette d’arbres à l’industrie du bois
6.3.2 Conserver des arbres morts debout et/ou à trous de pics
6.3.3 Maintenir des gros pins laricio
6.3.3.1 Validation des résultats à l’échelle du territoire de la sittelle
6.3.3.2 Discussion autour d’un exemple de mesures de conservation de gros bois prises par l’ONF
6.3.3.3 Généralisation aux échelles plus petites
6.3.4 Favoriser une structure irrégulière des peuplements
6.3.5 Stratégie de gestion à l’échelle du massif
6.3.6 Stratégie de gestion à l’échelle régionale

6.4 PERSPECTIVES A COURT TERME
6.4.1 Affiner les modèles de régression logistique absence-présence de la sittelle
6.4.2 Étendre la connaissance des variables indicatrices de la présence de sittelle à l’ensemble des zones de production des massifs forestiers à Pin laricio
6.4.3 Mieux connaître la relation âge-diamètre du Pin laricio
6.4.4 Compléter les inventaires en séries autres que production
6.4.5 Mieux cerner le comportement de la sittelle hors période de reproduction
6.4.6 Mieux appréhender l’histoire des forêts corses

6.5 PERSPECTIVES A MOYEN TERME
6.5.1 Mettre en place un réseau de placettes typologiques permanentes
6.5.2 Redynamiser le réseau de réserves biologiques forestières
6.5.3 Gérer durablement les zones de protection spéciales
6.5.4 Expérimenter les techniques de gestion en vraie grandeur

7 BIBLIOGRAPHIE

ANNEXES
LISTE DES FIGURES

Figure 1.1 Photo de la chouette tachetée ... 25
Figure 1.2 Carte de localisation de la chouette tachetée du Nord des États-Unis (Source: Wikipedia® Creative Commons) ... 25
Figure 2.1 Distribution géographique des sittelles du groupe canadensis (Pasquet, 1998) .. 28
Figure 2.2 Arbres phylogénétiques des sittelles du groupe canadensis (Pasquet, 1998) .. 28
Figure 2.3 Aire de répartition de Sitta whiteheadi : En bleu : l’aire du pin laricio décrite par l’Inventaire forestier national (1988). Les points noirs : « centroides » des fragments abritant des sittelles (Sources : ONF base de données naturaliste, Thibault, et al., 2011). .. 28
Figure 2.4 Probabilité de présence de la sittelle en fonction du diamètre du plus grand pin. Source : (Villard, et al., 2014) .. 29
Figure 2.5 Présence de la sittelle en fonction des ... 29
Figure 3.1 Carte de localisation des massifs forestiers étudiés ... 32
Figure 3.2 Carte de localisation des forêts d’Aitone et de Valdunielli ... 33
Figure 3.3 Carte de localisation des forêts de Rospa-Sorba, Noceta, Rospigliani et Vezzani 34
Figure 4.1 Carte de localisation des placettes du dispositif expérimental de P. Villard & al. FT Aitone & Valdunielli. ... 41
Figure 5.1 Présence de la sittelle en fonction des ... 25
Figure 5.2 Schéma de la placette 190 objet central de la classe 1 des placettes sans nid (22) - progiciel SVS/USDA. .. 55
Figure 5.3 Schéma de la placette 69, objet central de la classe 2 des placettes sans nid (34) - progiciel SVS/USDA. .. 55
Figure 5.4 Schéma de la placette 26, objet central de la classe 3 des placettes sans nid (37) - progiciel SVS/USDA. .. 55
Figure 5.5 Schéma de la placette 69, objet central de la classe 2 des placettes sans nid (34) - progiciel SVS/USDA. .. 55
Figure 5.6 Schéma de la placette 26, objet central de la classe 3 des placettes sans nid (37) - progiciel SVS/USDA. .. 55
Figure 5.7 Légende des essences figurées par le progiciel SVS/USDA. .. 55
Figure 5.8 Répartition des placettes avec nid par classe .. 55
Figure 5.9 Schéma de la placette 121 objet central de la classe 1 des placettes sans nid (25) - progiciel SVS/USDA. .. 57
Figure 5.10 Schéma de la placette 55, objet central de la classe 3 des placettes avec nid (41) - progiciel SVS/USDA. .. 57
Figure 5.11 Légende des essences figurées par le progiciel SVS/USDA. .. 57
Figure 5.12 Cercle de corrélation des variables sur le 1er plan de l’ACP. La variable PRES (Présence) en facteur supplémentaire. .. 57
Figure 5.13 Distribution des placettes avec nids des deux forêts dans le plan F1-F4 de l’ACP. 61
Figure 5.14 Histogramme du test de permutation démontrant la significativité de la discrimination Aitone/Valdunielli. ... 61
Figure 5.15 Répartition géographique des placettes à nid du dispositif Villard en fonction des types de peuplements ONF. .. 61
Figure 5.16 Carte de répartition des territoires de sittelles dans le périmètre du dispositif Villard 65
Figure 5.17 Graphique des superficies relatives occupées par les types de peuplements présents dans les territoires < 10 ha .. 66
Figure 5.18 Cartographie des dernières coupes de parquets de régénération réalisées en forêt d’Aitone avant 1992 (pas de chiffre) et entre 1992 et 2005 (numéro de parquet régénéré) .. 69
Figure 5.19 Cartographie des dernières coupes de parquets de régénération réalisées en forêt de Valdunielli avant 1993 (pas de chiffre) et entre 1993 et 2005 (numéro de parquet régénéré) .. 69
Figure 5.20 Carte de localisation des sittelles dans FT de Rospa-Sorba .. 73
Figure 5.21 Carte de localisation des placettes typologiques en FT de Rospa-Sorba .. 73
Figure 5.22 Dispositif statistique de comparaison des sites sans sittelle et avec sittelle en FT de Rospa-Sorba 73
Figure 5.23 Carte de comparaison des sites potentiels à sittelle (p>0,9) et des sites relevés sur le massif de Rospa-Sorba .. 75
Figure 5.24 Histogramme des probabilités calculées de la présence de sittelle (modèle F6) sur les placettes typologiques les plus proches des relevés de localisation .. 76
Figure 5.25 Historique des feux et présence de sittelle réelle sur le massif de Rospa-Sorba. ... 77
Figure 5.26 Histogramme des distances des sittelles observées aux plus proches placettes typologiques à forte probabilité de présence de sittelle (p>0,5). .. 79
Figure 5.27 Distribution des placettes typologiques les plus proches des localisations observées, en fonction des probabilités de présence de sittelle calculées selon le modèle RS3. .. 80
Figure 5.28 Carte de localisation des territoires de sittelle (polygones de Voronoï) retenus en FT de Rospa-Sorba. ... 80
Figure 5.29 Surface des territoires de sittelles (polygones de Voronoï) en fonction du nombre moyen de Très Gros Bois par ha ..81
Figure 5.30 Carte des types de structure des peuplements de Pin laricio du massif de Rospa-Sorba83
Figure 6.1 Carte de répartition de la sittelle à poitrine rousse. Source : (UICN, 2013) ..87
Figure 6.2 Sitta canadensis : mâle perché sur un tronc ..87
Figure 6.3 Comparaison des effets de la dynamique naturelle (succession à partir d’un feu très sévère) et de la sylviculture (succession à partir d’une coupe rase) sur la structure d’un peuplement d’Epinette noire, source : (Leduc, et al., 2002) ..89
Figure 6.4 Types de troncs utilisés par la Sittelle corse : A : 58,3%- B : 22,2%- C : 8,3%- D : 11,2%91
Figure 6.5 Type de peuplement optimal pour la sittelle dans un rayon de 60 m autour de sa loge d’après les conclusions du § 6.3.1. (Pin laricio vert foncé, Hêtre et Sapin en vert clair) ..94
Figure 6.6 Caractéristiques dendrométriques du peuplement optimal pour la sittelle. Unités US. Progiciel SVS/USDA ...94
Figure 6.7 Types d’îlots de vieux bois mis en place en Forêt territoriale de Valduniellu sur parquets de régénération acquise devant passer en coupe. Source : (Lèbre, 2013) ..96
Figure 6.8 Type de rotation applicable au traitement en futaie régulière par parquets (Beck, 1992)99
Figure 6.9 Graphique de répartition des tiges par type et surface terrière dans le premier cercle de 1,13 ha99
Figure 6.10 Structure issue d’un traitement irrégulier pied à pied ..100
Figure 6.11 Structure issue d’un traitement irrégulier par collectif ..100
Figure 6.12 Carte de localisation des forêts de Pin laricio en ZPS et forêt territoriale de Rospa-Sorba107
Figure 6.13 Placette de suivi dendrométrique des réserves forestières (Réserves naturelles de France, 2005) ..108
LISTE DES TABLEAUX

Tableau 3.1 Tableau comparatif des forêts étudiées relativement aux objectifs et types de traitement appliqués lors des derniers aménagements en vigueur. ... 37
Tableau 4.1 Typologie des peuplements des forêts étudiées issus de la couverture vectorisée de l’Inventaire forestier national de 2003. ... 39
Tableau 4.2 Table d’harmonisation des typologies ONF des peuplements des forêts d’Aitone et Valduniellu. 40
Tableau 4.3 Liste des différentes variables dendrométriques mesurées sur les placettes du dispositif Villard. 42
Tableau 4.4 Variables caractéristiques du support des nids de sittelle. Source : (Villard, et al., 2007). 42
Tableau 4.5 Types de peuplements et d’arbres par classe de diamètre (à 1,30m) et de hauteur. Source : (Guy, et al., 2005) .. 43
Tableau 4.6 Clé de détermination pour les types de capital. Source : (Guy, et al., 2005) .. 43
Tableau 4.7 Clé de détermination pour les types de structure. Source : (Guy, et al., 2005). 43
Tableau 4.8 Clé de détermination des types de composition. Source : (Guy, et al., 2005). 44
Tableau 4.9 Liste des essences prioritaires ESS. .. 44
Tableau 4.10 Liste des essences diverses identifiées DIV. .. 44
Tableau 4.11 Codification utilisée pour les bois morts. Source: (Guy, et al., 2005).. 44
Tableau 4.12 Codification utilisée pour l’altération. ... 44
Tableau 4.13 Formules de passage des mesures du dispositif Villard et al. à la typologie de l’ONF. 47
Tableau 5.1 Tableau de contingence de la présence de nids de sittelle en fonction du critère « capital » du peuplement forestier. .. 49
Tableau 5.2 Calcul du Khi carré de la table de contingence Présence/Capital. .. 49
Tableau 5.3 Tableau de contingence de la présence de nids de sittelle en fonction du critère « structure» du peuplement forestier. ... 49
Tableau 5.4 Calcul du Khi carré de la table de contingence Présence/Structure. ... 50
Tableau 5.5 Tableau de contingence de la présence de nids de sittelle en fonction du critère « composition» du peuplement forestier .. 50
Tableau 5.6 Tableau de contingence de la présence de nids de sittelle en fonction du critère « abondance de bois mort debout» du peuplement forestier. .. 50
Tableau 5.7 Calcul du Khi carré de la table de contingence Présence/Bois mort debout. .. 50
Tableau 5.8 Tableau de contingence de la présence de nids de sittelle en fonction du critère « nombre de chandelles» du peuplement forestier. .. 51
Tableau 5.9 Calcul du Khi carré de la table de contingence Présence/Nombre de chandelles. 51
Tableau 5.10 Tableau de contingence de la présence de nids de sittelle en fonction du critère « niveau d’altération du bois mort debout» du peuplement forestier interprété à partir des données du dispositif Villard. 51
Tableau 5.11 Caractéristiques dendrométriques des placettes selon l’absence ou la présence de sittelle. Mesures présentées sous la forme moyennetse. H0 hypothèse nulle-H1 hypothèse alternative. Résultats des tests U de Mann-Whitney-Wilcoxon et significativité (NS : non significatif ; * : p<0,05 ; ** : p<0,01 ; *** : p<0,001) .. 52
Tableau 5.12 Répartition des placettes sans nid en 3 classes. .. 54
Tableau 5.13 Objets centraux (n° de placette) des 3 classes des placettes sans nid par leurs variables quantitatives. 54
Tableau 5.14 Objets centraux (n° de placette) des 3 classes des placettes sans nid par leurs variables qualitatives. ... 54
Tableau 5.15 Répartition des placettes avec nid en 3 classes. .. 56
Tableau 5.16 Objets centraux (n° de placette) des 3 classes des placettes avec nid par leurs variables quantitatives. 56
Tableau 5.17 Objets centraux (n° de placette) des 3 classes des placettes sans nid par leurs variables qualitatives. .. 56
Tableau 5.18 Caractéristiques des modèles de régression logistique retenus après procédures pas à pas.............. 58
Tableau 5.19 Coefficients du modèle logit B13 avec intervalle de confiance à 95% .. 58
Tableau 5.20 Coefficients du modèle logit F6 avec intervalle de confiance à 95% .. 59
Tableau 5.21 Tableau des caractéristiques des points/placettes aberrants du modèle F6. .. 59
Tableau 5.22 Taux de classification des observations (placettes) en fonction du modèle de probabilité retenu F6. ... 59
Tableau 5.23 Tableau des placettes avec nid en fonction de la forêt. ... 60
Tableau 5.24 Caractéristiques dendrométriques des placettes selon la forêt où elles se trouvent. 60
Tableau 5.25 Comparaison de l’influence des variables sur la présence de nid de sittelle selon la forêt : + favorable - défavorable. ... 61
Tableau 5.26 Tableau de contingence des placettes du dispositif Villard en fonction du type de peuplement IFN. 62
Tableau 5.27 Tableau des densités de placettes avec nid selon les types de peuplement IFN et par forêt. 62
Tableau 5.29 Définition des peuplements ONF simplifiés ... 64
Tableau 5.30 Tableau synthétique des densités de placettes avec nid par types de peuplement ONF groupés et par forêt. Examen du facteur âge du peuplement .. 64
Tableau 5.31 Tableau des densités de placettes avec nid par types de peuplement ONF groupés et par forêt. Examen du facteur composition du peuplement .. 64
Tableau 5.32 Statistiques descriptives des surfaces territoriales de sittelle de la FT d'Aïtone ... 65
Tableau 5.33 Statistiques descriptives des surfaces territoriales de sittelle de la FT de Valduniellu 65
Tableau 5.34 Tableau de contingence des surfaces des territoires par classe de surface en fonction de la forêt 66
Tableau 5.35 Caractéristiques du modèle de régression linéaire multiple de composition des territoires pour la forêt d'Aïtone. Significativité (NS : non significatif ; * : p<0,05 ; ** : p<0,01 ; *** : p<0,001) .. 67
Tableau 5.36 Caractéristiques du modèle de régression linéaire multiple de composition des territoires pour la forêt de Valduniellu. Significativité (NS : non significatif ; * : p<0,05 ; ** : p<0,01 ; *** : p<0,001) .. 67
Tableau 5.37 Synthèse des coupes de parquets réalisées en forêts d'Aïtone et de Valduniellu les 15 années précédant la mise en place du dispositif Villard et al .. 70
Tableau 5.38 Résultats des tests non paramétriques de Kruskal-Wallis (nb échantillons >2) ou de Mann-Whitney-Wilcoxon .. 71
Tableau 5.39 Caractéristiques des placettes à nid situées dans les coupes .. 71
Tableau 5.40 Caractéristiques des territoires susceptibles d’être détruits lors de la mise en œuvre des nouveaux aménagements .. 71
Tableau 5.41 Tableau des variables qualitatives ayant une influence sur la présence de la sittelle 72
Tableau 5.42 Tableau des variables quantitatives ayant une influence sur la présence de la sittelle 72
Tableau 5.43 Caractéristiques dendrométriques des placettes selon l'absence ou la présence de sittelle. Mesures présentées sous la forme moyenne±se. H0 hypothèse nulle-H1 hypothèse alternative. Résultats des tests de Mann-Whitney-Wilcoxon et significativité (NS : non significatif ; * : p<0,05 ; ** : p<0,01 ; *** : p<0,001) .. 74
Tableau 5.44 Coefficients des combinaisons linéaires discriminantes. Significatifs au seuil a= 0,001.Test de Monte Carlo 999 itérations .. 74
Tableau 5.45 Tableau de prédiction de la sittelle à p>0,5 .. 75
Tableau 5.46 Tableau de prédiction de la sittelle à p<0,9 .. 76
Tableau 5.47 Statistiques des probabilités calculées de la présence de sittelle (modèle F6) sur les placettes typologiques les plus proches des relevés de localisation .. 76
Tableau 5.48 Caractéristiques dendrométriques des placettes avec sittelle selon le massif forestier ... 78
Tableau 5.49 Tableau de contingence des types de peuplements forestiers autour des localisations de sittelles par massif .. 78
Tableau 5.50 Calcul du khi carré de la table de contingence Massif/Structure .. 78
Tableau 5.51 Statistiques des distances des sittelles observées aux plus proches placettes typologiques à forte probabilité de présence de sittelle (p>0,5) .. 79
Tableau 5.52 Caractéristiques des modèles de régression logistique retenus après procédures pas à pas .. 79
Tableau 5.53 Coefficients du modèle RS3 avec intervalle de confiance à 95% .. 79
Tableau 5.54 Statistiques des probabilités calculées de la présence de sittelle (modèle RS3) sur les placettes typologiques les plus proches des localisations observées .. 80
Tableau 5.55 Statistique descriptive de la surface des territoires de sittelle (polygones de Voronoï) en forêt de Rospa-Sorba .. 80
Tableau 5.56 Caractéristiques de la droite de régression LOG(S_T) par L_TGB ... 81
Tableau 5.57 Codification numérique de la structure des peuplements ... 82
Tableau 5.58 Tableau de contingence de la localisation des sittelles selon le critère « structure » du peuplement forestier dans le massif de Rospa-Sorba .. 83
Tableau 5.59 Calcul du khi carré de la table de contingence des distributions sittelle et hasard en fonction de la variable structure .. 83
Tableau 6.1 Variables quantitatives optimales, minimales et maximales pour les placettes à nid du massif d’Aïtone-Valduniellu .. 84
Tableau 6.2 Nombres de placettes potentielles à sittelles en forêt de production du massif de Rospa-Sorba calculés selon les modèles de régression logistique F6 et RS3 ... 86
Tableau 6.3 Principaux systèmes sylvicoles au Québec, tableau simplifié d’après (Gauthier , et al., 2008) 89
Tableau 6.4 Caractéristiques dendrométriques du peuplement optimal pour la sittelle .. 94
Tableau 6.5 Influence du diamètre du Pin laricio sur la production de graines. Source (Moneglia, 2010) 94
Tableau 6.6 Influence du nombre de TGB de Pin laricio sur la surface du territoire de sittelles ..95
Tableau 6.7 Différents scénarios de traitement régulier en fonction du type de station de production. Source : (Office national des forêts, 1999) ..95
Tableau 6.8 Description des arbres maintenus dans les parquets de régénération VIII et IX en FT de Valduniellu (Lèbre, 2013). ..96
Tableau 6.9 Valeurs des variables quantitatives avant la coupe définitive dans un rayon de 20 m autour des nids 9 et 10...97
Tableau 6.10 Valeurs des variables qualitatives à l’échelle des territoires 9 et 10 après la coupe définitive et valeurs minimales. ..97
Tableau 6.11 Répartition des tiges sur la surface optimum de 3,8 ha...99
Tableau 6.12 Composition en essences diverses (% de surface terrière) des placettes à nids du massif d’ Aitone- Valduniellu ..100
Tableau 6.13 Types de peuplement à Pin laricio et fragmentation...101
Tableau 6.14 Impact à venir des équipements de Défense des Forêts Contre les Incendies sur les peuplements de Pin laricio. ..102
Tableau 6.15 Comparaison en surfaces et en volumes des forêts de production à Pin laricio majoritaire des trois inventaires IFN...103
Tableau 6.16 Etat 2012 des réserves biologiques gérées par l’ONF et composition des peuplements de Pin laricio .105
Tableau 6.17 Composition des zones de protection spéciale en types de peuplement IFN de Pin laricio106
LISTE DES VARIABLES

Données de l’Inventaire forestier national

<table>
<thead>
<tr>
<th>Type IFN</th>
<th>AH</th>
<th>CN/CN9</th>
<th>CNJ</th>
<th>CP/CP9</th>
<th>CPJ</th>
<th>QF</th>
<th>FR1</th>
<th>FR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIBELLE</td>
<td>FUTAIE DE HÊTRE</td>
<td>FUTAIE DE PIN LARICIO D’AGE INDIFFERENCIE (PL>75%)</td>
<td>JEUNE FUTAIE DE PIN LARICIO (PL>75%)</td>
<td>FUTAIE DE PIN LARICIO D’AGE INDIFFERENCIES (PINS> 75% MELANGE PM-PL)</td>
<td>JEUNE FUTAIE DE PIN LARICIO D’AGE INDIFFERENCIES (PINS> 75% MELANGE PM-PL)</td>
<td>TAILLIS DE FEUILLUS INDIFFERENCIES</td>
<td>FUTAIE MIXTE (FEUILLUS MAJ.)</td>
<td>FUTAIE MIXTE (CONIFERES MAJ.)</td>
</tr>
<tr>
<td>Type IFN</td>
<td>MP1</td>
<td>MP2/MP9</td>
<td>CR</td>
<td>CRU</td>
<td>MR1</td>
<td>MR2/MR9</td>
<td>WP/WP9</td>
<td>ZP</td>
</tr>
<tr>
<td>LIBELLE</td>
<td>MELANGE DE FUTAIE DE PINS INDIFF. ET TAILLIS (FEUILLUS MAJ.)</td>
<td>MELANGE DE FUTAIE DE PINS INDIFF. ET TAILLIS (FEUILLUS MAJ.)</td>
<td>FUTAIE DE CONIFERES INDIFFERENCIES D’AGE INDIFFERENCIE (CON. > 75% MELANGE PM-PL-SP)</td>
<td>JEUNE FUTAIE DE CONIFERES INDIFFERENCIES D’AGE INDIFFERENCIE (CON. > 75% MELANGE PM-PL-SP)</td>
<td>MELANGE DE FUTAIE DE CONIFERES INDIFF. ET TAILLIS (F. MAJ.)</td>
<td>MELANGE DE FUTAIE DE CONIFERES INDIFF. ET TAILLIS (C. MAJ.)</td>
<td>BOISEMENT LACHE MONTAGNARD DE PINS INDIFFERENCES</td>
<td>GARRIGUE OU MAQUIS BOISE DE PINS INDIFFERENCES</td>
</tr>
</tbody>
</table>

Données de l’Office national des forêts

Type de peuplement ONF

<table>
<thead>
<tr>
<th>Type retenu</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGP P.L</td>
<td>Semis gaulois parchis de Pin laricio</td>
</tr>
<tr>
<td>SGP P.L+BV</td>
<td>Semis gaulois parchis de Pin laricio à sous étage de Bouleau verruqueux</td>
</tr>
<tr>
<td>FD P.L</td>
<td>Futaie dense de Pin laricio (30-120 ans)</td>
</tr>
<tr>
<td>FC P.L</td>
<td>Futaie claire de Pin laricio (30-120 ans)</td>
</tr>
<tr>
<td>VFD P.L</td>
<td>Vieille futaie dense de Pin laricio (>120 ans)</td>
</tr>
<tr>
<td>VFC P.L + SGP P.L</td>
<td>Vieille futaie claire de Pin laricio (>180 ans) avec semis-gaulois parchis de Pin laricio</td>
</tr>
<tr>
<td>VFC P.L</td>
<td>Vieille futaie claire de Pin laricio (>120 ans)</td>
</tr>
<tr>
<td>VFC P.L+BV</td>
<td>Vieille futaie claire de Pin laricio (>180 ans) à sous étage de Bouleau verruqueux</td>
</tr>
<tr>
<td>VFC HET</td>
<td>Vieille futaie claire de Hêtre (>120ans)</td>
</tr>
<tr>
<td>FC P.L + FC S.P</td>
<td>Futasies claires de Pin laricio (30-120 ans) et Sapin (30-90 ans) mélangées</td>
</tr>
<tr>
<td>FC HET + FC P.L + FC S.P</td>
<td>Futasies claires de Hêtre (30-80 ans), Pin laricio (30-120 ans) et Sapin (30-90 ans) mélangées</td>
</tr>
<tr>
<td>FC P.L + FD HET</td>
<td>Futaie claire de Pin laricio (30-120 ans) et futaie dense de Hêtre (30-80 ans)</td>
</tr>
<tr>
<td>FC P.L + VFC HET</td>
<td>Futaie claire de Pin laricio (30-120 ans) et vieille futaie dense de Hêtre (>80 ans)</td>
</tr>
<tr>
<td>FD HET</td>
<td>Futaie dense de Hêtre (30-80 ans)</td>
</tr>
<tr>
<td>FD HET + FC P.L + FC S.P</td>
<td>Futaie dense de Hêtre (30-80 ans) et futasies claires de Pin laricio (30-120 ans) et Sapin (30-90 ans) mélangées</td>
</tr>
<tr>
<td>FD HET + VFC HET</td>
<td>Futaie dense de Hêtre (30-80 ans) et vieille futaie claire de Hêtre (>80 ans)</td>
</tr>
<tr>
<td>FD P.L + FC S.P</td>
<td>Futaie dense de Pin laricio (30-120 ans) et futaie claire de Sapin (30-90 ans)</td>
</tr>
<tr>
<td>FD P.L + FD HET</td>
<td>Futaie dense de Pin laricio (30-120 ans) et futaie dense de Hêtre (30-80 ans)</td>
</tr>
<tr>
<td>FD P.L + FD S.P</td>
<td>Futaie dense de Pin laricio (30-120 ans) et futaie dense de Sapin (30-90 ans)</td>
</tr>
<tr>
<td>T</td>
<td>Taillis de feuillus divers, boulaie, aulnaie</td>
</tr>
<tr>
<td>LAN</td>
<td>Landes et pelouses</td>
</tr>
<tr>
<td>ROC</td>
<td>Zones rocheuses</td>
</tr>
</tbody>
</table>

Type simplifié

<table>
<thead>
<tr>
<th>Type simplifié</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VF PL P</td>
<td>Vieille futaie pure de Pin laricio (>75%)</td>
</tr>
<tr>
<td>VF PL M</td>
<td>Vieille futaie mixte à Pin laricio majoritaire (50%<75%)</td>
</tr>
<tr>
<td>F PL P</td>
<td>Futaie pure de Pin laricio (>75%)</td>
</tr>
<tr>
<td>F PL M</td>
<td>Futaie mixte à Pin laricio majoritaire (50%<75%)</td>
</tr>
</tbody>
</table>

Mémoire EPHE-SVT- TORRE 8/114
Variables quantitatives

Massif d' Aitone-Valduniellu

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Remarques</th>
</tr>
</thead>
<tbody>
<tr>
<td>PER</td>
<td>Nombre de perches</td>
<td>7,5<d<17,5 cm</td>
</tr>
<tr>
<td>PB</td>
<td>Nombre de petits bois</td>
<td>17,5<d<27,5 cm</td>
</tr>
<tr>
<td>BM</td>
<td>Nombre de bois moyens</td>
<td>27,5<d<47,5 cm</td>
</tr>
<tr>
<td>GB</td>
<td>Nombre de gros bois</td>
<td>47,5<d<62,5 cm</td>
</tr>
<tr>
<td>TGB</td>
<td>Nombre de très gros bois</td>
<td>d>62,5 cm</td>
</tr>
<tr>
<td>NT</td>
<td>Nombre total de tiges</td>
<td></td>
</tr>
<tr>
<td>N_HA</td>
<td>Nombre total de tiges par hectare</td>
<td></td>
</tr>
<tr>
<td>Dmax</td>
<td>Diamètre du plus haut Pin laricio de la placette (cm)</td>
<td></td>
</tr>
<tr>
<td>Dmoy</td>
<td>Diamètre moyen des pins laricio (cm)</td>
<td></td>
</tr>
<tr>
<td>HTmax</td>
<td>Hauteur du plus haut Pin laricio de la placette (m)</td>
<td></td>
</tr>
<tr>
<td>X_N</td>
<td>Proportion du nombre d’arbres des essences autres que PL</td>
<td></td>
</tr>
<tr>
<td>G_HA</td>
<td>Surface terrière totale par hectare</td>
<td></td>
</tr>
<tr>
<td>X_G</td>
<td>Proportion de la surface terrière des essences autres que PL</td>
<td></td>
</tr>
<tr>
<td>GESS</td>
<td>Surface terrière des arbres d’essences prioritaires</td>
<td></td>
</tr>
<tr>
<td>GESS1</td>
<td>Surface terrière des arbres de la première essence prioritaire</td>
<td></td>
</tr>
<tr>
<td>GESS2</td>
<td>Surface terrière des arbres de la seconde essence prioritaire</td>
<td></td>
</tr>
<tr>
<td>GDIV</td>
<td>Surface terrière des arbres d’essences diverses</td>
<td></td>
</tr>
<tr>
<td>GDIV1</td>
<td>Surface terrière des arbres de la première essence diverse</td>
<td></td>
</tr>
<tr>
<td>BoisMort</td>
<td>Nombre de bois morts debout (entiers+chandelles)</td>
<td></td>
</tr>
<tr>
<td>NbChand</td>
<td>Nombre de chandelles</td>
<td></td>
</tr>
<tr>
<td>S_T</td>
<td>Surface d’un territoire d’un couple de sittelles, calculé selon la méthode de Voronoï</td>
<td></td>
</tr>
</tbody>
</table>

Remarques

- Essences prioritaires : Hêtre (H), Pin laricio (PL), Pin maritime (PM) et Sapin pectiné (SP).
- Essences diverses : Aulne glutineux (AG), Bouleau verruqueux (BV), Chêne vert (CV), Chêne pubescent (CB), Erable champêtre (EC), Erable sycomore (ES), Frêne à fleurs (FF), Houx (HU), If (IF), Sorbier des oiseleurs (SO).
- Arbres sur pied ne présentant aucun signe de vie
- Troncs morts debout mais démunis de branches
Massif de Rospa-Sorba

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Remarques</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_PER_HA</td>
<td>Nombre de perches de Pin laricio par hectare</td>
<td>7,5<d<17,5 cm</td>
</tr>
<tr>
<td>L_PB_HA</td>
<td>Nombre de petits bois de Pin laricio par hectare</td>
<td>17,5<d<27,5 cm</td>
</tr>
<tr>
<td>L_BM_HA</td>
<td>Nombre de bois moyens de Pin laricio par hectare</td>
<td>27,5<d<47,5 cm</td>
</tr>
<tr>
<td>L_GB_HA</td>
<td>Nombre de gros bois de Pin laricio par hectare</td>
<td>47,5<d<62,5 cm</td>
</tr>
<tr>
<td>L_TGB_HA</td>
<td>Nombre de très gros bois de Pin laricio par hectare</td>
<td>d>62,5 cm</td>
</tr>
<tr>
<td>L_RGB_HA</td>
<td>Nombre de gros bois et de très gros bois de Pin laricio par hectare</td>
<td>d>47,5 cm</td>
</tr>
<tr>
<td>L_TOT_HA</td>
<td>Nombre total de tiges de Pin laricio par hectare</td>
<td></td>
</tr>
<tr>
<td>X_TOT_HA</td>
<td>Nombre total de tiges autres que le Pin laricio par hectare</td>
<td></td>
</tr>
<tr>
<td>BoisMortD_HA</td>
<td>Nombre de bois morts debout (entiers+chandelles) par hectare</td>
<td>Arbres sur pied ne présentant aucun signe de vie</td>
</tr>
<tr>
<td>S_T</td>
<td>Surface d’un territoire d’un couple de sittelles, calculé selon la méthode de Voronoï</td>
<td></td>
</tr>
</tbody>
</table>

Variables quantitatives

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Remarques</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_PB</td>
<td>Nombre de petits bois</td>
<td>17,5<d<27,5 cm</td>
</tr>
<tr>
<td>N_BM</td>
<td>Nombre de bois moyens</td>
<td>27,5<d<47,5 cm</td>
</tr>
<tr>
<td>N_GB</td>
<td>Nombre de gros bois</td>
<td>47,5<d<62,5 cm</td>
</tr>
<tr>
<td>N_TGB</td>
<td>Nombre de très gros bois</td>
<td>d>62,5 cm</td>
</tr>
<tr>
<td>N_RGB</td>
<td>Nombre de gros bois (N_GB+N_TGB)</td>
<td>d>47,5 cm</td>
</tr>
<tr>
<td>N_TOT</td>
<td>Nombre total de tiges</td>
<td></td>
</tr>
</tbody>
</table>

Variables qualitatives

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPITAL (CAP)</td>
<td>D : dense</td>
<td>Nombre de tiges/ha >640/ha</td>
</tr>
<tr>
<td></td>
<td>R : riche</td>
<td>640>Nombre de tiges /ha > 120/ha et surface terrière G/ha>55 m2/ha</td>
</tr>
<tr>
<td></td>
<td>M : moyen</td>
<td>640>Nombre de tiges /ha > 120/ha et surface terrière G/ha≤55 m2/ha</td>
</tr>
<tr>
<td></td>
<td>C : clair</td>
<td>Nombre de tiges /ha ≤ 120/ha</td>
</tr>
<tr>
<td>STRUCTURE (STR)</td>
<td>R_BM : régularisé bois moyens</td>
<td>BM/N > 50%</td>
</tr>
<tr>
<td></td>
<td>R_GB : régularisé gros bois</td>
<td>BM/N ≤ 50% et GB /N > 55%</td>
</tr>
<tr>
<td></td>
<td>R_GB_BM : régularisé gros bois tendance bois moyens</td>
<td>BM/N ≤ 50% et GB /N ≤ 55% et GB/N >30% et PB/N >10%</td>
</tr>
<tr>
<td></td>
<td>IR : irrégulier</td>
<td>BM/N ≤ 50% et GB /N ≤ 55% et GB/N >30% et PB/N >10%</td>
</tr>
<tr>
<td></td>
<td>R_GB_BM : régularisé gros bois tendance bois moyens</td>
<td>BM/N ≤ 50% et GB /N ≤ 55% et GB/N >30% et PB/N ≤10%</td>
</tr>
<tr>
<td></td>
<td>R_PB : régularisé petits bois</td>
<td>BM/N ≤ 50% et GB /N ≤ 55% et GB/N ≤30% et PB/N >55%</td>
</tr>
<tr>
<td></td>
<td>R_PB_BM : régularisé petits bois tendance bois moyens</td>
<td>BM/N ≤ 50% et GB /N ≤ 55% et GB/N ≤30% et PB/N ≤55%</td>
</tr>
<tr>
<td>COMPOSITION (COMPO)</td>
<td>MNO : monospécifique</td>
<td>(GDIV/G >20% et GDIV1/GDIV >70%) ou (GDIV/G ≤20% et GESS/G> 70%)</td>
</tr>
<tr>
<td></td>
<td>HTR : hétérospécifique</td>
<td>GDIV/G >20% et GDIV1/GDIV ≤70%</td>
</tr>
<tr>
<td></td>
<td>BI : bispécifique</td>
<td>GDIV/G ≤20% et GESS/G≤ 70% et GESS1/GESS> 35% et GESS2/GESS> 35%</td>
</tr>
<tr>
<td></td>
<td>PLY : polyspécifique</td>
<td>GDIV/G ≤20% et GESS/G≤ 70% et (GESS1/GESS≤ 35% ou GESS2/GESS≤ 35%)</td>
</tr>
<tr>
<td>ALTERATION</td>
<td>« 0 »</td>
<td>« absence de bois mort debout »</td>
</tr>
<tr>
<td></td>
<td>« 1 »</td>
<td>« nb bois mort debout > nb de chandelles »</td>
</tr>
<tr>
<td></td>
<td>« 4 »</td>
<td>« nb bois mort debout = nb de chandelles »</td>
</tr>
</tbody>
</table>

Mémoire EPHE-SVT- TORRE 10/114
GLOSSAIRE

Source : Vocabulaire forestier Ecologie, gestion et conservation des espaces boisés
Y. Bastien et C. Gauberville, coordinateurs.

Affectation : Dans les anciennes méthodes d’aménagement de futaha régulière, ensemble des parcelles dont la régénération est prévue au cours d’une période déterminée. Le découpage des affectations varie peu au cours du temps, d’où la dénomination de permanentes.

Age d’exploitabilité : Durée du cycle sylvicole d’une ou plusieurs essences en peuplement régulier, susceptible d’optimiser les objectifs de gestion, et définie dans les documents de gestion durable.

Arbre codominant : se dit d’un arbre de l’étage dominant, situé légèrement en dessous des arbres dominants voisins ou à houppier moins développé.

Arbre d’avenir : arbre dont les potentialités sont jugées suffisantes pour qu’il puisse contribuer significativement à l’objectif- généralement de production- fixé au peuplement. Les opérations sylvicoles menées dans le peuplement sont orientées à son profit.

Arbre dominé : arbre situé en dessous des arbres dominants et codominants.

Bois : Arbre ou parties d’arbres, sur pied ou abattu(es), destiné(es) à une utilisation définie (ex : bois de feu, bois d’œuvre, bois de trituration, etc...).

Bois moyen : arbre dont le diamètre à 1,30 m est compris entre 27,5 cm et 47,5 cm (classes de diamètre 30 à 45 cm).

Bouquet : Ensemble d’arbres présentant une certaine homogénéité, d’une surface inférieure à 50 ares au sein d’une parcelle, difficile à cartographier. Il n’a pas vocation à constituer une unité de gestion.

Capital sur pied : Volume ou surface terrière, parfois nombre, des arbres recensables d’un peuplement forestier.

Chablis : au sens strict, arbre ou ensemble d’arbres renversés, déracinés ou cassés (chandelles, volis), le plus souvent par suite d’un accident climatique (vent, neige, givre, etc.). Par extension, terme générique désignant tous les arbres endommagés par les aléas naturels (incendie, épidémie, vent,…).

Chandelle : partie cassée d’un chablis, restant sur pied.

Classement d’unité de gestion : opération visant à constituer des groupes d’aménagement au sein d’une forêt lors de l’élaboration d’un aménagement.

Composition d’un peuplement forestier : proportion, de chacune des essences d’un peuplement forestier, exprimée en pourcentage de sa surface terrière, de son nombre de tiges ou de son volume.

Conversion : traitement transitoire qui consiste à passer d’un régime à un autre, sans changer d’essence. Le temps nécessaire à l’obtention du régime souhaité sur toute la surface de la série ou de la forêt traitée détermine la durée de conversion.

Coupe d’amélioration : coupe destinée à améliorer la qualité, et, à moyen terme, la stabilité d’un peuplement forestier.
Coupe d’éclaircie : coupe réduisant le nombre de tiges, donc le capital forestier sur pied, d’un peuplement forestier.

Coupe d’ensemencement : première coupe progressive de régénération dans une futaie mûre, ayant pour but de favoriser l’installation de la régénération naturelle.

Coupe définitive : ultime coupe de régénération mettant en pleine lumière la régénération naturelle par récolte des derniers semenciers à l’exception d’éventuelles surréserves.

Coupe de jardinage : coupe combinant à la fois les objectifs d’amélioration des bois en croissance, de récolte des gros bois et de régénération, en recherchant un état d’équilibre défini à l’échelle de la parcelle.

Coupe de régénération : en futaie régulière, coupe ayant pour objectif de récolter un peuplement forestier mûr et de le renouveler par voie naturelle ou artificielle.

Coupe jardinoire : coupe combinant à la fois les objectifs d’amélioration des bois en croissance, de récolte des gros bois et de régénération, sans recherche d’équilibre à l’échelle de la parcelle.

Coupes progressives : ensemble des coupes de régénération effectuées dans un peuplement forestier et comprenant les coupes d’ensemencement, secondaires et définitive.

Coupe rase : coupe unique portant sur la totalité du peuplement forestier et précédant généralement sa régénération artificielle.

Coupe sanitaire : coupe consistant à ne récolter que les arbres tarés, dépérisants, secs ou malades.

Coupe secondaire : coupe progressive de régénération naturelle comprise entre la coupe d’ensemencement et la coupe définitive pour favoriser le développement des semis.

Cycle sylvicole : ensemble des opérations sylvicoles se succédant tout au long de la vie d’un peuplement forestier, depuis sa régénération, jusqu’à sa récolte finale.

Cycle sylvigénétique : Dynamique cyclique d’une forêt ou d’un peuplement forestier naturel, subnaturel ou en évolution libre. Cette dynamique se caractérise par une succession de phases et de stades dont un des moteurs initiaux est la mortalité des arbr es ou les aléas (tempêtes, ouragans, incendies, bioagresseurs,...). La mortalité des arbres facilite l’installation de semis ou la croissance des arbres surcimés et les aléas ouvrent des trouées qui vont initier brutalement un nouveau cycle et constituer une mosaïque de structures forestières. Ces structures sont généralement diversifiées selon ce qui reste du peuplement préexistant, des modalités d'installation de la régénération et de compétition entre les tiges et entre les essences : régulières et irrégulières, mais rarement jardinnées.

Décapitalisation : diminution du capital sur pied (surface terrière ou volume) d’un peuplement forestier.

Dégagement : intervention sylvicole de maîtrise de la végétation concurrente et de dosage des essences dans les jeunes peuplements forestiers de hauteur inférieure à 3 mètres.

Dépressage : intervention sylvicole de réduction significative de la densité des tiges des essences principales dans de jeunes peuplements forestiers. Elle précède la première éclaircie et porte sur des produits généralement non marchands.

Description de peuplement : relevé de terrain des caractéristiques jugées pertinentes d’un peuplement forestier au regard d’un objectif donné, notamment d’une intervention sylvicole (capital sur pied, composition, structure, qualité, etc.).

Diamètre d’exploitabilité : Diamètre minimal à 1,30 m d’un arbre ou diamètre moyen quadratique d’un peuplement forestier qui doit être atteint pour être récolté.
Diamètre de précomptage : diamètre à partir duquel les tiges sont comptabilisées dans les inventaires, généralement 17,5 cm.

Durée de survie : délai théorique séparant l’âge maximal d’exploitabilité de l’âge actuel, ou délai restant pour régénérer un peuplement forestier déprécissant ou déstabilisé.

Éclaircie : coupe généralement sélective réduisant le nombre de tiges et prélevant des produits marchands. L’éclaircie est le plus souvent une coupe d’amélioration réalisée dans un peuplement forestier régulier dans le but de favoriser la stabilité, la dominance et une croissance soutenue des arbres d’avenir ; elle concourt aussi au dosage des essences.

Éclaircie mixte : coupe enlevant à la fois des arbres qui concurrencent le houppier de ceux que l’on souhaite privilégier et des arbres dominés.

Éclaircie par le bas : coupe enlevant principalement des arbres dominés.

Éclaircie par le haut : coupe enlevant principalement des arbres qui concurrencent le houppier de ceux que l’on souhaite privilégier.

Éclaircie préparatoire à la conversion : coupe d’amélioration dans les peuplements de taillis sous futai pour les préparer à leur conversion en futai régulière.

Éclaircie sélective : mode opératoire d’une coupe d’éclaircie qui détermine les arbres à enlever en éclaircie au profit d’arbres jugés de meilleure qualité.

Éclaircie sélective avec cloisonnement : mode opératoire d’une première coupe d’éclaircie associant la mise en place d’un cloisonnement sylvicole et une éclaircie sélective.

Éclaircie systématique : mode opératoire d’une coupe d’éclaircie, généralement réalisée dans des plantations, enlevant une ligne sur deux ou une ligne sur trois. Elle est le plus souvent complétée par une éclaircie sélective dans le reste du peuplement forestier.

Espèce parapluie : espèce qui a de telles exigences en termes d’habitat et d’espace vital que sa protection assure celle des autres espèces appartenant à la même communauté.

Essence : terme forestier désignant une espèce ou une sous-espèce ou une variété d’arbre.

Essence d’accompagnement : espèce d’arbre associée à l’essence principal d’un peuplement jouant un rôle essentiellement cultural.

Essence de lumière : essence héliophile dans les premières années de sa vie. La germination, la survie et la croissance des semis ne peut se faire que sous des éclaircements relatifs forts (>50%). Exemple : Pins.

Essence d’ombre : essence sciaphile dans les premières années de sa vie. Les semis peuvent se maintenir (avec une croissance réduite) sous de faibles éclaircements relatifs (<20%). Exemples : Sapin, Hêtre.

Essence objectif : espèce d’arbre à favoriser dans un peuplement pour répondre aux objectifs fixés dans les documents de gestion durable.

Étage : dans un peuplement forestier, espace occupé par les houppiers des arbres d’une même tranche de hauteur bien différenciée. La présence d’une discontinuité verticale marquée permet de distinguer plusieurs étages : dominant et codominant, dominé et sous-étage.

Étage dominant : espace occupé par l’ensemble des houppiers des arbres dominants et codominants.

Étage dominé : espace occupé par l’ensemble des houppiers des arbres dominés.

État d’assiette : liste des parcelles ou des parties de parcelles prévues pour être martelées une année donnée, avec une indication de la surface ou du volume à exploiter et des coupes à réaliser.

Exploïtabilité : notion liée à la maturité d’un arbre ou d’un peuplement forestier ou à l’état à partir duquel il peut être récolté compte tenu des objectifs de gestion. La maturité retenue peut être :
- Physique : maintien de l’arbre jusqu’à sa mort ;
- Économique : recherche de la plus grande quantité de bois la plus utile, donc du revenu moyen maximum ;
- Technique : recherche de la plus grande quantité de bois propre à un usage déterminé ;
- Financière : recherche du taux de placement maximum.

Fermeture du peuplement : processus naturel lié à la croissance des houppiers des arbres, aboutissant à la continuité de l’étage principal.

Fertilité : potentiel de production d’un peuplement forestier.

Forêt ancienne : massif boisé qui n’a pas connu de défrichement depuis une période plus ou moins longue dont la date est à préciser et à justifier par une analyse historique rétrospective.

Forêt de production : forêt dont l’objectif principal est la production de bois.

Forêt naturelle : forêt dont les peuplements sont constitués des essences autochtones d’un territoire et se régénérant par voie naturelle.

Forêt primaire : forêt ayant atteint la phase de maturité climacique, dans sa composition et sa structure.

Forêt secondaire : forêt de reconstitution, issue de la dynamique forestière, intervenant sur l’emprise d’une forêt primaire détruite partiellement ou totalement. Les essences pionnières ou nomades dominent les peuplements et la richesse en essences est généralement à celle de la forêt initiale.

Fourré :
- Jeune peuplement forestier composé d’individus de faible hauteur (0,50 à 3m).
- Stade d’évolution d’une futâie régulière, succédant au stade semis et précédant le stade gaulis.

Futâie :
- régime sylvicole fondé sur la reproduction sexuée des arbres.
- Peuplement forestier composé d’arbres issus de semis ou de plants.
- Synonyme de réserve d’un taillis sous futâie.

Futâie adulte : stade d’évolution de la futâie régulière dont les tiges sont majoritairement des bois moyens.

Futâie claire : futâie à faible capital sur pied et à couvert discontinu de l’étage principal.

Futâie équienne : futâie régulière dont les arbres qui la composent ont sensiblement le même âge.
Futaie irrégulière : la futaie irrégulière se définit à plusieurs niveaux :

a) Structure dont la distribution des diamètres ne correspond pas à une courbe unimodale. Elle se caractérise par une grande distribution de diamètres.

b) Peuplement forestier de structure irrégulière constitué de tiges de plusieurs catégories de grosseur réparties pied à pied et par bouquets.

c) Mode de traitement cherchant à valoriser dans un peuplement les arbres des différentes catégories de grosseur et pouvant conduire à son renouvellement partiel.

d) Méthode d’aménagement qui organise le traitement en futaie irrégulière sur l’ensemble des unités de gestion concernées. L’aménagement définit pour chaque unité de gestion une rotation des interventions sylvicoles, un niveau de prélèvement en coupe et des règles de culture.

Futaie jardinée : la futaie jardinée se définit à plusieurs niveaux :

a) Structure dont la distribution des diamètres correspond à une courbe de type exponentielle décroissante. Cette structure a été longtemps rattachée à une norme (distribution de classes de diamètre). Elle correspond maintenant à des peuplements de référence considérés comme équilibrés.

b) Peuplement forestier de structure jardinée comportant des arbres de toutes les catégories de dimension, du semis à l’arbre mûr.

c) Mode de traitement visant à l’obtention ou au maintien d’une structure jardinée. Il est caractérisé par la mise en œuvre de coupes de jardinage.

d) Méthode d’aménagement qui organise le traitement de futaie jardinée dont l’objectif est l’obtention d’une structure jardinée équilibrée sur chaque unité de gestion (parcelle). Elle consiste à déterminer pour chaque unité ou groupe d’unités de gestion, une périodicité des interventions sylvicoles, un niveau de prélèvement en coupe et des règles de culture.

Futaie mélangée : futaie composée de plusieurs essences forestières.

Futaie mixte : futaie composée de feuillus et de résineux.

Futaie mûre : stade d’évolution de la futaie régulière dont les tiges sont majoritairement des gros bois.

Futaie par bouquets : futaie irrégulière ou jardinée composée de peuplements élémentaires homogènes en structure, de taille unitaire inférieure à 50 ares ; les bouquets.

Futaie par parquets : futaie composée de peuplements élémentaires homogènes en structure, de taille unitaire supérieure à 50 ares, en général cartographiables : les parquets.

Futaie pure : futaie composée d’une seule essence forestière.

Futaie régulière : la futaie régulière se définit à plusieurs niveaux :

a) Structure dont la distribution des diamètres correspond à une courbe unimodale. Elle se caractérise par l’indication de la classe d’âge ou de critères dendrométriques moyens (diamètre, hauteur, etc.).

b) Peuplement forestier de structure régulière. Une futaie régulière suit les stades d’évolution semis, fourré, gaulis, perchis et futaie (jeune, adulte, vieille).

c) Mode de traitement caractérisé par une séparation de la nature des interventions dans les différents peuplements forestiers en fonction de leur âge ou de leur catégorie de grosseur : récolte et renouvellement des peuplements forestiers mûrs ; amélioration des peuplements en cours de croissance (travaux sylvicoles et coupes).

Gaule : tige de hauteur supérieure à 3 m et de diamètre inférieur à 7,5 cm.

Gaulis : stade d’évolution de futaie régulière dont les tiges sont majoritairement des gaules et dont la hauteur moyenne est généralement comprise entre 3 et 8 m.

Mémoire EPHE-SVT- TORRE 15/114
Gros bois : arbre dont le diamètre est à 1,30 m est compris entre 47,5 cm et 62,5 cm (classes de diamètre 50 à 60 cm).

Groupe d’amélioration : ensemble des unités de gestion traitées en futaie régulière sur lesquelles l’aménagement forestier prévoit essentiellement des interventions sylvicoles d’amélioration (travaux sylvicoles ou coupes).

Groupe de préparation : ensemble d’unités de gestion traitées en futaie régulière sur lesquelles l’aménagement forestier prévoit essentiellement des coupes d’amélioration et de préparation à la régénération en vue d’un classement éventuel dans le groupe de régénération au prochain aménagement forestier.

Groupe de régénération : ensemble d’unités de gestion traitées en futaie régulière sur lesquelles l’aménagement forestier prévoit essentiellement des coupes et des travaux sylvicoles de régénération.

- Groupe strict : recherche l’équilibre des classes d’âges lorsque la durée de la régénération est prévisible.
- Groupe élargi : permet de moduler la durée de régénération en conservant l’équilibre des classes d’âges.

Grume : tronc (ou section de tronc) d’un arbre abattu et ébranché, recouvert ou non de son écorce.

Hauteur dominante d’un peuplement forestier : hauteur issue de la moyenne des 100 plus gros arbres à l’hectare.

Ilot de sénescence : petit peuplement forestier laissé en évolution libre sans intervention culturelle et conservé jusqu’à son terme physique, c’est-à-dire jusqu’à l’effondrement des arbres (exploitabilité physique). Les îlots de sénescence sont composés de préférence d’arbres à faible valeur économique et présentant, si possible, une valeur biologique particulière (gros bois à cavités, vieux bois sénescents, etc.).

Ilot de vieillissement : petit peuplement forestier ayant dépassé les critères optimaux d’exploitation économique et qui bénéficie d’un cycle sylvicole prolongé pouvant aller au-delà. L’îlot de vieillissement peut faire l’objet d’interventions sylvicoles afin que les arbres du peuplement principal conservent leur fonction de production. Ils sont récoltés avant dépréciation économique de la bille de pied.

Indice de biodiversité potentielle : indice cherchant à qualifier la capacité d’accueil d’un peuplement forestier vis-à-vis de la biodiversité selon une approche indirecte. Il combine des paramètres liés à la gestion comme le niveau de présence de microhabitats et d’autres qui en sont indépendants mais qui sont importants pour la diversité biologique, comme l’ancienneté de la continuité forestière.

Inventaire forestier : dénombrement des arbres d’un peuplement forestier, d’une forêt ou de l’ensemble des forêts d’une zone donnée, par essences, classes de dimensions et autres caractéristiques. L’inventaire est complet (pied à pied) ou statistique (par échantillonnage). On parle d’inventaire typologique lorsque certaines grandeurs (surface terrière, volume, etc.) sont estimées sur la base des caractéristiques moyennes des peuplements de référence d’une typologie de peuplements.

Itinéraire sylvicole : définition des interventions sylvicoles successives (coupes et travaux) à réaliser pour atteindre un objectif fixé dans un contexte donné.

Jardinage : traitement sylvicole des peuplements de futaie jardinée. Il peut être réalisé pied à pied ou par bouquets.

Jeune futaie : stade d’évolution de la futaie régulière dont les tiges sont majoritairement des petits bois.

Martelage : opération consistant à choisir et à marquer les arbres à abattre dans un peuplement.

Maturité :
 a) Stade d’évolution d’un peuplement forestier précédent la sénescence.
 b) Stade d’évolution d’un peuplement forestier ayant atteint son diamètre d’exploitabilité.
 c) Etat atteint par un arbre dont le diamètre correspond au diamètre d’exploitabilité.
Modèle de croissance des peuplements forestiers : représentation abstraite des relations entre les variables caractéristiques d’un peuplement forestier exprimées sous forme d’équations. Un modèle permet de formaliser des hypothèses sur le fonctionnement d’un peuplement forestier et d’en déduire son comportement global. Tout modèle est une simplification de la réalité résultant d’un compromis entre généralité, réalisme et précision.

Nettoyage : intervention relevant des travaux sylvicoles, ayant pour but de doser le mélange des essences dans des jeunes peuplements forestiers de hauteur supérieure à 3 mètres, complétée par des opérations sanitaires et d’enlèvement des tiges mal conformées.

Norme de sylviculture :
 a) En futaie jardinée, distribution considérée comme idéale du nombre de tiges par classes de diamètre ;
 b) En futaie régulière, voir norme d’éclaircie ;
 c) En taillis sous futaie, distribution idéale du nombre de tiges par catégories de réserves.

Ouvert : se dit d’un peuplement forestier dont l’étage principal est discontinu ou qui présente des trouées.

Parcellaire : ensemble des parcelles d’une forêt ou d’une série d’aménagement.

Parcelle : division de la forêt utilisée comme cadre de référence géographique et matérialisée sur le terrain. Elle constitue généralement une unité de gestion, mais peut aussi faire l’objet de sous-ensembles unités de gestion en forêt publique.

Parquet : unité de peuplement forestier présentant une certaine homogénéité, d’une surface supérieure à 50 ares au sein d’une parcelle et pouvant être cartographiée. Il peut constituer une unité de gestion.

Perche : arbre dont le diamètre à 1,30 m est compris entre 7,5cm et 17,5 cm.

Perchis : en futaie régulière, stade d’évolution qui succède au gaulis et dont les tiges sont majoritairement des perches ou des petits bois. On peut distinguer les bas-perchis constitués principalement de perches (classes de diamètre 10 et 15 cm) et des hauts perchis constitués de petits bois (classes de diamètre 20 et 25 cm).

Perte de valeur d’avenir : différence entre la valeur (actuelle) d’avenir et la valeur de consommation de la superficie. Elle rend compte du manque à gagner qu’il y aurait à récolter un peuplement forestier qui n’a pas atteint son terme d’exploitabilité.

Perturbation : événement aléatoire et imprévisible qui modifie substantiellement tout ou partie d’un écosystème. Les causes en sont variées selon les régions : tempête, feu, avalanche ou chute de rochers, crue, pullulation de ravageurs. À la suite de ces perturbations, les processus dynamiques contribuent peu à peu à la cicatrisation et à la reconstitution de la forêt initiale (résilience des systèmes biologiques ainsi perturbés).

Petit bois : arbre dont le diamètre à 1,30 m est compris entre 17,5 cm et 27,5 cm (classes de diamètre 20 et 25 cm).

Peuplement élémentaire : plus petite partie d’un peuplement forestier, homogène du point de vue de la composition et de la structure. Les peuplements élémentaires peuvent faire l’objet de regroupements synthétiques.

Peuplement fermé : se dit d’un peuplement forestier dont l’étage principal ne comporte aucune trouée.

Peuplement forestier : ensemble des végétaux ligneux, mort-bois exclus, croissant sur une surface donnée.

Peuplement irrégularisé : peuplement forestier dont la structure initialement régulière a évolué vers une structure irrégulière sous l’influence de divers facteurs : chablis, sylviculture,...
Peuplement mélangé :
 a) Au sens strict, peuplement forestier composé au minimum de deux essences, toutes feuillues ou toutes résineuses, dont aucune n’atteint le seuil de pureté retenu (en général, couvert ou surface terrière supérieur à 75%). Le mélange peut être organisé pied à pied, par bouquets, par lignes, par étages,…
 b) Par extension, les peuplements mixtes sont souvent assimilés à des peuplements mélangés.

Peuplement mixte : peuplement forestier composé d’un mélange de feuillus et de résineux...

Peuplement naturel : peuplement forestier issu de régénération naturelle.

Peuplement ouvert : se dit d’un peuplement forestier dont l’étage principal présente des trouées.

Peuplement principal : ensemble des arbres sur lesquels repose l’essentiel de la production et de la valeur d’un peuplement forestier.

Peuplement pur : se dit d’un peuplement forestier constitué par une essence très majoritaire dont le couvert ou la surface terrière est supérieur à un seuil donné, généralement 75%.

Peuplement régularisé : peuplement forestier dont la structure initialement irrégulière a évolué vers une structure régulière sous l’influence de divers facteurs sylvicoles (capitalisation ou vieillissement, éclaircies,…).

Phase :
 a) En dynamique, période transitoire, distinguée au niveau d’un stade au sein d’un cycle sylvigénétique, la succession pouvant être progressive ou régressive. Le stade forestier peut-être subdivisé en :
 1. Une phase pionnière constituée d’essences pionnières ;
 2. Une phase transitoire caractérisée par des espèces postpionnières ;
 3. Une phase de maturité (ou biostatique) ou cours de laquelle se développent la (ou les) dryade(s) caractéristique(s) de certains climax ;
 4. Une phase de sénescence où la chute des vieux arbres dégage des espaces pour de nouvelles générations.
 b) En sylviculture, période correspondant à un ou plusieurs stades d’évolution d’un cycle sylvicole. Cette notion permet de différencier les interventions sylvicoles.

Placette : surface de faible étendue, localisée géographiquement et installée pour diverses utilisations : inventaire, expérimentation, observations, références, démonstration,…Il existe différents types de placettes :
 - A angle constant, assises à l’aide d’une jauge d’angle ;
 - A surface fixe ;
 - Permanentes, repérées de manière durable ;
 - Temporaires, utilisées pour une prise unique de données d’inventaire.

Possibilité : quantité des coupes (en surface ou en volume) autorisées annuellement par le document d’aménagement d’une forêt donnée.

Recensable : qualifie tout arbre dont le diamètre à hauteur d’homme est égal ou supérieur à la dimension minimum fixée pour être prise en compte dans un inventaire forestier.

Réculte : Coupe de bois commercialisable.
Reconstitution :
 a) En dynamique, ensemble des processus dynamiques (en succession progressive) qui permettent d’assurer la cicatrisation d’un espace forestier touché par une perturbation et qui, peu à peu, assurent le retour à l’état antérieur du couvert forestier, des cortèges floristiques et des espèces animales.
 b) En sylviculture, renouvellement par voie naturelle ou artificielle d’un peuplement forestier après sa destruction partielle ou totale due à un aléa naturel.

Recrutement : nombre moyen de tiges à l’hectare qui atteignent le diamètre de précomptage chaque année.

Regarni : plantation destinée à combler les manques au sein d’un boisement ou d’un reboisement artificiel dont la réussite a été jugée partielle.

Régénération :
 a) Ensemble des interventions sylvicoles de renouvellement d’un peuplement forestier par voie sexuée (naturelle ou artificielle).
 b) Ensemble des semis et fourrés de moins de 3 m de hauteur présents sur une surface donnée.

Régénération naturelle : ensemble des interventions de renouvellement naturel d’un peuplement forestier par semences issues des arbres sur pied.

Régénération assistée : ensemble des interventions de renouvellement naturel d’un peuplement forestier faisant l’objet de travaux favorisant l’installation du semis (travail du sol, crochetage) et complété par plantation ou semis.

Régénération sur semis acquis : coupe de régénération débutant lorsque des semis sont déjà installés.

Régime : mode de renouvellement d’un peuplement forestier. On distingue fondamentalement deux régimes : (i) le taillis (rajeunissement par voie végétative), (ii) la futaie (régénération par semences). Le taillis sous futaie est la combinaison de ces deux régimes.

Régime d’éclaircie : ensemble des coupes d’éclaircie, définies par leur intensité, se déroulant dans la phase d’amélioration d’un peuplement régulier.

Régime forestier : ensemble des dispositions législatives et réglementaires, dérogatoires au droit commun, déterminées par le code forestier en vue d’assurer la conservation et la mise en valeur des forêts publiques.

Rémanents : Sous-produits non marchands (branches, cimes, etc...) qui restent sur le parterre de la coupe après exploitation.

Répartition des classes d’âge : distribution des classes d’âges, en surface, dans une futaie régulière. Elle est souvent représentée par un histogramme.

Réserve :
 a) Arbre désigné en vue d’être maintenu lors d’une exploitation.
 b) Arbre ou ensemble des arbres de futaie dans un taillis sous futaie.
Réserve biologique : Espace bénéficiant d’une protection réglementaire, spécifique aux forêts relevant du régime forestier. On distingue les réserves biologiques intégrales (RBI) dont l’objectif est la libre évolution d’écosystèmes forestiers et associés, et les réserves biologiques dirigées (RBD), consacrées à la gestion conservatoire d’habitats ou d’espèces remarquables.

Résilience : capacité que possède un écosystème ou une partie d’un écosystème (sol, communautés végétale ou animale, peuplement forestier, ...) à retrouver son état d’origine, par différents processus de dynamique progressive, après sa destruction totale ou partielle par un aléa naturel ou une perturbation.

Résistance : capacité que possède un arbre ou un peuplement forestier de se maintenir en état, en présence de facteurs de perturbation (vent, neige, insectes, etc.).

Restauration : ensemble d’actions de gestion destinées, dans le cas d’un habitat ou d’un ensemble d’habitats dégradés ou appauvris en espèces, à revenir à un état, un fonctionnement et une dynamique proche des conditions initiales. Ces actions sont multiples : restauration de la structure (ex : stratification verticale d’un écosystème forestier) ou de la composition en espèces, en réimplançant les espèces végétales ou animales disparues, en éliminant les populations de plantes invasives ou encore en restaurant des éléments du biotope (eau, sol, ...).

Révolution : durée séparant deux coupes successives du taillis d’une même parcelle de taillis simple ou de taillis sous futale.

Rotation : durée séparant deux coupes successives dans une même unité de gestion.

Sacrifice d’exploitabilité : perte en argent consécutive à une exploitation d’arbres trop précoce ou trop tardive par rapport aux critères d’exploitabilité fixés.

Semencier : arbre susceptible de produire des graines et participant au renouvellement du peuplement forestier. Il est généralement choisi pour ses bonnes qualités phénotypiques.

Semis :
 a) Jeune tige, issue de graine, de moins de 0,50 m de hauteur.
 b) Premier stade d’évolution d’une futaye régulière correspondant à l’acquisition de la régénération et précédant le stade du fourré.
 c) Action de semer.

Semis acquis : régénération naturelle jugée viable et en quantité suffisante pour participer au renouvellement du peuplement forestier.

Semis direct : boisement effectué directement par semis, en milieu forestier ou sur une terre agricole.

Série : Ensemble d’unités de gestion pouvant être regroupées dans une unité d’objectif qui peut correspondre à une unité de traitement sylvicole. Chaque série fait l’objet de prescriptions spécifiques dans le document d’aménagement forestier.

Social : se dit d’une espèce tolérant la concurrence intraspécifique et pouvant constituer naturellement des peuplements purs de grande surface.

Soins culturaux : ensemble des travaux effectués dans un peuplement à tout stade de sa vie.

Sous-bois : végétation arbustive, herbacée et muscinale présentes sous le couvert des arbres.

Sous-étage : en structure régulière, espace occupé par l’ensemble des houppiers des arbres situés nettement en dessous (discontinuité) de celui des arbres des étages supérieurs (principal dominant, dominé).

Stabilité d’un peuplement : capacité que possède un peuplement forestier à se maintenir dans le temps. La stabilité comprend à la fois les notions de résistance à une perturbation (stabilité statique) et de résilience pour retrouver son état initial (résilience).

Stade : étape importante au sein d’une succession ou d’une série de végétation, caractérisée par un changement de physionomie de la végétation et donc par des modifications marquées des cortèges floristiques. Dans le cadre d’une succession linéaire, on distingue les stades pionnier, herbacé, arbustif et forestier.

Stade d’évolution : en futaie régulière, étape par laquelle passe un peuplement forestier au cours de son cycle sylvicole : semis, fourré, gaulis, perchis, jeune futaie, futaie adulte, vieille futaie.

Station : étendue de terrain de superficie variable, homogène dans ses conditions physiques et biologiques (mésoclimat, topographie, composition floristique et structure de la végétation spontanée, sol). Une station forestière justifie, pour une essence déterminée, une ou plusieurs sylviculture(s) avec laquelle (ou lesquelles), on peut espérer une productivité comprise entre des limites connues.

Strate : en sylviculture, tranche horizontale du volume aérien occupé par un peuplement forestier.

Structure d’un peuplement forestier : organisation spatiale d’un peuplement forestier du point de vue de la répartition des tiges, distinguée par catégorie de grosseur ou par strate. On distingue deux grands types de structure : régulière et irrégulière, la structure jardinée n’étant qu’un cas particulier de la structure irrégulière.

Suivi d’aménagement : procédure de contrôle de la mise en œuvre de l’aménagement forestier à l’aide d’indicateurs (volume exploité, surface terrière, surface régénérée, recrutement, etc...).

Surexploitation : exploitation ou gestion forestière ne respectant pas les principes de gestion durable en prélevant, de façon significative, plus que l’accroissement biologique.

Surface à régénérer : surface à renouveler, en général en futaie régulière, pendant la durée d’application de l’aménagement forestier.

Surface à régénérer d’équilibre : en futaie régulière, surface théorique à régénérer pendant la durée d’application de l’aménagement forestier pour arriver à l’équilibre des classes d’âge à long terme.

Surface terrière :

a) Pour un arbre, aire (g) de la section perpendiculaire à l’axe de son tronc à 1,30 m du sol.

b) Pour un peuplement forestier, la somme (G) des sections à 1,30 m du sol de tous les arbres précomptables, exprimée en m²/ha.

Sylviculture : ensemble des sciences et des techniques orientant l’évolution naturelle des peuplements forestiers pour les guider vers les objectifs fixés dans le cadre d’une gestion durable d’une forêt.

Sylviculture dynamique : sylviculture ayant pour but de réduire la durée du cycle de production par des interventions sylvicoles fortes, précoces et soutenues, aboutissant à des peuplements forestiers à capital sur pied modéré.

Sylviculture extensive : sylviculture caractérisée par une limitation des interventions sylvicoles dans le but d’assurer au moindre coût la pérennité des peuplements forestiers. Elle est généralement mise en œuvre dans le cas de peuplements à faible enjeu de production.
Sylviculture intensive : sylviculture de peuplements forestiers homogènes visant à accroître notablement la production en faisant largement appel à des principes agronomiques associant mécanisation, sélection génétique, fertilisation et protection phytosanitaire.

Sylviculture proche de la nature : concept sylvicole sans norme préconçue, s’appuyant sur la dynamique naturelle des peuplements forestiers.

Sylvigenèse : ensemble des processus dynamiques naturels s’observant au sein d’un écosystème forestier ou d’un massif forestier, relevant de la dynamique cyclique ou de la dynamique linéaire (reconquête forestière, reconstitution après une perturbation ayant ouvert de vastes espaces).

Taillis : peuplement forestier issu de rejets de souche ou de drageons, dont la perpétuation est obtenue par des coupes de rajeunissement.

Taillis avec réserves : peuplement forestier constitué de brins de taillis associés à des arbres de futaie. Il est généralement issu de l’abandon du taillis sous futaie (arrêt des coupes de taillis).

Taillis simple :
 a) Peuplement forestier de taillis à structure régulière.
 b) Traitement sylvicole consistant à recéper périodiquement la totalité du peuplement forestier.

Taillis sous futaie :
 a) Peuplement forestier constitué d’un taillis simple surmonté d’une futaie irrégulière présentant différents âges, multiples de la révolution du taillis.
 b) Traitement sylvicole rattaché à une norme de sylviculture, le plan de balivage, fixant le nombre de réserves à l’hectare à conserver après chaque coupe.

Tarif de cubage : tableau à une ou deux entrées, utilisé pour l’estimation du volume d’un peuplement forestier. Il est établi statistiquement à partir de mesures prises directement sur des arbres échantillons.

Traitement : en sylviculture, ensemble des interventions (coupes et travaux sylvicoles) appliquées à un peuplement en vue de le maintenir ou de le faire évoluer vers une structure déterminée.

Transformation : modification de la composition d’un peuplement forestier par substitution d’essences, avec ou sans changement de structure.

Travaux sylvicoles : ensemble des interventions effectuées dans un peuplement forestier (protection contre les dégâts de gibier, nettoiement, plantation, dégagement, taille de formation, élagage, etc.) à tout stade de sa vie.

Très gros bois : arbre de diamètre supérieur à 62,5 cm (classes de diamètre supérieure à 65 cm).

Trou de production : période sans récolte ou à faible récolte en bois mûrs dans une forêt déficitaire en gros bois.
Trouée :
 a) En dynamique forestière, ouverture plus ou moins importante dans un couvert forestier, dans celui d’une formation buissonnante ou herbeuse dense et haute. Au niveau de l’écosystème forestier les trousées créées par la mort d’arbres (ou encore par des perturbations ou des coupes pratiquées par l’homme) sont à l’origine d’une dynamique cyclique, avec des cycles sylvigénétiques ou sylviculturaux plus ou moins longs et complexes selon leur surface. Le retour à la composition d’origine peut être rapide au niveau de petites trousées, où se succèdent alors les phases pionnière, transitoire puis de maturité.
 b) En sylviculture, ouverture temporaire du couvert, de surface généralement inférieure à 50 ares.

Type d’éclaircie : mode opératoire d’une éclaircie. On en distingue différents types : l’éclaircie systématique (en ligne), sélective, sélective avec cloisonnement.

Type de peuplement : peuplement forestier fictif établi sur la base d’une synthèse de caractéristiques jugées déterminantes (structure, composition, capital sur pied, etc.) d’un ensemble de peuplements élémentaires présentant des analogies.

Type de station : résumé et synthèse des caractéristiques d’un ensemble de stations analogues par la position topographique et géomorphologique, la nature du sol, la composition floristique, la dynamique de la végétation, etc.

Typologie des peuplements : catalogue synthétique des différents types de peuplements rencontrés dans une forêt, un massif ou une région, etc. Outil de description à des fins sylvicoles et d’aménagement.

Typologie des stations : mise en évidence et étude des types de station qui sont souvent décrits et réunis dans des catalogues de stations d’une région donnée.

Unité de gestion : plus petite division géographique d’une forêt faisant l’objet d’une planification (objectifs, interventions, suivi et contrôle).

Vieille futaie : stade d’évolution de futaie régulière dont les tiges sont majoritairement des très gros bois.

Volis : partie de la tige d’un arbre brisé tombée au sol.

Volume aménagement : volume total conventionnel des arbres recensables, permettant de calculer la possibilité et de suivre les volumes exploités dans une forêt ou une partie de forêt concernée par l’aménagement.

Volume bois fort : volume d’un arbre ou d’un peuplement forestier à la découpe bois fort, soit 7 cm au fin bout.

Volume commercial :
 a) Volume défini par les normes NF B53-017 et NF 533-105. Pour une grume, il correspond au produit de sa section médiane, sur ou sous écorce, par sa longueur.
 b) Volume ligneux calculé par l’application de barèmes ou de tarifs de cubage de manière à évaluer au mieux le volume susceptible d’être mobilisé.

Volume présumé réalisable : volume susceptible d’être exploité sur une surface donnée (parcelle, forêt) en application d’un aménagement forestier.

Volume sous écorce :
 a) Pour une grume abattue : volume obtenu à partir du diamètre médian mesuré sur bois écorcé.
 b) Pour un arbre ou pour une coupe : volume de bois non écorcé, obtenu à partir du diamètre mesuré sur écorce après prise en compte d’un taux d’écorce propre à chaque essence.

Volume sur écorce : volume d’une grume, d’un arbre ou d’une coupe, obtenu à partir du diamètre mesuré sur écorce.

Volume sur pied : quantité de matière ligneuse estimée en forêt, sur la base des arbres en place, non abattus. Le volume correspondant doit être précisé : bois fort, ou autre découpe, sur ou sous écorce, avec ou sans houppier, etc.
Volume tige: volume d'un arbre ou d'un peuplement forestier à la découpe marchande, en excluant les branches du calcul.

Volume total: volume d'un arbre ou d'un peuplement forestier incluant la totalité des rameaux.
Il arrive parfois que la conservation d’espèces rares entraîne des controverses qui doivent être gérées au plus haut niveau politique d’un état. Il en a été ainsi, il y a une vingtaine d’années, aux États-Unis, à propos de la chouette tachetée du Nord (Strix occidentalis caurina), espèce vivant dans les forêts anciennes de la côte Pacifique nord du pays, occupant les trous des vieux arbres de plus de deux cents ans.

Dès 1986, certaines associations de protection de la nature ont fait valoir la diminution de ses populations au profit notamment de la chouette rayée (Strix varia) en raison de la réduction drastique de son habitat (alors estimé à 10% de sa surface initiale) mis en coupe par les sociétés d’exploitation forestière. Le débat est lancé à travers la presse (US Forest service, 2013). Des arguments sont évoqués de part et d’autre (Andre, et al., 2010) :

Pour les écologistes, la disparition de la chouette tachetée est due aux pratiques d’exploitation mécanisées entraînant coupes rases et suppression de vieux arbres et bois morts. Il s’agit d’une espèce typique de ces forêts dont la diminution inquiétante signifie aussi celle de centaines d’autres espèces vivant dans les forêts mâtures de la côte nord-ouest des États-Unis. Ils souhaitent l’inscription par l’ « U.S. Fish and Wildlife Service » (FWS) de la chouette tachetée à la liste des espèces menacées de l’ « Endangered species act ».

Pour les bûcherons individuels ou les sociétés d’exploitation forestière, les études mises en avant sur la disparition de l’espèce ne sont pas fiables, les comptages erronés, la superficie forestière d’aujourd’hui est de 30% supérieure à celle des années 1600, les volumes exploités sont loin de couvrir les volumes de biomasse produits par la forêt et 70% de la forêt est déjà protégée. Viennent ensuite les arguments économiques : la protection de la chouette par les restrictions de coupes portant sur son territoire porterait atteinte à 130 000 emplois directs et au chiffre d’affaires de 4 milliards de dollars engendré par la filière bois (Pollard, 1993).

Pendant près de quatre années le débat sera exacerbé entre protecteurs de la chouette et filière bois, arbitré par l’administration forestière américaine, gestionnaire des forêts publiques sur le territoire desquelles se concentre la population de chouette tachetée. Cette dernière propose l’inscription sur la liste des espèces menacées de la chouette en juin 1989. Dans la foulée, en juillet, le Congrès des États-Unis vote 13 millions de dollars pour la recherche sur les chouettes tachetées. Pendant ce temps, l’administration tente de négocier avec la filière bois les aménagements nécessaires à la protection de l’espèce.

Les restrictions de vente des coupes entraînent rapidement une chute des cours et la grogne de la filière bois canadienne toute proche. En octobre 1989, un compromis se dessine pour un moratoire d’un an sur l’exploitation devant permettre à la fois la mise en place de mesures dans les cahiers des charges des ventes de bois et la mise sous protection de vieilles forêts. En 1990, les arguments s’échangent encore de façon acerbe, la justice est saisie. Des coupes font l’objet de sabotages. La polémique atteint le niveau national. Un rapport scientifique inter-agences sur cette question est publié. Il propose la protection de larges surfaces d’habitat (HCA) reliées entre elles par des corridors, eux-mêmes protégés, sur lesquelles l’exploitation devra être abandonnée, ainsi que le suivi scientifique de ces zones. En juin, la chouette tachetée est officiellement inscrite sur la liste des espèces menacées des États-Unis.
Néanmoins, l’administration forestière maintient le droit d’exploiter dans les territoires de la chouette, ce qui lui vaut les foudres des mouvements écologistes qui considèrent qu’elle ne respecte pas les engagements de l’« Endangered species act » (ESA) ni la mission de conservation pour laquelle elle a été créée. Les industriels se plaignent de ne plus trouver assez de bois. Le débat revient au Congrès et le Président Bush lui-même est interpellé. En mai 1991, les procédures engagées auprès des tribunaux trouvent leur aboutissement dans un jugement fédéral. Le juge Dwyer, qui le prononce, reconnaît l’incompatibilité des normes de gestion (NFMA) du Service forestier et des normes de conservation de l’ESA du FWS. Il enjoint le Service des forêts de procéder à la modification des normes d’exploitation afin d’assurer la conservation de la chouette tachetée et la gestion durable de son habitat.

Même au Canada, où réside la sittelle à poitrine rousse (cf § 6.2), la société a investi le champ des normes de gestion forestières (stratégie d’aménagement durable des forêts, SADF) puisque ces dernières ont fait l’objet d’une consultation publique, de la part du gouvernement du Québec par exemple (Gouvernement du Québec, Ministère des Ressources naturelles et de la Faune, 2011). La communauté scientifique a d’ailleurs aussi été sollicitée officiellement sur le sujet par la Direction de l’environnement et de la protection des forêts du ministère des Ressources naturelles et de la faune (MRNF) du Gouvernement du Québec. Grâce à la collaboration des chercheurs de plusieurs universités dont l’UQAC, université du Québec à Chicoutimi, l’UQAM, université du Québec à Montréal, et l’ UQAT, université du Québec en Abitibi-Témiscamingue, regroupées au sein du Centre d’études forestières (CEF), des propositions de gestion de la forêt boréale ont été formulées de manière indépendante des pouvoirs publics, qui ont conduit ces derniers à adopter le concept de l’aménagement écosystémique pour édicter les normes de gestion des forêts du Québec (Ministère des ressources naturelles et de la faune du Gouvernement du Québec, 2014).

Par certains côtés, nous verrons que la problématique de la sittelle de Corse, sans en revêtir l’ampleur médiatique et politique, ressemble, à celle de la chouette tachetée des États-Unis. En effet, la sittelle occupe uniquement l’habitat des forêts à Pin laricio de Corse, celles-là même qui constituent l’essentiel de l’économie en bois d’œuvre de l’île et une part importante de la surface de ses forêts publiques, en particulier de celles de la Collectivité territoriale de Corse qui s’est vue transférer depuis 2002 par l’État les forêts domaniales. Rappelons, ici quelques chiffres (Office national des forêts, 2011):

- Surface inventoriée en production des forêts à Pin laricio majoritaire (>75%): 25 164 ha, soit 5,3% de la superficie forestière de la Corse;
- Surface inventoriée en production des forêts publiques à Pin laricio majoritaire (>75%): 20 305 ha soit 81% de la surface en production à Pin laricio et 21,9% de la surface en production des forêts publiques de Corse;
- Volume annuel moyen mis en vente en Pin laricio de 1996 à 2006: 31 802 m3, soit 59% du volume de bois des forêts publiques proposé à la vente.

Les estimations alarmantes de population de sittelle (Thibault, et al., 2011) ont conduit l’Union Internationale pour la Conservation de la Nature à classer la sittelle corse depuis 2010 en espèce vulnérable de sa liste rouge, (UICN, 2013) code C1+2a (ii), critère fondé sur:
• une taille de population dont le nombre estimé est inférieur à 10 000 tous individus confondus;
• un déclin continu de cette population depuis au moins dix ans ;
• un déclin continu observé, projeté ou déduit du nombre d’individus matures ;
• et tous les individus matures réunis en une seule sous-population.

Les travaux ornithologiques conduits au cours du plan de restauration (Villard, et al., 2014) ont donc produit, au fur et à mesure, un certain nombre de recommandations pour la conservation de la sittelle destinées aux forestiers qui ont été prises en compte dans deux documents destinés à préconiser les méthodes de gestion de l’habitat à Pin laricio :
• le Schéma régional d’aménagement des forêts publiques de Corse approuvé par le Ministre en charge des forêts le 19 décembre 2011.

L’étude menée consiste donc : (i) à réexaminer pour les forêts en ayant bénéficié, les travaux ornithologiques à la lumière des outils et méthodes sylvicoles propres à l’ONF, (ii) à étudier les habitats des sittelles (du point de vue de leur composition en essences forestières, de leur structure et de leur taille) pour les forêts décrites et inventoriables par l’ONF lors de l’élaboration des aménagements forestiers afin de définir les modalités de prise en compte de l’espèce dans la gestion forestière, (iii) de construire et de proposer des outils d’aide à la décision en fonction de différents scénarios de gestion forestière afin de choisir les plus appropriés pour la conservation de l’espèce.

2 LA SITTELLE CORSE

2.1 Description et taxonomie

La sittelle corse (Sitta whiteheadi, Sharpe 1884) est une espèce endémique à la Corse. Il s’agit d’un passereau d’une douzaine de centimètres de long et d’environ 12 grammes, possédant un corps relativement compact, une queue courte (1,3 cm), un bec long (1,6 cm) et une aile d’environ 7 cm. Son plumage est blanchâtre sur le ventre et gris-bleu sur le dos. Dimorphe sexuellement, le mâle dispose d’une calotte noire et la femelle d’une calotte gris-ardoise. Chez tous les deux l’œil est surmonté d’un sourcil blanc marqué. Comme la plupart des sittelles, la sittelle corse est un oiseau arboricole qui se déplace sur les troncs en zig-zag pour monter et la tête en bas pour descendre (Löehrl, 1960). Sa particularité est d’avoir le bec le plus long et le plus effilé des sittelles avec une allure en biseau (Prodon, et al., 2007), un outil très adapté à la préhension des graines de Pin laricio.

Règne : Animalia - Embranchement : Chordata
Classe : Aves - Ordre : Passeriformes
Famille : Sittidae
Genre : Sitta- espèce: whiteheadi

La sittelle corse fait partie de la famille des Sittidae qui comprend une vingtaine d’espèces réparties essentiellement en Asie et du groupe canadensis (Harrap, et al., 1996).
Elle est très proche génétiquement de la sittelle chinoise (Chinese nuthach, *Sitta villosa*), espèce-sœur (figure 2.2).

2.2 Distribution géographique

On trouve l’espèce dans les forêts de Pin laricio de la chaîne centrale de la Corse et quelques fragments forestiers isolés.

Figure 2.3 Aire de répartition de *Sitta whiteheadi* : En bleu : l’aire du pin laricio décrite par l’Inventaire forestier national (1988). Les points noirs : « centroïdes » des fragments abritant des sittelles (Sources : ONF base de données naturaliste, Thibault, et al., 2011).
2.3 Effectif

Selon à la fois une méthode de terrain avec repasse (48 forêts) et une méthode cartographique fondée sur le ratio entre la surface de Pin laricio et la moyenne de la superficie des territoires de sittelles connus (55 forêts dont 18 partiellement visitées), la taille de la population a pu être estimée (Thibault, et al., 2011) à 1 879 territoires (1 557-2 201).

2.4 Habitat

Les premiers travaux d’une certaine ampleur conduits sur l’habitat de la sittelle l’ont été par Brichetti et Di Capi (Brichetti, et al., 1985) et (Brichetti, et al., 1987). Ils ont observé dix parcelles échantillons en forêt de montagne corse de 1981 à 1984 en période de reproduction de l’oiseau et ont établi une typologie des arbres porteurs de loges (cf annexe A-1§A-1.1). Ils ont pu ainsi déterminer : (i) un habitat préférentiel constitué de forêt mature « non exploitée » de Pin laricio de l’étage montagnard (1 000- 1 500 m) avec une densité moyenne de 1,13 couple aux 10 ha où l’on note une forte présence d’arbres morts ou pourrissant debout et des clairières, parfois mélangées au Hêtre et au Sapin pectiné, ces derniers en sous étage, (ii) un habitat secondaire du supra-méditerranéen composé de futaies de Pin laricio mélangées au Pin maritime ou bien de jeunes futaies ayant été exploitées (< 1 000 m) ou du subalpin (> 1 500 m), dans des conditions climatiques moins propices à l’expression de la végétation (rochers), avec une densité moyenne de 0,24 couples aux 10 ha.

Un premier travail réalisé pour les forestiers (Beck, 1992) a consisté à décrire, selon une typologie des peuplements forestiers simplifiée élaborée par l’ONF, l’habitat de la sittelle corse. Les parcelles des forêts de Tartagine-Melaghja, Restonica, Verghellu ont été parcourues pour contacter les mâles de sittelles par une méthode de repasse. La description des peuplements utilisée par les forestiers a été utilisée pour caractériser les parcelles parcourues (d’une surface entre 2,10 ha et 26,08 ha). Il a pu être démontré:

- une nette préférence de la sittelle pour le Pin laricio versus le Pin maritime ;
- davantage de contacts positifs dans les futaies et vieilles futaies que dans les jeunes peuplements ;
- une majorité de contacts dans les peuplements comportant au moins un arbre mort ;
- une présence plus importante de la sittelle dans l’intervalle altitudinal 1 300m-1 400m ;

Les forêts de Pin laricio non exploitées ne constituant qu’une faible superficie de cette formation forestière, il a paru opportun aux ornithologues de tenter de déterminer les facteurs-clés de la présence de la sittelle en forêt de production. Cela a été l’objet du travail du premier « Plan de restauration de la sittelle » dont l’essentiel des résultats a récemment fait l’objet d’une publication (Villard, et al., 2014).

Figure 2.4 Probabilité de présence de la sittelle en fonction du diamètre du plus grand pin (regression logistique)

Figure 2.5 Présence de la sittelle en fonction des classes de diamètre. Source : (Villard, et al., 2014)
Le dispositif scientifique mis en place l’a été sur les forêts territoriales de Valduniellu et Aitone. Repris dans les études proposées dans ce mémoire, il est décrit au § 4.2.2.1. Il apparaît au vu des résultats de ces diverses analyses (figures 2.4 & 2.5) que l’habitat forestier est favorable :

- lorsque le diamètre des pins est supérieur à 50 cm et il devient nettement favorable lorsque les pins ont un diamètre supérieur à 80 cm ; il en suffit d’un seul pour que la présence de la sittelle soit systématique.
- lorsque le pourcentage d’essences non Laricio est inférieur à 50 % ;

La distance entre l’arbre nid et l’arbre de plus de 20 cm le plus proche varie de 4,5 m à 22 m, la sittelle choisit pour son nid une chandelle située près d’un arbre de plus de 20 cm de diamètre.

L’habitat optimal de la sittelle en forêt de production est donc :

- une futaie pure de Pin laricio d’une taille d’au minimum trois hectares,
- comprenant environ 24 gros pins de plus de 80 cm de diamètre à hauteur de poitrine,
- où l’on doit trouver au moins 8 arbres porteurs de nids de type chandelles ou arbres morts branchus de préférence écorcés,
- au moins en partie éloignés de moins de 20 m d’un arbre de plus de 20 cm de diamètre,
- la densité du peuplement atteignant au moins 200 tiges/ha.

2.5 Biologie

2.5.1 Alimentation

Le régime alimentaire de la sittelle corse a été établi à partir d’observations (Cramps, et al., 1993):

- Au printemps et en été, la sittelle consomme des invertébrés comme les insectes (larves et adultes) : hyménoptères, diptères, coléoptères, lépidoptères ; ou des arachnides.
- A l’automne et en hiver, elle privilégie les graines de Pin laricio qu’elle consomme sur les cônes dès leur ouverture ou bien au sol, lorsque ceux-ci se sont libérés de leurs graines, ou encore après les avoir cachées, derrière les écorces ou après les avoir recouvertes de fragments d’écorce ou de lichen, sur les grosses branches.

Son comportement alimentaire en période de reproduction a été observé du 10 avril au 12 juin 1997 de façon systématique en forêts de Rospa-Sorba, Valduniellu, Sant’Antone, Ascu et Verghellu au cours d’une étude conduite par S. Bichelberger (Bichelberger, 1997) sur 1307 observations. Il en ressort que :

- Les substrats les plus utilisés sont essentiellement la strate arborée (70,4%), l’air (24,9%), peu la strate arbustive (4,43%) et de façon négligeable les autres.
- L’alimentation en vol (insectes) domine en période d’élevage des jeunes (97,23% du nombre de fly-catch)
- L’essence exploitée est très majoritairement le Pin laricio (98,06% des observations)
- Les situations de l’oiseau en strate arborée sont selon une importance décroissante : la zone de transition tronc-canopée (36,6%), le centre de la canopée (34,2%), la périphérie de la canopée (16,8%) et le tronc (10,8%)
- Les structures de l’arbre exploitées sont majoritairement les grosses branches (31,3%), puis le tronc (25,8%) et les lichens (20,3%).
- Les oiseaux glanent (41%), fouillent (34,7%) et piquent (24,3%).

L’hiver constitue une période critique pour la sittelle pendant laquelle les ressources alimentaires dont elle disposait (arthropodes) s’amenuisent sérieusement. Son comportement alimentaire hivernal a donc fait l’objet d’une étude ciblée (Villard, 2001) à partir d’observations réalisées en Vallée d’Ascu entre janvier et février 2001. Il s’avère que la sittelle se tourne alors vers la consommation de graines, essentiellement de Pin laricio.

La raison de l’importance des graines de Pin laricio est sans doute qu’elles sont consommables beaucoup plus facilement par l’oiseau que celles du Sapin ou du Pin maritime : leur enveloppe est très fine et la sittelle l’élimine très rapidement tandis que les autres graines sont dotées d’une coque rigide.

Au-delà, l’oiseau privilégie les vieux laricii dont les avantages sont le fort volume de cônes produit et par conséquent de graines, le nombre de caches des vieux troncs et les cavités pouvant servir d’abri en cas de basse température. La ressource en graines n’étant pas disponible de façon permanente pendant l’hiver (Moneglia, 2010), cela est susceptible d’expliquer le comportement de cache de l’oiseau (cf Annexe A-1§A-1.4). Le comportement alimentaire différencié de la sittelle selon les saisons et son adaptation à l’exploitation optimale de son habitat principal, la futaie de Pin laricio lui permet d’être entièrement sédentaire (Villard, et al., 2003).

2.5.2 Reproduction

La sittelle corse niche dans une cavité d’arbre mort, mourant ou en partie mort à une hauteur moyenne d’environ 10 m (Brichetti, et al., 1985). Sa biologie de reproduction a été étudiée en Vallée d’Ascu (Villard, et al., 2001) grâce à une caméra infra-rouge montée sur perche. L’observation de 25 nids a permis aux auteurs de décrire la loge utilisée : entrée de taille moyenne 37mm de hauteur x 32 mm et dimensions intérieures moyennes 122 mm de profondeur x 109 mm de hauteur x 56 mm de largeur. Cette loge est creusée par l’oiseau lui-même, qui, parfois utilise des ébauches de trou de pic. Le nid est constitué d’aiguilles de pin, de mousses à la base et au sommet de poils de sanglier ou de mouflon et d’écorces de bouleau et de plumes souples.

La ponte est déposée entre le 5 avril et le 16 juin (Thibault, et al., 2005), elle comporte quatre à six œufs. Plus la production de cônes précédant la reproduction a été importante et plus précoce est cette dernière. En cas d’échec seulement, il peut y avoir une ponte de remplacement. La prédation des nids (œufs ou petits) par le Pic épeiche ou le Lérot est la cause la plus fréquente de l’échec de la reproduction, parfois la prise au vol d’un petit par l’Épervier.

C’est la femelle qui couve seule, la durée d’incubation étant d’environ 14 jours. Durant cette période et au-delà, puisqu’elle couve encore pendant 8 jours les petits éclos, c’est le mâle qui assure sa subsistance. La nichée comporte 3 à 6 jeunes. Ils quittent le nid à l’âge de 20 jours en moyenne, plus petits que les parents (aile, queue et bec) mais affichant déjà leur dimorphisme sexuel au niveau de la calotte.

Le suivi du dispositif de la vallée d’Ascu de 1998 à 2003 (Thibault, et al., 2005) a permis de démontrer, grâce au baguage d’oiseaux, que la sittelle est fidèle à un territoire, avec un taux de réoccupation d’une année sur l’autre de 92 à 98% selon l’année et utilise souvent (49% des cas) le même nid.

Enfin, le taux de survie de l’espèce a pu être estimé grâce à des méthodes de capture-recapture d’oiseaux bagués sur le site d’Ascu. La survie annuelle apparente des mâles est de l’ordre de 0,62 et la longévité maximale constatée a été de 5 ans et 7 mois (Thibault, et al., 2006).
2.6 Statut de protection

La sittelle corse est la seule espèce endémique d’oiseaux de France métropolitaine. Elle est protégée par diverses réglementations :

- Nationales : article 3 de la liste des oiseaux protégés sur l’ensemble du territoire et les modalités de leur protection ; article 1er de la liste des espèces de vertébrés protégées menacées d’extinction en France et dont l’aire de répartition excède le territoire d’un département.

- Internationale : l’annexe II de la Convention relative à la conservation de la vie sauvage et du milieu naturel de l’Europe (Convention de Berne) ;

- Elle figure comme espèce vulnérable sur la liste rouge mondiale des espèces menacées de l’UICN (Birdlife international, 2013) ainsi que comme telle sur la liste rouge des espèces menacées en France (UICN France, MNHN, LPO, SEOF, ONCFS, voir introduction).

3 LES FORETS ETUDIEES

Deux sites ont été examinés : le massif forestier d’Aitone-Valduniellu et celui de Rospa-Sorba. Il s’agit de forêts de la chaîne centrale de la Corse à peuplements de Pin laricio majoritaires :

Figure 3.1 Carte de localisation des massifs forestiers étudiés. Données IGN ©BD Carto 2010 et ONF ©limites des forêts relevant du régime forestier 2012

Mémoire EPHE-SVT- TORRE 32/114
3.1 Description et gestion du massif d’Aitone-Valduniellu

Ce massif comprend les forêts territoriales d’Aitone (2 402 ha dont 1 640 ha boisés) et de Valduniellu (4 436 ha dont 3 114 ha boisés). Bien que toutes deux soumises globalement à un climat de type méditerranéen montagnard, il existe entre elles une nette différence de pluviométrie, la forêt d’Aitone étant bien arrosée par des précipitations amenées par le vent de régime de sud-ouest qui une fois passées les crêtes qui la séparent de la forêt de Valduniellu s’assèche par effet de foehn. On relève ainsi une pluviométrie plus forte sur Aitone (Station d’Evisa 1 309 mm/an) que sur Valduniellu (Station de Calacuccia 928 mm/an). Par ailleurs, l’altitude moyenne de la forêt de Valduniellu (1 400 m) est supérieure à celle d’Aitone (1 250 m).

Figure 3.2 Carte de localisation des forêts d’Aitone et de Valduniellu
Source : IGN ©BD Carto 2010 et ©BD Alti 2010, ONF ©limites des forêts relevant du régime forestier 2012

3.1.1 La forêt territoriale d’Aitone

Cette forêt, relativement proche de la mer (Golfe de Sagone), est l’une des premières à avoir fait l’objet d’une exploitation par les Génois. Selon le document d’aménagement en cours d’application (Tiger, 2004), les 1 640 ha boisés de la forêt d’Aitone sont composés principalement de pinède de Pin laricio pure (64%), pinède de Pin laricio mélangée (8%), hêtraie pure (7%), hêtraie résineuse (12%), sapinière pure (1%) et aulnaie odorante (8%). La description des formations à Pin laricio établie selon l’ancienne typologie qualitative utilisée à cette époque (annexe A-3 §A-3.1.1) met en avant une jeune futaie de Pin laricio peu représentée (7% de la futaie de PL), et des semis, gaulis et perchis en sous étage avec la futaie claire de cette essence.

- Un traitement en futaie régulière dans les deux séries à objectif de production de Pin laricio qui nous intéressent pour la suite: en tout 34 parquets de régénération en deux groupes de régénération stricts, le premier de 77 ha (série 1), le second de 25 ha (série 2). Deux groupes d’amélioration l’un de 670 ha (série 1), l’autre de 200 ha (série 2).
- Un traitement en futaie régulière par parquets sur 102 ha (nouvelle terminologie) en série 3 de production-protection dont 6 ha à régénérer.
- Un traitement en futaie irrégulière sur 8 ha pour la série 4 d’accueil du public.

Le bilan des coupes de Pin laricio de 1993 à 2003 figurant au nouvel aménagement fait apparaître une récolte de Pin laricio (très majoritaire) de 35 014 m3, soit une moyenne de 2 693 m3/an, soit 35% de plus que la possibilité initialement évaluée (1 990 m3/an). En première série 52,7 ha sur les 77 prévus auront été régénérés contre 5,2 ha sur les 25 prévus en 2ème série.

Mémoire EPHE-SVT- TORRE 33/114
3.1.2 La forêt territoriale de Valduniellu

Selon l’aménagement forestier en vigueur (Pioli, 2010), les 3 114 ha boisés de la forêt de Valduniellu sont composés principalement de pinède de Pin laricio pure (61%), pinède de Pin laricio et Bouleau (9%), hêtraie pure (6%), boulaie pure (2%), aulnaie odorante (22%). La description des formations à Pin laricio (2 184 ha) établie selon l’ancienne typologie qualitative (annexe A-3 §A-3.1.2) donne : 16% de semis-gaulis perchis, 5% de jeune futaie, 13% de futaie adulte, 18% de futaie mûre, 12% de vieille futaie dense, 10% de vieille futaie claire, 26% de peuplements lâches (recolonisation des landes montagnardes).

Autre élément intéressant à prendre en compte, les résultats d’une étude sur les bois morts (Rémy, 2006 cité par Pioli, 2010) comparant la zone de production des séries 1 et 2 (50 relevés) et la réserve biologique (RB) en série 3 (45 relevés) : au total, 57,22 m3/ha (séries 1&2) contre 91,57 m3/ha (RB) et plus particulièrement pour les bois morts sur pied, 9,91 m3/ha ou 3,43 tiges/ha (séries 1&2) contre 17,51 m3/ha ou 6,98 tiges/ha (RB).

3.2 Description et gestion du massif de Rospa-Sorba

Ce massif est composé de la forêt territoriale de Rospa-Sorba (766 ha) et des forêts communales de Rospigliani (84 ha), Noceta (307 ha), et Vezzani -montagne (72 ha). Ces forêts sont soumises à un climat méditerranéen montagnard avec des variantes fonction de leur altitude et de leur orientation. La forêt de Rospa-Sorba a une altitude moyenne de 1 250 m et est orientée pour partie Nord-Nord-Ouest, pour autre partie Nord-Est. Les forêts communales sont en limites inférieures : celle de Rospigliani à 850 m d’altitude moyenne, orientée Nord-Nord-Est, celle de Noceta, Nord-Ouest à 910 m d’altitude moyenne, enfin, celle de Vezzani, orientée Nord pour sa partie la plus importante, à 1 070 m d’altitude moyenne. La pluviométrie moyenne est de 1 040 mm/an (Vivario). Les étages de végétation concernés sont le méso-méditerranéen supérieur, le supra-méditerranéen et le montagnard.

Figure 3.3 Carte de localisation des forêts de Rospa-Sorba, Noceta, Rospigliani et Vezzani. Source : IGN ©BD Carto 2010 et ©BD Alti 2010, ONF ©limites des forêts relevant du régime forestier 2012.
3.2.1 La forêt territoriale de Rospa-Sorba

Selon l’aménagement forestier en vigueur (Vescovali, 2006), les 660 ha boisés de la forêt de Rospa-Sorba sont composés principalement de pinède de Pin laricio pure (79%), pinède de Pin laricio détruite par le feu (15%), pinède de Pin laricio et Sapin (5%), aulnaie (1%).

La description des formations à Pin laricio non détruites par le feu (559 ha) établie selon la nouvelle typologie quantitative (annexe A-3 §A-3.2.1) donne : 10% de semis-gaulis perchis, 10% de futaie irrégulière (IR), 12% de futaie régularisée petit bois-bois moyens (R_PBBM= jeune futaie), 21% de futaie régularisée bois moyens (R_BM= futaie adulte), 22% de futaie régularisée bois moyens-gros bois (R_BMGB= vieille futaie), 25% de boisements irréguliers montagnards (futaie très lâche).

Après avoir fait le constat que la gestion en futaie régulière à affectations permanentes de 20 ans pratiquée de 1859 à 1878 avait conduit à une surexploitation de la forêt, la gestion passée a consisté en un traitement en futaie irrégulière de 1896 à 1980 sur 583 ha de futaie de Pin laricio pure ou mélangée avec une rotation des coupes de 24 ans (1896-1917 et 1958-1980) ou de 26 ans (1918-1957). L’âge d’exploitabilité a été fixé à 270 ans de 1896 à 1917 puis à 312 ans de 1918 à 1957, enfin à 240 ans de 1958 à 1980. De 1981 à 2005, c’est à nouveau le traitement de la futaie régulière par parquets qui a été appliqué sur 599 ha de la première série, avec un âge d’exploitabilité fixé à 140 ans et un diamètre d’exploitabilité de 80-85 cm à 1,30 m, pour un groupe de régénération strict de 106 ha. Le traitement en futaie régulière a été conservé pour la seconde série sur 146 ha avec des coupes jardinatoires tous les 12 ans et un diamètre d’exploitabilité fixé à 70 cm à 1,30m. Les volumes extraits ont varié en moyenne de 530 m3/an (1896-1917) à 4 920 m3/an (1918-1957) à 697 m3/an (1958-1980) jusqu’à 1 210 m3/an (1981-2004).

Plus précisément, au cours du dernier aménagement forestier (1981-2004), ont été récoltés, uniquement sur la première série et en Pin laricio, 17 296 m3 sur 57 ha des 106 ha du groupe de régénération et 26 692 m3 sur les 493 ha du groupe d’amélioration. 57 ha sur les 106 sont considérés comme ayant été régénérés.

3.2.2 La forêt communale de Rospigliani

Selon l’aménagement forestier en vigueur (Pettini, 2011), les 76 ha boisés de la forêt de Rospa-Sorba sont composés principalement de pinède de Pin laricio pure (90%), pinède de Pin maritime (2%), yeuseraie (3%) et reboisements divers (5%).

La description des formations à Pin laricio (63 ha) établie selon la nouvelle typologie quantitative (annexe A-3 §A-3.2.2) donne : 20% de semis-gaulis perchis, 12% de futaie irrégulière (IR), 8% de futaie régularisée petits bois (R_PB= très jeune futaie), 7% de futaie régularisée petit bois-bois moyens (R_PBBM= jeune futaie), 1% de futaie régularisée bois moyens (R_BM= futaie adulte), 10% de futaie régularisée bois moyens-gros bois (R_BMGB= vieille futaie), 42% de futaie régularisée gros bois (R_GB= très vieille futaie).

La gestion passée a consisté en un traitement en futaie irrégulière de 1956 à 1979 sur 81 ha de futaie de Pin laricio pure une rotation des coupes de 24 ans. De 1980 à 2010, c’est le traitement de la futaie régulière par parquets (sous-parcelles) qui a été appliqué, avec, en particulier de 1996 à 2010, sur les 81 ha de l’unique série, un âge d’exploitabilité fixé à 160 ans pour un groupe de régénération strict de 7 ha.

Au cours de ce dernier aménagement forestier (1996-2010), ont été récoltés, 145 m3 sur les 7 ha du groupe de régénération et 83 m3 sur les 74 ha du groupe d’amélioration. Les 7 ha du groupe de régénération sont considérés comme ayant été régénérés.

Autre facteur à ne pas négliger, le risque d’incendies. La forêt de Rospigliani a subi, entre autres, le grand incendie d’août 1985 sur la quasi-totalité de sa surface.
3.2.3 La forêt communale de Noceta

Selon l’aménagement forestier en vigueur (Guy, 2012), les 224 ha boisés de la forêt de Noceta sont composés principalement de pinède de Pin laricio pure (84%), pinède de Pin laricio et Pin maritime mélangés (8%), peuplements de feuillus divers (8%).

La description des formations à Pin laricio (207 ha) établie selon la nouvelle typologie quantitative (annexe A-3 §A-3.2.3) donne : 11% de semis-gaulis perchis, 6% de futaie irrégulière (IR), 4% de futaie régularisée petits bois (R_PBM= très jeune futaie), 5% de futaie régularisée petit bois- bois moyens (R_PBBM= jeune futaie), 15% de futaie régularisée bois moyens (R_BM= futaie adulte), 2% de futaie régularisée bois moyens-gros bois (R_BMGB= vieille futaie), 41% de futaie régularisée gros bois (R_GB= très vieille futaie), 14% de futaie adulte et 2% de vieille futaie non inventoriée.

La gestion passée a consisté en un traitement en futaie irrégulière de 1955 à 1975 sur 237 ha de futaie de Pin laricio pure ou mélangée. De 1977 à 1995, c’est le traitement de la futaie régulière par parquets (sous-parcelles) qui a été appliqué sur les 237 ha de l’unique série. De 1996 à 2009 le traitement de la futaie régulière par parquets (sous-parcelles) est reconduit sur une série unique de 166 ha avec un âge d’exploitabilité fixé à 140 ans et un diamètre d’exploitabilité de 60 cm à 1,30m pour un groupe de régénération strict de 18 ha.

Au cours de ce dernier aménagement forestier (1996-2009), ont été récoltés, 4 367 m3 sur les 18 ha du groupe de régénération et 5 573 m3 sur les 148 ha du groupe d’amélioration. 14 ha sur les 18 ha du groupe de régénération sont considérés comme ayant été régénérés.

La forêt de Noceta a aussi subi, entre autres, le grand incendie d’août 1985 sur la quasi-totalité de sa surface.

3.2.4 La forêt communale de Vezzani (montagne)

Selon l’aménagement forestier en vigueur (Fanget, 2012), les 155 ha boisés de la forêt de Vezzani sont composés principalement de pinède de Pin laricio pure (78%), de pinède de Pin laricio à Chêne vert (17%), de pinède de Pin laricio à feuillus divers (3%), de peuplements de feuillus divers (2%).

La description des formations à Pin laricio inventoriée (47 ha sur 153 ha) selon la nouvelle typologie quantitative (annexe A-3 §A-3.2.4) donne : 7% de jeune futaie, 8% de futaie irrégulière (IR), 8% de futaie régularisée bois moyens (R_BM= futaie adulte), 45% de futaie régularisée bois moyens-gros bois (R_BMGB= vieille futaie), 41% de futaie régularisée gros bois (R_GB= très vieille futaie).

La gestion passée a consisté en un traitement en futaie irrégulière par coupes régulières de 50 ha de futaie de Pin laricio pure ou mélangée. De 1977 à 2006, c’est le traitement de la futaie régulière par parquets (sous-parcelles) qui a été appliqué sur les 30 ha de la série de production-protection avec un âge d’exploitabilité fixé à 180 ans pour un groupe de régénération strict de 3,9 ha.

Au cours de ce dernier aménagement forestier (dates effectives d’application : 1996-2009), ont été récoltés, 85 m3 sur les 3,9 ha du groupe de régénération qui sont considérés comme ayant été régénérés.

Le risque d’incendies est là encore présent puisque la forêt de Vezzani a aussi subi, notamment, le grand incendie d’août 1985 sur la quasi-totalité de sa surface.
Tableau 3.1 Tableau comparatif des forêts étudiées relativement aux objectifs et types de traitement appliqués lors des derniers aménagements en vigueur.

<table>
<thead>
<tr>
<th>FORET</th>
<th>DERNIER AMENAGEMENT</th>
<th>SERIE</th>
<th>OBJECTIF</th>
<th>SURFACE PL (ha)</th>
<th>TYPE DE TRAITEMENT</th>
<th>FR: SURFACE À REGENERER (ha)</th>
<th>FR: AGE D'EXPLOITABILITE (ans)</th>
<th>FIR: ROTATION DES COUPES JARDINATOIRES (an)</th>
<th>FIR: DIAMETRE D'EXPLOITABILITE (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT AÏTONE</td>
<td>1991-2005</td>
<td>1</td>
<td>Production à sylviculture intensive</td>
<td>879</td>
<td>Futaa régulière par sous-parcelles</td>
<td>77</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Production à sylviculture semi-intensive</td>
<td>726</td>
<td>Futaa régulière par sous-parcelles</td>
<td>25</td>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Protection-production</td>
<td>790</td>
<td>Futaa régulière par parquets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Accueil du public</td>
<td>8</td>
<td>Futaa irrégulière</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2403</td>
<td></td>
</tr>
<tr>
<td>FT VALDUNIELLU</td>
<td>1992-2006</td>
<td>1</td>
<td>Production à sylviculture intensive</td>
<td>1795</td>
<td>Futaa régulière par sous-parcelles</td>
<td>161</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Production à sylviculture semi-intensive</td>
<td>633</td>
<td>Futaa régulière par sous-parcelles</td>
<td>10</td>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Réserve biologique dirigée</td>
<td>308</td>
<td>Aucun</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Hors cadre</td>
<td>1797</td>
<td>Aucun</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4436</td>
<td></td>
</tr>
<tr>
<td>FT ROSPA- SORBA</td>
<td>1981-2004</td>
<td>1</td>
<td>Production</td>
<td>625</td>
<td>Futaa régulière à groupe de régénération strict</td>
<td>106</td>
<td>140</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Protection-production</td>
<td>146</td>
<td>Futaa irrégulière</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>771</td>
<td></td>
</tr>
<tr>
<td>FC ROSPIGLIANI</td>
<td>1996-2010</td>
<td>1</td>
<td>Production de bois d'œuvre</td>
<td>81</td>
<td>Futaa régulière par parquets</td>
<td>7</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>FC NOCETA</td>
<td>1996-2009</td>
<td>1</td>
<td>Production de bois d'œuvre</td>
<td>253</td>
<td>Futaa régulière à groupe de régénération strict</td>
<td>18</td>
<td>140</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>FC VEZZANI</td>
<td>1996-2009</td>
<td>1</td>
<td>Protection-production</td>
<td>30</td>
<td>Futaa régulière par sous-parcelles</td>
<td>4</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 3.1 Tableau comparatif des forêts étudiées relativement aux objectifs et types de traitement appliqués lors des derniers aménagements en vigueur.
4 LA METHODOLOGIE

4.1 Les données « sittelle »

Ces données ont été fournies sous forme de fichiers de points au format *ESRI shp avec en table attributaire la date de l'observation, l'observateur et les coordonnées géographiques de l'observation relevées au GPS :

4.1.1 Massif forestier d'Aïtone-Valduniellu

La localisation des sittelles s’est faite au printemp 2005 dans les zones définies comme de production des forêts d’Aïtone (séries 1&2) et de Valduniellu (séries 1&2) à l'écoute des cris, chants et bruits de percussion, la localisation a été déterminée sans repasse. N'ont été retenus que les sites de nids (Villard, et al., 2014), soit 41 relevés en forêt d’Aitone et 57 en forêt de Valduniellu représentant en totalité 98 territoires.

4.1.2 Massif forestier de Rospa-Sorba

La localisation des sittelles prise en compte est de nature différente :

• la forêt territoriale de Rospa-Sorba a bénéficié d’un inventaire des territoires de sittelles à la repasse en juillet 2007 (Thibault J-C.), au chant en 2009 (Hacquemand D.), par repérage de certaines des loges en avril 2012 (Casalta P.).
• Les forêts communales de Noceta et Rospigliani ont bénéficié d’un inventaire des territoires de sittelles à la repasse en avril 2009 (Thibault J-C.), par repérage des loges en avril 2012 (Casalta P.).
• La forêt communale de Vezzani a bénéficié d’un inventaire des territoires de sittelles par repérage des loges en avril 2012 (Casalta P.).

Un état exhaustif mais sans doublons des points avec sittelles a pu être établi sur le massif de Rospa-Sorba regroupant toutes ces forêts en établissant une hiérarchie entre les relevés selon leur précision (le repérage des nids plus précis que le repérage au chant plus précis que le repérage à la repasse pour la capture) et en fixant par sécurité à 90 m la distance minimale entre territoires (rayon d’un territoire circulaire de 2,54 hectares, surface minimale d’un territoire (Villard, et al., 2014)). 135 territoires ont ainsi été déterminés.

4.2 Les données « forêts »

4.2.1 Données cartographiques et typologies correspondantes

4.2.1.1 Données de l’Inventaire forestier national (IFN)

L’Inventaire forestier national a mis à disposition du rédacteur par convention : les relevés géoréférencés, sous forme de fichiers de points au format *ESRI shp, réalisés à l’occasion du 3ème inventaire forestier de la Corse soit un lot d’environ 150 relevés relatifs aux peuplements composés majoritairement de Pin laricio des forêts concernées par l’étude. Ces relevés comprennent aussi les descripteurs de station forestière (relevés phytoclimatologiques), de peuplements (structure, essences) et d’arbres (measures dendrométriques réalisées sur les arbres) au format *Excel. La couverture numérisée 2003 provenant du troisième inventaire de l’IFN en Corse réalisée par photo interprétation de la BD ORTHO IRC 2002 (©IGN) a été utilisée. Il s’agit d’une couverture vectorisée de polygones au format *ESRI shp comportant notamment une typologie de peuplements forestiers (IFN, 2003) dont un extrait pour les forêts étudiées figure au tableau 4.1.
Définition des Libellés

<table>
<thead>
<tr>
<th>Type IFN</th>
<th>AH</th>
<th>CN</th>
<th>CNJ</th>
<th>CPJ</th>
<th>FR1</th>
<th>FR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUTAIE DE HETRE</td>
<td>FUTAIE DE PIN LARICIO D’AGE INDIFFERENCIE</td>
<td>JEUNE FUTAIE DE PIN LARICIO</td>
<td>JEUNE FUTAIE DE PINS INDIFFERENCIES</td>
<td>FUTAIE FERMEE AVEC PLUS DE 75% DE PIN DANS LE COUVERT SANS QUE LE PIN MARITIME OU LE PIN LARICIO N’ATTEIGNE A LUI SEUL CETTE VALEUR, DE VOLUME A L’HECTARE NUL OU TRES FAIBLE, SANS CARACTERE DE PROTECTION</td>
<td>FUTAIE FERMEE AVEC PLUS DE 75% DE PIN DANS LE COUVERT SANS QUE LE PIN MARITIME OU LE PIN LARICIO N’ATTEIGNE A LUI SEUL CETTE VALEUR, DE VOLUME A L’HECTARE NUL OU TRES FAIBLE, SANS CARACTERE DE PROTECTION</td>
<td>FUTAIE FERMEE AVEC AU MOINS 50% ET AU PLUS 75% DE FEUILUS DE FUTAIE DANS LE COUVERT, LES CONIFERES AVANT UN COUVERT COMPRISE ENTRE 25% ET 50%, SANS CARACTERE DE PROTECTION</td>
</tr>
</tbody>
</table>

Type IFN

<table>
<thead>
<tr>
<th>Libellé</th>
<th>MP1</th>
<th>MP2</th>
<th>QF</th>
<th>WP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MELANGE DE FUTAIE DE PINS INDIFF. ET TAILLIS (FEUILLUS MAJ.)</td>
<td>MELANGE DE FUTAIE DE PINS INDIFF. ET TAILLIS (CONIF. MAJ.)</td>
<td>TAILLIS DE FEUILUS INDIFFERENCIES</td>
<td>BOISEMENT LACHE MONTAGNARD DE PINS INDIFFERENCIES</td>
<td></td>
</tr>
</tbody>
</table>

Données de l’Office national des forêts (ONF)

Tableau 4.1 Typologie des peuplements des forêts étudiées issus de la couverture vectorisée de l’Inventaire forestier national de 2003.

<table>
<thead>
<tr>
<th>Type IFN</th>
<th>LIBELLE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahon</td>
<td>FUTAIE DE HETRE</td>
<td>FUTAIE FERMEE AVEC PLUS DE 75% DE PIN DANS LE COUVERT SANS QUE LE PIN MARITIME OU LE PIN LARICIO N’ATTEIGNE A LUI SEUL CETTE VALEUR, DE VOLUME A L’HECTARE NUL OU TRES FAIBLE, SANS CARACTERE DE PROTECTION</td>
</tr>
</tbody>
</table>

4.2.1.2 Données de l’Office national des forêts (ONF)

Mémoire EPHE-SVT- TORRE 39/114
<table>
<thead>
<tr>
<th>Définition</th>
<th>Type Valduniellu</th>
<th>Type retenu</th>
<th>Type Aïtone</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semis gaulois perchis de Pin laricio</td>
<td>SGP</td>
<td>SGP P.L</td>
<td>SGP P.L</td>
<td>Semis gaulois perchis de Pin laricio</td>
</tr>
<tr>
<td>Semis gaulois perchis de Pin laricio avec réserves</td>
<td>SGP +R</td>
<td>SGP P.L</td>
<td>SGP P.L</td>
<td>Semis gaulois perchis de Pin laricio</td>
</tr>
<tr>
<td>Semis gaulois perchis de Pin laricio à sous étage de Bouleau verruqueux</td>
<td>SGP/BLX</td>
<td>SGP P.L+BV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semis gaulois perchis de Pin laricio à sous étage de Bouleau verruqueux avec réserves</td>
<td>SGP/BLX +R</td>
<td>SGP P.L+BV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeune futaie de Pin laricio (30-60 ans)</td>
<td>F</td>
<td>F P.L</td>
<td>F P.L</td>
<td>Futaie dense de Pin laricio (30-120 ans)</td>
</tr>
<tr>
<td>Futaie de Pin laricio (60-120 ans)</td>
<td>F</td>
<td>F P.L</td>
<td>F P.L</td>
<td>Futaie dense de Pin laricio (30-120 ans)</td>
</tr>
<tr>
<td>Futaie claire de Pin laricio (60-120 ans) avec réserves</td>
<td>F+R</td>
<td>F C P.L</td>
<td>F C P.L</td>
<td>Futaie claire de Pin laricio (30-120 ans)</td>
</tr>
<tr>
<td>Futaie mûre de Pin laricio (120-180 ans)</td>
<td>F</td>
<td>F VFD P.L</td>
<td>VFD P.L</td>
<td>Vieille futaie dense de Pin laricio (30-120 ans)</td>
</tr>
<tr>
<td>Vieille futaie claire de Pin laricio (>180 ans) avec semis-gaulis perchis de Pin laricio</td>
<td>VFC+SGP</td>
<td>VFC P.L+SGP</td>
<td>P.L</td>
<td>Vieille futaie claire de Pin laricio (>120 ans)</td>
</tr>
<tr>
<td>Vieille futaie claire de Pin laricio (>180 ans)</td>
<td>VFC</td>
<td>VFC P.L</td>
<td>VFC P.L</td>
<td>Vieille futaie claire de Pin laricio (>120 ans)</td>
</tr>
<tr>
<td>Vieille futaie claire de Pin laricio (>180 ans) à sous étage de Bouleau verruqueux</td>
<td>VFC+BLX</td>
<td>VFC P.L+BV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vieille futaie claire de Hêtre (>120 ans)</td>
<td>VFC H(C)</td>
<td>VFC HET</td>
<td>VFC HET</td>
<td>Vieille futaie claire de Hêtre (>120 ans)</td>
</tr>
<tr>
<td>Taudières de feuillus divers, boulaie, aulnaie</td>
<td>T</td>
<td>T AUL</td>
<td></td>
<td>Aulnaie</td>
</tr>
<tr>
<td>Landes à genêts ou à genévriers</td>
<td>LAND</td>
<td>LAN</td>
<td>LAN</td>
<td>Landes et pelouses</td>
</tr>
<tr>
<td>Zones rocheuses</td>
<td>R</td>
<td>ROC</td>
<td>ROC</td>
<td>Zones rocheuses</td>
</tr>
</tbody>
</table>

Tableau 4.2 Table d'harmonisation des typologies ONF des peuplements des forêts d'Aïtone et Valduniellu.
Les nouveaux documents d’aménagement validés des forêts du massif de Rospa-Sorba: FT ROSPA-SORBA, FC ROSPIGLIANI, FC NOCETA, FC VEZZANI, disposent d’une cartographie des peuplements (couverture SIG de polygones au format ©ESRI shp) découlant, pour la partie qui est destinée à la production de bois, de la nouvelle typologie descriptive des peuplements de forêts de montagne mise au point par l’ONF et fondée à la fois sur un critère de «structure» calculé d’après le pourcentage en nombre de tiges par catégorie de diamètre (toutes essences confondues) et sur l’interprétation par photo aérienne de la BD ORTHO C 2007 (©IGN). Les parties vouées à un autre objectif prioritaire (protection, défense des forêts contre l’incendie, écologie, accueil du public,...) de ces forêts ont conservé l’ancienne typologie. La typologie des peuplements forestiers du massif de Rospa-Sorba est détaillée en annexe A-3 §A-3.2.

4.2.2 Données des placettes dendrométriques et variables correspondantes

4.2.2.1 Données provenant du dispositif Villard dans le massif d’Aitone-Valduniellu

Dans le cadre du premier plan de restauration de la sittelle corse, sur commande de la DIREN de Corse de 2005, a été conduite une étude scientifique visant à caractériser l’habitat de la sittelle en forêt de production de Pin laricio (Villard, et al., 2014). Le plan d’échantillonnage a été conçu de manière à permettre la comparaison de points avec sittelles et de points sans. Les placettes constituaient ainsi deux sous-échantillons de taille identique (98):

- les unes déterminées par la présence de sittelles au nid,
- les autres par l’absence de sittelle, déterminées par tirage au sort à l’aide d’un logiciel SIG et éloignées d’au moins 90 m des premières, soit la distance correspondant à la taille minimale estimée d’un territoire de sittelle (2,5 ha).

Pour chaque point, trois sous-placettes ont été mises en place selon le même protocole, à savoir par placette, une sous-placette centrée sur le nid ou sur le point tiré par hasard de rayon de 11,40 m flanquée de deux autres sous placettes, de même taille, disposées selon la courbe de niveau, de part et d’autre de la sous-placette centrale à une distance de 50 m d’elle.

Les placettes représentaient donc une surface totale de 1225 m² sur lesquelles ont été comptés les arbres, mesurés leurs diamètres, mesurée la hauteur du plus haut Pin laricio, estimé le recouvrement de la canopée au-dessus de 8m, mesurées les distances entre les arbres de chaque sous-placette. Les valeurs de plus d’une cinquantaine de variables dendrométriques sur 196 placettes ont ainsi pu être comparées. Les analyses statistiques pratiquées sur elles (analyse discriminante, régressions logistiques simples et multiples) ont permis d’aboutir aux résultats relatifs à l’habitat favorable à la sittelle présentés au § 2.4.

Figure 4.1 Carte de localisation des placettes du dispositif expérimental de P. Villard & al. FT Aitone & Valduniellu

Les membranes étaient ensuite découplées et hasardées à l’œil nu de manière à ce que les placettes soient également spatiolocalisées.

Pour chaque point, trois sous-placettes ont été mises en place selon le même protocole, à savoir par placette, une sous-placette centrée sur le nid ou sur le point tiré par hasard de rayon de 11,40 m flanquée de deux autres sous placettes, de même taille, disposées selon la courbe de niveau, de part et d’autre de la sous-placette centrale à une distance de 50 m d’elle.

Les membranes étaient ensuite découplées et hasardées à l’œil nu de manière à ce que les placettes soient également spatiolocalisées.

Pour chaque point, trois sous-placettes ont été mises en place selon le même protocole, à savoir par placette, une sous-placette centrée sur le nid ou sur le point tiré par hasard de rayon de 11,40 m flanquée de deux autres sous placettes, de même taille, disposées selon la courbe de niveau, de part et d’autre de la sous-placette centrale à une distance de 50 m d’elle.

Les membranes étaient ensuite découplées et hasardées à l’œil nu de manière à ce que les placettes soient également spatiolocalisées.
La méthodologie d’inventaire des forêts selon laquelle le service en charge des aménagements des forêts procède d’élaborer des projets d’aménagement à partir d’un inventaire commun, quelle que soit la forêt de Pin laricio et essences associées.

À cet égard, il est consigné dans un document intitulé « Typologie descriptive des peuplements de montagne en région Corse, Pin laricio et essences associées » (Guy, et al., 2005). Cette méthode est aujourd’hui généralisée et permet à l’ONF d’élaborer des projets d’aménagement à partir d’un inventaire commun, quelle que soit la forêt de Pin laricio considérée. C’est donc nécessairement à partir de cette base théorique qu’analyses de données et propositions de gestion doivent être élaborées afin qu’elles puissent être prises en compte par les gestionnaires.

4.2.2.2 Données provenant des inventaires préalables aux aménagements de l’ONF procédant de la nouvelle méthodologie.

La méthodologie d’inventaire des forêts selon laquelle le service en charge des aménagements des forêts procède est consignée dans un document intitulé « Typologie descriptive des peuplements de montagne en région Corse, Pin laricio et essences associées » (Guy, et al., 2005). Cette méthode est aujourd’hui généralisée et permet à l’ONF d’élaborer des projets d’aménagement à partir d’un inventaire commun, quelle que soit la forêt de Pin laricio considérée. C’est donc nécessairement à partir de cette base théorique qu’analyses de données et propositions de gestion doivent être élaborées afin qu’elles puissent être prises en compte par les gestionnaires.
L’inventaire typologique utilisé est dit « de la minute codée ». Il consiste à réaliser des mesures dendrométriques tous les 50 ou 100m (selon la précision recherchée) sur une placette centrée de 15 m de rayon en :

- Identifiant la placette selon un cheminement régulier au double pas selon un maillage réalisé seul ou en virées ;
- Dénombrant le nombre d’arbres (tiges) par essence et catégorie de diamètre à hauteur de poitrine pré-comptable (d> 17,5 cm) ;
- Relevant la régénération en estimant le couvert de catégories non pré-comptables comme, par diamètre et hauteur décroissants, les perches, les gaules et les semis.
- Relevant d’autres variables comme la taille de certains houppiers, la durée de survie du peuplement, la qualité du bois, la composition du maquis, le bois mort.

<table>
<thead>
<tr>
<th>Type de Peuplement</th>
<th>Type d’arbre (tige)</th>
<th>Diamètre à 1,30m</th>
<th>Hauteur</th>
<th>Nomenclature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semis</td>
<td>Semis</td>
<td>d < 2,5 cm</td>
<td>0<h<3 m</td>
<td>SEM</td>
</tr>
<tr>
<td>Gaulis</td>
<td>Gaules</td>
<td>d < 7,5 cm</td>
<td>3<h<6 m</td>
<td>GAU</td>
</tr>
<tr>
<td>Perchis</td>
<td>Perches</td>
<td>7,5<d<17,5 cm</td>
<td>6<h<12 m</td>
<td>PER</td>
</tr>
<tr>
<td>Jeune futaie</td>
<td>Petits Bois</td>
<td>17,5<d<27,5 cm</td>
<td>12<h<18 m</td>
<td>PB</td>
</tr>
<tr>
<td>Futaielle adulte</td>
<td>Bois Moyens</td>
<td>27,5<d<47,5 cm</td>
<td>h 18 m</td>
<td>BM</td>
</tr>
<tr>
<td>Futaielle mure</td>
<td>Gros Bois</td>
<td>47,5<d<62,5 cm</td>
<td>h 18 m</td>
<td>GB</td>
</tr>
<tr>
<td>Vieille futaie</td>
<td>Très Gros Bois</td>
<td>d>62,5 cm</td>
<td>h 18 m</td>
<td>TGB</td>
</tr>
</tbody>
</table>

Tableau 4.5 Types de peuplements et d’arbres par classe de diamètre (à 1,30m) et de hauteur. Source : (Guy, et al., 2005)

Les clés de détermination des types de peuplements définies par cette nouvelle méthode que nous avons retenues dans cette étude sont les suivantes :

(a) Capital (toutes essences)

<table>
<thead>
<tr>
<th>Premier critère</th>
<th>Deuxième critère</th>
<th>Troisième critère</th>
<th>Type de capital</th>
</tr>
</thead>
<tbody>
<tr>
<td>N > 640 t/ha</td>
<td>N > 120 t/ha</td>
<td>G > 55 m²/ha</td>
<td>R : riche (1)</td>
</tr>
<tr>
<td>N ≤ 640 t/ha</td>
<td>N ≤ 120 t/ha</td>
<td>G ≤ 55 m²/ha</td>
<td>M : moyen (2)</td>
</tr>
</tbody>
</table>

N, nombre de tiges. G surface terrière en m²/ha.

Tableau 4.6 Clé de détermination pour les types de capital. Source : (Guy, et al., 2005)

(b) Structure (toutes essences)

Tableau 4.7 Clé de détermination pour les types de structure. Source : (Guy, et al., 2005).
(c) Composition (toutes essences)

<table>
<thead>
<tr>
<th>Premier critère</th>
<th>Deuxième</th>
<th>Troisième</th>
<th>Type de structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDIV > 20 %</td>
<td>GDIV1 > 70 %</td>
<td></td>
<td>Monospecifique</td>
</tr>
<tr>
<td></td>
<td>GDIV1 ≤ 70 %</td>
<td></td>
<td>Heterospecifique</td>
</tr>
<tr>
<td>GESS > 70 %</td>
<td>GESS1 > 70 %</td>
<td></td>
<td>Monospecifique</td>
</tr>
<tr>
<td></td>
<td>GESS1 > 35 % et GESS2 > 35 %</td>
<td></td>
<td>Bispécifique</td>
</tr>
<tr>
<td>GESS ≤ 70 %</td>
<td></td>
<td></td>
<td>Siren</td>
</tr>
</tbody>
</table>

GDIV: surface terrière des essences de la liste des essences diverses identifiée - GDIV1: surface terrière de la première essence en importance parmi la liste DIV. GESS: surface terrière des essences de la liste des essences prioritaires - GESS1 et GESS2 surfaces terrières de la première et de la seconde essence en importance parmi la liste ESS.

Tableau 4.8 Clé de détermination des types de composition. Source : (Guy, et al., 2005).

<table>
<thead>
<tr>
<th>Essence</th>
<th>Code Typo.</th>
<th>Code Corse</th>
<th>Nom Latin</th>
<th>BD_pat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hêtre</td>
<td>H</td>
<td>HT</td>
<td>Fagus sylvatica</td>
<td>HET</td>
</tr>
<tr>
<td>Pin maritime</td>
<td>M</td>
<td>PM</td>
<td>Pinus pinaster</td>
<td>P.M</td>
</tr>
<tr>
<td>Pin laricio de Corse</td>
<td>L</td>
<td>PL</td>
<td>Pinus nigra subsp laricio</td>
<td>PCO</td>
</tr>
<tr>
<td>Sapin pectiné</td>
<td>S</td>
<td>SP</td>
<td>Abies alba</td>
<td>S.P</td>
</tr>
</tbody>
</table>

Tableau 4.9 Liste des essences prioritaires ESS. Source: (Guy, et al., 2005)

Enfin, il y a lieu de noter que les inventaires réalisés par l’ONF peuvent comprendre aussi la collecte de données en rapport avec le facteur bois mort:

<table>
<thead>
<tr>
<th>Type de Bois Mort</th>
<th>Abondance du Bois Mort</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nombre</td>
</tr>
<tr>
<td>Souche</td>
<td>1</td>
</tr>
<tr>
<td>Disque</td>
<td>2 à 5</td>
</tr>
<tr>
<td>Debout</td>
<td>6 à 10</td>
</tr>
<tr>
<td></td>
<td>> 10</td>
</tr>
<tr>
<td></td>
<td>Linéaire en m</td>
</tr>
<tr>
<td>Gisant</td>
<td>1 à 10 m</td>
</tr>
<tr>
<td></td>
<td>11 à 20 m</td>
</tr>
<tr>
<td></td>
<td>21 à 40 m</td>
</tr>
<tr>
<td></td>
<td>> 40 m</td>
</tr>
<tr>
<td>Rémants : Tas</td>
<td>1 à 20 m2</td>
</tr>
<tr>
<td>Rémants : Dispersés</td>
<td>21 à 50 m2</td>
</tr>
<tr>
<td></td>
<td>51 à 100 m2</td>
</tr>
<tr>
<td></td>
<td>> 100 m2</td>
</tr>
</tbody>
</table>

Tableau 4.10 Liste des essences diverses identifiées DIV. Source: (Guy, et al., 2005)

<table>
<thead>
<tr>
<th>Essence</th>
<th>Code Typo.</th>
<th>Code Corse</th>
<th>Nom Latin</th>
<th>BD_pat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aulne glutineux</td>
<td>A</td>
<td>AG</td>
<td>Alnus glutinosa</td>
<td>AUG</td>
</tr>
<tr>
<td>Bouleau verrueux</td>
<td>B</td>
<td>BV</td>
<td>Betula pendula</td>
<td>BOV</td>
</tr>
<tr>
<td>Chêne vert</td>
<td>V</td>
<td>CV</td>
<td>Quercus ilex</td>
<td>CHV</td>
</tr>
<tr>
<td>Chêne pubescent</td>
<td>P</td>
<td>CB</td>
<td>Quercus pubescens</td>
<td>CHY</td>
</tr>
<tr>
<td>Erable champêtre</td>
<td>C</td>
<td>EC</td>
<td>Acer campestre</td>
<td>ERC</td>
</tr>
<tr>
<td>Erable sycomore</td>
<td>E</td>
<td>ES</td>
<td>Acer pseudoplatanus</td>
<td>ERS</td>
</tr>
<tr>
<td>Frène à fleurs</td>
<td>F</td>
<td>FF</td>
<td>Fraxinus ornus</td>
<td>FRF</td>
</tr>
<tr>
<td>Houx</td>
<td>X</td>
<td>HU</td>
<td>Ilex aquifolium</td>
<td>HOU</td>
</tr>
<tr>
<td>If commun</td>
<td>T</td>
<td>IF</td>
<td>Taxus baccata</td>
<td>IFS</td>
</tr>
<tr>
<td>Sorbier des oiseleurs</td>
<td>O</td>
<td>SO</td>
<td>Sorbus aucuparia</td>
<td>SOR</td>
</tr>
</tbody>
</table>

Tableau 4.11 Codification utilisée pour les bois morts. Source: (Guy, et al., 2005)

<table>
<thead>
<tr>
<th>Degré d’altération</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Récent</td>
<td>1</td>
</tr>
<tr>
<td>Altéré (+-écorce)</td>
<td>2</td>
</tr>
<tr>
<td>Voie de décomposition</td>
<td>3</td>
</tr>
<tr>
<td>Pourri</td>
<td>4</td>
</tr>
</tbody>
</table>

Tableau 4.12 Codification utilisée pour l’altération. Source: (Guy, et al., 2005)

Mémoire EPHE-SVT- TORRE 44/114
Après la forêt territoriale de Rospa-Sorba, ce sont les forêts communales de Noceta (Guy, 2012), puis Rospigliani (Pettini, 2011) et enfin Vezzani (Fanget, 2012) qui ont fait l’objet d’un inventaire typologique. La surface inventoriée (zone de production seule) couvre 698 hectares sur les 1 333 hectares du massif. Les inventaires de chaque forêt ont pu être agrégés pour n’en constituer qu’un, de 2 094 placettes dendrométriques, avec néanmoins une approximation nécessaire pour rendre homogènes les relevés sur les variables bois mort debout et altération. Les variables quantitatives PER, PB, BM, TGB, NT, N_HA, G, G_HA, GESS, GESS1, GESS2, GDIV, Nb_BoisMort_D, et les variables qualitatives CAPITAL, STRUCTURE, COMPOSITION et altération ont pu être établies. Sur les 135 sites à sittelle du massif, seuls 95 sont en zone de production et ont bénéficié de l’inventaire typologique.

4.2.3 Autres données utilisées

L’ONF a fourni, en sus des documents d’aménagement évoqués, les extraits des sommiers des forêts d’Aïton e et de Valduniellu, relatant la réalité des exploitations et des travaux par rapport aux aménagements, outils de gestion prévisionnels, ainsi qu’un fichier *Excel comprenant la liste des coupes, par année, surface et volume, pendant la durée de chaque aménagement en vigueur à l’époque de la mise en place du dispositif Villard (Villard, et al., 2007). La Direction départementale des territoires et de la mer de la Haute-Corse a fourni un fichier des contours des feux de forêts du département cartographiés de 1970 à 2012 au format SIG *ESRI shp.

En résumé:

• pour les analyses concernant les forêts du massif forestier d’Aïtone-Valduniellu ont été utilisées les données de l’inventaire autour des sites de nids identifiés physiquement et hors sites de nid recueillies par P. Villard dans les séries de production de ces forêts (Villard, et al., 2007). Une approche des perturbations engendrées par les coupes a utilisé le tableau de synthèse des sommiers historiques de ces forêts.

• pour les analyses concernant les forêts du massif forestier de Rospa-Sorba, ont été utilisées les données des inventaires typologiques de l’ONF ne couvrant que la surface réservée à la production et les données de l’inventaire des territoires de sittelles déterminés à partir des méthodes variables selon les observateurs (repérage des nids, chant ou repasse). L’approche des perturbations engendrées par les incendies de forêts a utilisé le fichier des contours des feux de forêts.

Dans les deux cas ont été aussi utilisées les données de cartographie des peuplements forestiers de l’Inventaire forestier national et/ou les données de cartographie des peuplements forestiers de l’ONF.

4.3 Méthodes SIG (système d’information géographique) et logiciels utilisés

De façon générale pour l’élaboration des cartes à partir des données géographiques ont été utilisés les logiciels Arcview 3.2 *ESRI, *ArcGis 9.2 *ESRI. Plus précisément :

4.3.1 Massif forestier d’Aïtone-Valduniellu

Le croisement des couvertures de points des placettes du dispositif Villard d’une part et des couvertures des polygones des peuplements forestiers de l’IFN ou de l’ONF d’autre part, réalisé sous SIG, aura permis de connaître, parfois moyennant corrections, la nature des peuplements relatifs à ces placettes et d’y pratiquer des analyses statistiques appropriées. En effet, les logiciels SIG gèrent les tables attributaires des données géographiques (au format base de données *dbf), comprenant notamment types de peuplements et surfaces, en langage SQL comme la plupart des systèmes de gestion de bases de données relationnelles.

Les logiciels SIG utilisés ont aussi permis d’élaborer, selon un modèle de calcul dit du diagramme de Voronoi ou de Thiessen (Wikipedia, 2012), dans les deux massifs considérés, une couverture de polygones considérés comme les territoires des couples de sittelles, et ce, à partir du point de relevé de leur position (nid, place de chant, ou relevé à la repasse) et de la place relative des autres relevés. Il s’agit de la formalisation de l’hypothèse biologique parcimonieuse selon laquelle la frontière entre deux territoires contigus est à mi-distance entre les deux sites de nids correspondants. La configuration théorique de ces territoires représente, en effet, une décomposition particulière d’un espace métrique déterminée par les distances à un ensemble discret de points. L’algorithme utilisé par les logiciels est basé sur la méthode de triangulation de Delaunay (Wikipedia, 2012).
Le croisement de la couverture des territoires ainsi définis et de la couverture des peuplements forestiers (IFN, ONF ou calculés selon la nouvelle méthode ONF) a permis d’établir la composition de chacun d’entre eux en types de peuplements et d’en calculer les surfaces. Les données issues de ces calculs ont ensuite été utilisées en analyse statistique (voir § 4.4).

Grâce aux logiciels SIG on a pu, après scannage et géoréférencement par calage des cartes des anciens aménagements des forêts d’Aïtone et de Valduniellu: (i) vectoriser les parquets prévus aux aménagements passés, (ii) reconstituer les coupes réalisées au cours de ces aménagements par recoupement entre ces parquets du groupe de régénération, l’historique présenté dans les aménagements suivants, la liste des coupes vendues par l’ONF et les surfaces en semis-gaulis-perchis de Pin laricio (SGP P.L) cartographiés à l’occasion de la mise en place des nouveaux documents d’aménagement. Ainsi a pu être établie la liste des coupes de régénération réalisées par année et par forêt, mais aussi leur localisation.

4.3.2 Massif forestier de Rospa-Sorba

Pour tenter de caractériser l’habitat de la sittelle au-delà des premiers mètres autour de son nid dans cette forêt, on s’est inspiré de la méthode dont s’est servie P. Villard sur les forêts d’Aïtone et de Valduniellu.

Ont été examinés, par rapport aux points relevés de présence de sittelle, les n placettes dendrométriques les plus proches (déterminées par le logiciel SIG) pour autant qu’elles sont situées à moins de 90 m du « point sittelle ». Pour la comparaison, par analogie avec les travaux de P. Villard, des points « sans sittelle » ont dû être recherchés en nombre identique. Ils ont été établis grâce à une grille d’un pas de 90 m qui permet de les repousser à moins de 90 m d’un point « avec sittelle ». Ces points sans sittelle déterminés, on trouve les n placettes dendrométriques les plus proches et à moins de 90 m du point retenu, selon la même méthode que précédemment. Les variables descriptives sont identiques et on élimine aussi les points sans sittelle à moins de 90 m comprenant moins de n placettes. Le module Spatial Analyst d’ArcGis 9.2 ®ESRI a permis le calcul de distance entre placettes typologiques et/ou points de relevés de présence de sittelle et la mise en place a posteriori de ce plan d’échantillonnage présence/absence de sittelle grâce au calcul de zones tampons. Des analyses statistiques des placettes dendrométriques les plus proches des points avec ou sans sittelle ont pu ainsi être réalisées.

Grace au module Geostatistical analyst d’ArcGis 9.2 ®ESRI, une analyse de motif selon la méthode du plus proche voisin (Wong, et al., 2005) a été mise en œuvre sur la distribution des sittelles à Rospa-Sorba.

Le module Geostatistical analyst d’ArcGis 9.2 ®ESRI utilisé en complément de Spatial Analyst ®ESRI a permis la transformation des variables quantitatives issues des relevés des placettes dendrométriques effectués par l’ONF selon une équidistance de 50 m ou 100 m en variables continues selon un algorithme de krigage (Gaëtan, et al., 2008). Cette méthode d’estimation spatiale est adaptée aux variables régionalisées que constituent notamment les variables dendrométriques utilisées par les forestiers qui ne sont pas aléatoires et indépendantes de la situation de l’observation (Duplat, et al., 1981). De ce fait, elle constitue la méthode optimale d’interpolation spatiale pour ce type de variables (Gratton, 2002). Dans le cas d’espèce, elle a permis la construction d’un modèle continu de la valeur de la structure forestière en tous points du massif de Rospa-Sorba à partir duquel, connaissant la position des sittelles, on a pu rechercher une relation statistique entre présence de la sittelle et structure du peuplement. Le mode de calcul utilisé a été détaillé en annexe A-20.

4.4 Méthodes statistiques et logiciels utilisés

4.4.1 Massif forestier d’Aïtone-Valduniellu

Le protocole mis en place par Villard et al., en 2005, a permis d’établir des comparaisons de variables entre échantillons de placettes (avec nid et sans nid, puis, selon la forêt, Aïtone ou Valduniellu). Afin de déterminer si les variables qualitatives et quantitatives retenues par l’ONF dans sa typologie des peuplements de Pin laricio décrite au § 4.2.2 ont un rôle dans la présence de sittelles, c’est logiquement que la première analyse a consisté à vérifier les travaux de P. Villard sur les forêts d’Aïtone et de Valduniellu dans le cadre de cette typologie.
Pour ce faire, des formules basées sur les classes de diamètre des arbres ont été établies afin de transformer les relevés de ce dernier en relevés selon la typologie ONF et des hypothèses retenues pour qualifier l’altération des arbres morts. Les autres variables utilisées en découlent par calcul.

<table>
<thead>
<tr>
<th>Variables quantitatives mesurées</th>
<th>Variables qualitatives observées</th>
</tr>
</thead>
<tbody>
<tr>
<td>PER=DT10</td>
<td>Pas d’arbre mort = altération 0</td>
</tr>
<tr>
<td>PB=DT20</td>
<td>Nb de bois morts debout<Nb de chandelles = altération 1</td>
</tr>
<tr>
<td>BM=DT30+DT40</td>
<td>Nb de bois morts debout=Nb de chandelles = altération 4</td>
</tr>
<tr>
<td>GB=DT50+1/2DT60</td>
<td></td>
</tr>
<tr>
<td>TGB=1/2DT60+DT70+DT80+DT90+DT100+DT110+...</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 4.13 Formules de passage des mesures du dispositif Villard et al. à la typologie de l’ONF.

Pour les variables qualitatives la comparaison des placettes avec nid versus sans nid a été effectuée à l’aide de tableaux de contingence et de la mise en œuvre de tests d’indépendance de Khi carré ou en cas d’impossibilité (nombre d’individus attendus <5) de tests exacts de Fisher. Pour ces calculs, le logiciel commercial ® Excel de la suite ®Microsoft Office 2010, son extension ®XLSTAT ont été utilisés.

Pour la comparaison des variables quantitatives des placettes avec nid versus sans nid, après tests de Shapiro-Wilks significatifs, il a été d’abord procédé à des comparaisons de médianes vérifiées par le test non paramétrique U de Mann-Whithney-Wilcoxon, puis à une analyse en composantes principales suivie d’une analyse discriminante. La significativité de la discrimination a été éprouvée par un test de permutation (Chessel, et al., 2004).

Des analyses en composantes principales suivies de classifications hiérarchiques ascendantes des placettes mesurées ont été effectuées. Trois classes principales ont été retenues pour chaque échantillon de placettes (avec nid et sans nid). Pour ces calculs, le logiciel commercial ® Excel de la suite ®Microsoft Office 2010, son extension ®XLSTAT ont été utilisés. La visualisation des placettes, objets centraux des classes principales retenues, a été assurée par le logiciel gratuit SVS, Standard visualisation system (Université de Washington, 2011) délivré par l’administration forestière des Etats-Unis (USDA, 2013) fonctionnant en interface avec ®Excel.

Grâce à des modèles linéaires généralisés GLM (Crawley, 2007) basés sur une distribution binomiale des données nécessaire pour les variables absence/présence, des régressions logistiques multiples ont été réalisées. Plusieurs modèles, estimant la probabilité de présence de la sittelle, ont été ajustés et classés selon le critère de l’AIC (Akaike information criterion) (Burnhan, et al., 2002) pour retenir le plus pertinent et parcimonieux en nombre de variables significatives non corrélées. L’adéquation des résidus des modèles à la loi binomiale a été vérifiée avec un graphique de distance de Cook. Pour ce faire, le logiciel libre R (version 2.15.2) distribué par le « Comprehensive R Archive Network » à l’adresse : http://cran.r-project.org/ (R Development Core Team, 2007) et son extension Rcmdr (Fox, et al., 2009) ont été utilisés.

On a, ensuite, cherché à comprendre la différence de densité de sittelles entre les forêts d’Aïtone et de Valduniellu en procédant de la sorte :

- Pour la comparaison des variables quantitatives des placettes avec nid d’Aïtone versus Valduniellu, après tests de Shapiro-Wilks significatifs, il a été d’abord procédé à des comparaisons de médianes par le test non paramétrique U de Mann-Whithney-Wilcoxon, puis à une analyse en composantes principales suivie d’une analyse discriminante. La significativité de la discrimination a été éprouvée par un test de permutation (Chessel, et al., 2004).

- Un test exact de Fischer sur tableaux 2x2 a porté sur la comparaison des types de peuplements IFN contenant les nids établis par croisement de couches SIG selon les forêts. Une comparaison entre forêts des densités de sittelles dans les peuplements forestiers de type IFN qui les abritent a aussi été effectuée.

- Pour la composition de chaque territoire de sittelle de type Voronoï en peuplements forestiers de type ONF établie par SIG, une analyse en composantes principales suivie d’une analyse discriminante ont été réalisées.
Pour tenter de saisir l’influence de la composition des territoires en types de peuplements forestiers sur la taille de ces territoires, des régressions linéaires multiples ont été ajustées sur les données de chacune des deux forêts d’Aitone et de Valduniellu après transformation de la variable surface des territoires non normale (test de Shapiro-Wilks significatif) à normale (test de Shapiro-Wilks non significatif) par la fonction logarithme en base 10. Le meilleur modèle a été choisi à l’aide de la fonction regsubsets du package leaps (Lumley, 2009) du logiciel libre R (version 2.15.2), selon le critère BIC (critère d’information de Schwartz) (Cornillon, et al., 2012). La normalisation des résidus du modèle a été vérifiée graphiquement (droite quantile-quantile), l’homoscédasticité ou équivariance par le graphique de la relation résidus standardisés et valeurs prédites du modèle.

L’établissement de l’historique des coupes pratiquées dans les deux forêts durant la quinzaine d’années précédant la mise en place du dispositif de Villard et al. qu’aura permis l’utilisation des logiciels SIG a été mis à profit pour comparer statistiquement et le nombre de nids les plus proches des coupes et la distance des nids à la coupe la plus proche en fonction de différentes variables : la surface de la coupe et sa date (tests de Kruskal-Wallis pour n (>2) échantillons non appariés), la forêt (test de Mann-Whitney-Wilcoxon pour 2 échantillons non appariés).

4.4.2 Massif forestier de Rospa-Sorba

L’objectif a d’abord été d’appliquer ici une méthode d’analyse analogue à celle utilisée par P. Villard et al., en 2005 sur le massif Aitone-Valduniellu, en utilisant en lieu et place de mesures conçues par ces derniers, les relevés d’inventaire effectués par l’ONF préalables à l’aménagement de cette forêt. Les données provenant de l’ONF ont nécessité une adaptation préalable sous SIG pour pouvoir être traitées (voir § 4.3.2.). Comme dans les travaux de P. Villard, on a considéré alors la somme de ces n placettes comme un peuplement unique décrit par ses variables en nombre de tiges N/ha classées par catégories de taille (PER, PB, BM, GB, TGB, RGB=GB+TGB, cf § 4.2.2.2), le tout selon un distinguo d’essence laricio/autres essences (L/A).

Pour la comparaison de ces variables quantitatives entre placettes avec nid versus sans nid, après tests de Shapiro-Wilks significatifs, il a été d’abord procédé à des comparaisons de médianes par le test non paramétrique U de Mann-Whitney-Wilcoxon.

Une analyse discriminante testée par permutations a suivi une analyse en composantes principales portant sur ces variables dendrométriques moyennes reconstituées. Pour ce faire, le logiciel libre R (version 2.15.2), ses packages : en particulier Ade4 (Dray, et al., 2007), MASS (Venables, et al., 2002), Rcmdr (Fox, et al., 2009), FactoMineR (Husson, et al., 2009) ont été utilisés.

Plusieurs modèles linéaires généralisés basés sur une distribution binomiale des données, estimant la probabilité de présence de la sittelle, ont été ajustés et classés selon le critère de l’AIC pour retenir le plus pertinent et parmicimonieux en nombre de variables significatives non corrélées. L’adéquation des résidus des modèles à la loi binomiale a été vérifiée avec un graphique de distance de Cook.

A aussi été réalisée une régression linéaire sur la surface des territoires calculés par la méthode mathématique mise au point par Voronoï. Pour ce faire, il y a eu nécessité de transformer la variable surface des territoires non normale (test de Shapiro-Wilks significatif) à normale (test de Shapiro-Wilks non significatif) par la fonction Logarithme en base 10. La normalisation des résidus du modèle a été vérifiée graphiquement (droite quantile-quantile), l’homoscédasticité ou équivariance par le graphique de la relation résidus standardisés et valeurs prédites du modèle.
5 LES ANALYSES ET LES RESULTATS

5.1 Le massif forestier d’Aïtone-Valduniellu

5.1.1 Comparaison des variables qualitatives.

Les relevés établis sur une surface équivalente à 1 225 m² (en 3 sous-placettes) ont pu être classés selon la présence ou pas de la sittelle (nid ou contact avec oiseau territorial) et en fonction des clés de détermination des peuplements correspondantes décrites au § 4.2.2.2:

(a) Capital

<table>
<thead>
<tr>
<th>CAPITAL</th>
<th>Nid</th>
<th>Dense</th>
<th>Riche</th>
<th>Moyen</th>
<th>Clair</th>
<th>Total général</th>
</tr>
</thead>
<tbody>
<tr>
<td>Présence (1)</td>
<td>0</td>
<td>6</td>
<td>84</td>
<td>8</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Absence (2)</td>
<td>6</td>
<td>2</td>
<td>83</td>
<td>7</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Total général</td>
<td>6</td>
<td>8</td>
<td>167</td>
<td>15</td>
<td>196</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 5.1 Tableau de contingence de la présence de nids de sittelle en fonction du critère « capital » du peuplement forestier.

Les peuplements denses D (N> 640 t/ha) ne semblent pas favorables à la sittelle au contraire des peuplements riches R (640 t/ha>N>120 t/ha et G> 55 m²). Certains effectifs théoriques étant inférieurs à 5, on ne peut pas appliquer de test du χ² d’homogénéité pour tester la pertinence de cette hypothèse.

A défaut, le test exact de Fischer (ddl=3, p=0,039) nous indique que l’on peut rejeter l’hypothèse d’indépendance des échantillons c’est-à-dire qu’il est probable à 95% que le capital joue sur la présence de nids de sittelle. Le calcul du Khi carré :

<table>
<thead>
<tr>
<th>Khi carré par cas</th>
<th>Dense</th>
<th>Riche</th>
<th>Moyen</th>
<th>Clair</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Présence (1)</td>
<td>3,000</td>
<td>1,000</td>
<td>0,003</td>
<td>0,033</td>
<td>4,036</td>
</tr>
<tr>
<td>Absence (2)</td>
<td>3,000</td>
<td>1,000</td>
<td>0,003</td>
<td>0,033</td>
<td>4,036</td>
</tr>
<tr>
<td>Total</td>
<td>6,000</td>
<td>2,000</td>
<td>0,006</td>
<td>0,067</td>
<td>8,073</td>
</tr>
</tbody>
</table>

Tableau 5.2 Calcul du Khi carré de la table de contingence Présence/Capital.

met en avant dans cette différence de présence l’importance:

- de la densité des arbres, défavorable à la présence de nids de sittelle
- de la richesse du peuplement, favorable à la présence de nids de sittelle

(b) Structure

<table>
<thead>
<tr>
<th>STRUCTURE</th>
<th>Nid</th>
<th>IR</th>
<th>R_BM</th>
<th>R_GB</th>
<th>R_GB_BM</th>
<th>R_PB</th>
<th>R_PB_BM</th>
<th>Total général</th>
</tr>
</thead>
<tbody>
<tr>
<td>Présence (1)</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>11</td>
<td>70</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Absence (2)</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>25</td>
<td>63</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Total général</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>18</td>
<td>36</td>
<td>133</td>
<td>196</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 5.3 Tableau de contingence de la présence de nids de sittelle en fonction du critère « structure » du peuplement forestier.

Les peuplements réguliers à petits bois R_PB semblent moins favorables à la sittelle que les peuplements réguliers à gros bois tendance bois moyens R_GB_BM. Certains effectifs théoriques étant inférieurs à 5, on ne peut pas appliquer de test du χ² d’homogénéité pour tester la pertinence de cette hypothèse.
A défaut, le test exact de Fischer (ddl=5, p= 0,026) nous indique que l’on peut rejeter l’hypothèse d’indépendance des échantillons, c’est-à-dire qu’il est probable à 95% que la structure du peuplement en forêt de production joue sur la présence de nids de sittelle. Le calcul du Khi carré :

<table>
<thead>
<tr>
<th>Khi carré par case</th>
<th>IR</th>
<th>R_BM</th>
<th>R_GB</th>
<th>R_GB_BM</th>
<th>R_PB</th>
<th>R_PB_BM</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Présence (1)</td>
<td>1,000</td>
<td>0,333</td>
<td>0,500</td>
<td>1,000</td>
<td>2,722</td>
<td>0,184</td>
<td>5,740</td>
</tr>
<tr>
<td>Absence (2)</td>
<td>1,000</td>
<td>0,333</td>
<td>0,500</td>
<td>1,000</td>
<td>2,722</td>
<td>0,184</td>
<td>5,740</td>
</tr>
<tr>
<td>Total</td>
<td>2,000</td>
<td>0,667</td>
<td>1,000</td>
<td>2,000</td>
<td>5,444</td>
<td>0,368</td>
<td>11,480</td>
</tr>
</tbody>
</table>

Tableau 5.4 Calcul du Khi carré de la table de contingence Présence/Structure.

montre dans cette différence de présence le poids:

- de la structure R_PB, défavorable à la présence de nids de sittelle
- des structures IR et R_GB_BM, favorables à la présence de nids de sittelles

(c) Composition

<table>
<thead>
<tr>
<th>COMPOSITION</th>
<th>Nid</th>
<th>HTR</th>
<th>MNO</th>
<th>PLY</th>
<th>Total général</th>
</tr>
</thead>
<tbody>
<tr>
<td>Présence (1)</td>
<td>4</td>
<td>93</td>
<td>1</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Absence (2)</td>
<td>5</td>
<td>93</td>
<td>0</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Total général</td>
<td>9</td>
<td>186</td>
<td>1</td>
<td>196</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 5.5 Tableau de contingence de la présence de nids de sittelle en fonction du critère « composition» du peuplement forestier

Certains effectifs théoriques étant inférieurs à 5, on ne peut pas appliquer de test du χ² d’homogénéité pour tester la pertinence de cette hypothèse. A défaut, le test exact de Fischer (ddl=2, p=0,075) nous indique que l’on ne peut pas rejeter l’hypothèse d’indépendance des échantillons, c’est-à-dire qu’on ne peut pas exclure que la composition ne joue pas sur la présence de nids de sittelle.

(d) Bois mort debout (abondance)

| ABONDANCE DE BOIS MORT DEBOUT (nb) |
|-----------------------------|---------|--------|---------|--------|
| Nid | "0" | "1" | "2" | ">3" | Total général |
| Présence (1) | 2 | 57 | 24 | 15 | 98 |
| Absence (2) | 75 | 6 | 4 | 13 | 98 |
| Total général | 77 | 63 | 28 | 28 | 196 |

Tableau 5.6 Tableau de contingence de la présence de nids de sittelle en fonction du critère « abondance de bois mort debout» du peuplement forestier.

On peut rejeter l’hypothèse d’indépendance des deux échantillons (χ²₃=124,9, p<0,0001) de façon très hautement significative. Le calcul du Khi carré :

<table>
<thead>
<tr>
<th>Khi carré par case</th>
<th>"0"</th>
<th>"1"</th>
<th>"2"</th>
<th>">3"</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Présence (1)</td>
<td>34,604</td>
<td>20,643</td>
<td>7,143</td>
<td>0,071</td>
<td>62,461</td>
</tr>
<tr>
<td>Absence (2)</td>
<td>34,604</td>
<td>20,643</td>
<td>7,143</td>
<td>0,071</td>
<td>62,461</td>
</tr>
<tr>
<td>Total</td>
<td>69,208</td>
<td>41,286</td>
<td>14,286</td>
<td>0,143</td>
<td>124,922</td>
</tr>
</tbody>
</table>

Tableau 5.7 Calcul du Khi carré de la table de contingence Présence/Bois mort debout.

relève dans cette différence de présence l’importance:

- de l’absence de bois mort de bout (« 0 »), défavorable à la présence de nids de sittelle
- de la présence d’un bois mort debout (« 1 »), favorable à la présence de nids de sittelle.
(e) Nombre de chandelles

<table>
<thead>
<tr>
<th>Présence (1)</th>
<th>">0"</th>
<th>"1"</th>
<th>"2"</th>
<th>">3"</th>
<th>Total général</th>
</tr>
</thead>
<tbody>
<tr>
<td>Présence (1)</td>
<td>22</td>
<td>47</td>
<td>18</td>
<td>11</td>
<td>98</td>
</tr>
<tr>
<td>Presence (2)</td>
<td>79</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>98</td>
</tr>
<tr>
<td>Total général</td>
<td>81</td>
<td>52</td>
<td>23</td>
<td>20</td>
<td>196</td>
</tr>
</tbody>
</table>

Tableau 5.8 Tableau de contingence de la présence de nids de sittelle en fonction du critère « nombre de chandelles » du peuplement forestier.

On peut rejeter l’hypothèse d’indépendance des deux échantillons ($\chi^2 = 73,6, p<0,0001$) de façon très hautement significative. Le calcul du Khi carré :

Khi carré par case | "0" | "1" | "2" | ">3" | Total |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Présence (1)</td>
<td>16,084</td>
<td>16,962</td>
<td>3,674</td>
<td>0,100</td>
<td>36,820</td>
</tr>
<tr>
<td>Présence (2)</td>
<td>16,084</td>
<td>16,962</td>
<td>3,674</td>
<td>0,100</td>
<td>36,820</td>
</tr>
<tr>
<td>Total</td>
<td>32,168</td>
<td>33,923</td>
<td>7,348</td>
<td>0,200</td>
<td>73,639</td>
</tr>
</tbody>
</table>

Tableau 5.9 Calcul du Khi carré de la table de contingence Présence/Nombre de chandelles.

met en avant dans cette différence de présence l’importance :

- de l’absence de chandelle (« 0 »), défavorable à la présence de nids de sittelle
- de la présence d’une chandelle (« 1 »), favorable à la présence de nids de sittelle

(f) Bois mort debout (altération)

Considérant la prise de données du dispositif Villard et la typologie ONF relative à ce paramètre (tableau 2.8), le niveau d’altération a ainsi été défini « 0 » si pas de bois mort et :

<table>
<thead>
<tr>
<th>Nid/altération</th>
<th>ALTERATION</th>
<th>Total général</th>
</tr>
</thead>
<tbody>
<tr>
<td>Présence (1)</td>
<td>"1" = « nb bois mort debout > nb de chandelles »</td>
<td>30</td>
</tr>
<tr>
<td>Presence (2)</td>
<td>"4" = « nb bois mort debout = nb de chandelles »</td>
<td>11</td>
</tr>
<tr>
<td>Total général</td>
<td>41</td>
<td>78</td>
</tr>
</tbody>
</table>

Tableau 5.10 Tableau de contingence de la présence de nids de sittelle en fonction du critère « niveau d’altération du bois mort debout » du peuplement forestier interprété à partir des données du dispositif Villard.

On ne peut pas rejeter l’hypothèse d’indépendance des deux échantillons ($\chi^2 = 2,258, p>0,05$)-à-dire qu’on ne peut pas exclure que le niveau d’altération du bois n’impacte pas la présence de nids de sittelle.

On peut conclure que la présence d’au moins une chandelle ou un bois mort debout (sur 1 225 m2) favorise de façon très hautement significative (risque < 0,1%) la présence de nids de sittelle en forêt de production de Pin laricio. On peut conclure aussi que de façon significative (risque <5%) :

- Les structures IR (irrégulière) et R_GB_BM (régulièrie à gros bois tendance bois moyens) favorisent la présence de nid de sittelle en forêt de production de Pin laricio;
- Une forte densité de peuplement et la structure régulière petits bois R_PB défavorisent la présence de nid de sittelle en forêt de production de Pin laricio.

5.1.2 Comparaison des variables quantitatives.

Les travaux de P. Villard et al. sur les forêts d’AITONE et de VALDUNIELLU ont permis de relever des variables dendrométriques quantitatives qui ont été rapprochées de celles relevées par les agents de l’ONF dans le cadre de la typologie des peuplements des peuplements de Pin laricio et essences associées (voir § 4.2.2.2) :

Mémoire EPHE-SVT- TORRE 51/114
5.1.2.1 Comparaison des échantillons absence/presence

On réalise une comparaison des variables quantitatives des deux échantillons de placettes inventoriées (de 1225 m²): celles sans nid de sittelle (ABS) et celles avec (PRES). La description comparative de ces variables figure en annexe A-5. Elle permet d’élaborer les hypothèses de comparaison indiquées au tableau 5.11. Aucune des variables ne suit une distribution normale (tests de Shapiro-Wilks significatifs au seuil α=0,05), on utilise donc le test non-paramétrique U de Mann-Whitney-Wilcoxon unilatéral pour deux échantillons non appariés qui s’appuie sur la comparaison des médianes des variables des échantillons de placettes absence (ABS) et présence (PRES).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>n</th>
<th>Min.</th>
<th>Max.</th>
<th>Moy.</th>
<th>Ecarter-type</th>
<th>ABS</th>
<th>PRES</th>
<th>H0</th>
<th>H1</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>PER</td>
<td>Nombre de perches</td>
<td>196</td>
<td>0</td>
<td>90</td>
<td>13,0</td>
<td>13,6</td>
<td>17,4±1,7</td>
<td>8,8±0,8</td>
<td>PER_ABS= PER_PRES</td>
<td>PER_ABS> PER_PRES</td>
<td>6447***</td>
</tr>
<tr>
<td>PB</td>
<td>Nombre de petits bois</td>
<td>196</td>
<td>0</td>
<td>42</td>
<td>6,6</td>
<td>6,7</td>
<td>9,0±0,8</td>
<td>4,3±0,3</td>
<td>PB_ABS= PB_PRES</td>
<td>PB_ABS> PB_PRES</td>
<td>6491***</td>
</tr>
<tr>
<td>BM</td>
<td>Nombre de bois moyens</td>
<td>196</td>
<td>0</td>
<td>28</td>
<td>7,4</td>
<td>6,1</td>
<td>9,0±0,7</td>
<td>5,7±0,5</td>
<td>BM_ABS= BM_PRES</td>
<td>BM_ABS> BM_PRES</td>
<td>5996***</td>
</tr>
<tr>
<td>GB</td>
<td>Nombre de gros bois</td>
<td>196</td>
<td>0</td>
<td>17</td>
<td>4,1</td>
<td>3,5</td>
<td>3,8±0,4</td>
<td>4,9±0,3</td>
<td>GB_ABS= GB_PRES</td>
<td>GB_ABS< GB_PRES</td>
<td>3781***</td>
</tr>
<tr>
<td>TGB</td>
<td>Nombre de très gros bois</td>
<td>196</td>
<td>0</td>
<td>12</td>
<td>3,7</td>
<td>3,0</td>
<td>2,1±0,2</td>
<td>4,8±0,3</td>
<td>TGB_ABS= TGB_PRES</td>
<td>TGB_ABS< TGB_PRES</td>
<td>2120***</td>
</tr>
<tr>
<td>NT</td>
<td>Nombre total de tiges</td>
<td>196</td>
<td>5</td>
<td>117</td>
<td>34,9</td>
<td>19,2</td>
<td>41,3±2,3</td>
<td>28,5±1,2</td>
<td>NT_ABS= NT_PRES</td>
<td>NT_ABS< NT_PRES</td>
<td>6469***</td>
</tr>
<tr>
<td>N_HA</td>
<td>Nombre total de tiges par hectare</td>
<td>196</td>
<td>40,82</td>
<td>955,23</td>
<td>284,71</td>
<td>156,74</td>
<td>337,1±18,1</td>
<td>232,4±9,4</td>
<td>N_HA_ABS= N_HA_PRES</td>
<td>N_HA_ABS> N_HA_PRES</td>
<td>6469***</td>
</tr>
<tr>
<td>Dmax</td>
<td>Diamètre du plus haut Pin laricio de la placette (cm)</td>
<td>191</td>
<td>0,0</td>
<td>110,0</td>
<td>73,0</td>
<td>26,3</td>
<td>62,7±2,6</td>
<td>86,4±1,3</td>
<td>Dm_ABS= Dm_PRES</td>
<td>Dm_ABS< Dm_PRES</td>
<td>1948***</td>
</tr>
<tr>
<td>Dmoy</td>
<td>Diamètre moyen des pins laricio (cm)</td>
<td>191</td>
<td>0,0</td>
<td>110,0</td>
<td>38,2</td>
<td>18,4</td>
<td>33,2±1,8</td>
<td>45,0±1,6</td>
<td>Dmoy_ABS= Dmoy_PRES</td>
<td>Dmoy_ABS< Dmoy_PRES</td>
<td>2675***</td>
</tr>
<tr>
<td>HTmax</td>
<td>Hauteur du plus haut Pin laricio de la placette (m)</td>
<td>191</td>
<td>0</td>
<td>50</td>
<td>31,45</td>
<td>9,91</td>
<td>28,6±1,0</td>
<td>37,7±0,5</td>
<td>HTm_ABS= HTm_PRES</td>
<td>HTm_ABS< HTm_PRES</td>
<td>2510***</td>
</tr>
<tr>
<td>X_N</td>
<td>Proportion du nombre d’arbres des essences autres que PL</td>
<td>196</td>
<td>0,00</td>
<td>1,00</td>
<td>0,27</td>
<td>0,32</td>
<td>0,31±0,04</td>
<td>0,22±0,03</td>
<td>X_N_ABS= X_N_PRES</td>
<td>X_N_ABS< X_N_PRES</td>
<td>5296NS</td>
</tr>
<tr>
<td>G_HA</td>
<td>Surface terriére totale par hectare</td>
<td>196</td>
<td>0,64</td>
<td>67,52</td>
<td>28,35</td>
<td>14,16</td>
<td>24,28±1,44</td>
<td>32,41±1,31</td>
<td>GHA_ABS= GHA_PRES</td>
<td>GHA_ABS< GHA_PRES</td>
<td>3261***</td>
</tr>
<tr>
<td>X_G</td>
<td>Proportion de la surface terriére des essences autres que PL</td>
<td>196</td>
<td>0,00</td>
<td>1,00</td>
<td>0,15</td>
<td>0,26</td>
<td>0,22±0,03</td>
<td>0,07±0,01</td>
<td>X_G_ABS= X_G_PRES</td>
<td>X_G_ABS< X_G_PRES</td>
<td>5568*</td>
</tr>
<tr>
<td>GESS</td>
<td>Surface terriére des arbres d’essences prioritaires</td>
<td>196</td>
<td>0,02</td>
<td>8,27</td>
<td>3,38</td>
<td>1,78</td>
<td>2,88±0,18</td>
<td>3,89±0,17</td>
<td>GESS_ABS= GESS_PRES</td>
<td>GESSABS< GESSPRES</td>
<td>3264***</td>
</tr>
<tr>
<td>GESS1</td>
<td>Surface terriére des arbres de la premiere essence prioritaire</td>
<td>196</td>
<td>0,02</td>
<td>8,27</td>
<td>3,16</td>
<td>1,75</td>
<td>2,62±0,17</td>
<td>3,70±0,16</td>
<td>GESS1ABS= GESS1PRES</td>
<td>GESS1ABS< GESS1PRES</td>
<td>3074***</td>
</tr>
<tr>
<td>GESS2</td>
<td>Surface terriére des arbres de la seconde essence prioritaire</td>
<td>196</td>
<td>0,00</td>
<td>1,78</td>
<td>0,18</td>
<td>0,37</td>
<td>0,22±0,04</td>
<td>0,15±0,03</td>
<td>GESS2ABS= GESS2PRES</td>
<td>GESS2ABS< GESS2PRES</td>
<td>5187NS</td>
</tr>
<tr>
<td>GDIV</td>
<td>Surface terriére des arbres d’essences diverses</td>
<td>196</td>
<td>0,00</td>
<td>1,48</td>
<td>0,08</td>
<td>0,20</td>
<td>0,10±0,02</td>
<td>0,07±0,01</td>
<td>GDIV_ABS= GDIV_PRES</td>
<td>GDIVABS< GDIVPRES</td>
<td>5298NS</td>
</tr>
<tr>
<td>GDIV1</td>
<td>Surface terriére des arbres de la premiere essence diverse</td>
<td>196</td>
<td>0,00</td>
<td>1,48</td>
<td>0,08</td>
<td>0,19</td>
<td>0,10±0,02</td>
<td>0,06±0,01</td>
<td>GDIV1ABS= GDIV1PRES</td>
<td>GDIV1ABS< GDIV1PRES</td>
<td>5298NS</td>
</tr>
<tr>
<td>BoisMort</td>
<td>Nombre de bois morts debout (entiers+chandelles)</td>
<td>196</td>
<td>0</td>
<td>7</td>
<td>1,2</td>
<td>1,5</td>
<td>0,7±0,2</td>
<td>1,7±0,1</td>
<td>Bm_ABS= Bm_PRES</td>
<td>Bm_ABS< Bm_PRES</td>
<td>1729***</td>
</tr>
<tr>
<td>NbChand</td>
<td>Nombre de chandelles</td>
<td>196</td>
<td>0</td>
<td>6</td>
<td>0,9</td>
<td>1,4</td>
<td>0,5±0,1</td>
<td>1,3±0,1</td>
<td>Nch_ABS= Nch_PRES</td>
<td>Nch_ABS< Nch_PRES</td>
<td>2318***</td>
</tr>
</tbody>
</table>

Tableau 5.11 Caractéristiques dendrométriques des placettes selon l’absence ou la présence de sittelle. Mesures présentées sous la forme moyenne±se. H0 hypothèse nulle-H1 hypothèse alternative. Résultats des tests U de Mann-Whitney-Wilcoxon et significativité (NS : non significatif ; * : p<0,05 ; ** : p<0,01 ; *** : p<0,001)
La présence d’une loge de sittelle est associée :

- de façon très hautement significative \((p<0,001)\) à : un nombre inférieur de perches, un nombre inférieur de petits bois, un plus grand nombre de très gros bois, un moins grand nombre de tiges, un diamètre du plus haut Pin laricio de la placette plus élevé, un diamètre moyen des pins laricio plus élevé, une hauteur du plus haut Pin laricio de la placette plus élevée, une surface terrière à l’hectare plus forte, une surface terrière des essences prioritaires (ici Pin Laricio) plus forte, une surface terrière de l’essence prioritaire principale plus forte, un nombre de bois morts debout plus important, un nombre de chandelles plus important ;
- de façon hautement significative \((p<0,01)\) à : un nombre inférieur de bois moyens, un nombre supérieur de gros bois ;
- de façon significative \((p<0,05)\) à : une proportion de la surface terrière des essences autres que le Pin laricio plus faible.

Ces conclusions rejoignent, avec les outils propres au gestionnaire forestier, les conclusions des ornithologues.

5.1.2.2 Analyse en composantes principales

Ces mêmes résultats peuvent être synthétisés sous la forme d’une analyse en composantes principales portant sur les variables significativement différentes des deux échantillons présence-absence. Les axes F1 à F5 de l’ACP expliquent 77% de la variance des placettes.

![Figure 5.1 Cercle de corrélations des variables sur le 1er plan de l’ACP. La variable PRES (Présence) en facteur supplémentaire.](image1)

![Figure 5.2 Histogramme des valeurs simulées](image2)

Il y apparaît que :

- l’absence de nid est plutôt favorisée par un nombre de tiges \((NT, N_HA)\), un nombre de perches \((PER)\), un nombre de petits bois \((PB)\) et un pourcentage d’essences \((X_G)\) autres que le Pin laricio plus importants.
- La présence de nid est plutôt favorisée par une taille du pin laricio le plus grand \((HTmax)\), un diamètre du pin laricio le plus grand \((Dmax)\), un diamètre moyen des pins laricio \((Dmoy)\), un nombre de très gros bois \((TGB)\) plus élevés.
Suivie d’une analyse discriminante significative testée par permutation (voir annexe A-5 et figure 5.2.), l’ACP confirme en cela les résultats exposés au § 5.1.2.1: les variables NT, N_HA, PER, PB et X_G d’une part et HT max, Dmax, Dmoy et TGB d’autre part interviennent dans cette discrimination.

5.1.2.3 Classifications

Afin de figurer de façon synthétique les types de placettes les plus à même de représenter les configurations de présence ou d’absence de nid de sittelle, on procède pour chaque échantillon de placettes (absence et présence) à une analyse en composantes principales en retenant un nombre d’axes factoriels susceptibles d’expliquer au moins 80% de la variance puis à une classification hiérarchique ascendante.

(a) Placettes sans nid

L’analyse en composantes principales est détaillée en annexe A-6. Cinq axes factoriels expliquent 86% de la variance.

Contribuent positivement le plus à l’axe 1 la monospécificité (GESS, GESS1), la surface terrière par hectare (G_HA), la hauteur du plus haut Pin laricio (HTmax) et le diamètre du plus haut Pin laricio (Dmax).

A l’axe 2, positivement, le nombre de tiges (NT, N_HA), le nombre de petits bois (PB) et le nombre de chandeliers (Nb_chand). Contribue positivement le plus à l’axe 3 le pourcentage d’essences autres que le Pin laricio (en pourcentage du nombre de tiges X_N puis en pourcentage de surface terrière X_G).

S’ensuit une classification hiérarchique ascendante (distance euclidienne- méthode de Ward) à partir de la valeur des coordonnées des placettes selon les 5 axes retenus de l’ACP. Elle permet de distinguer trois classes principales de placettes ainsi réparties:

<table>
<thead>
<tr>
<th>Classe</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objets</td>
<td>22</td>
<td>34</td>
<td>37</td>
<td>93 (5 non classées)</td>
</tr>
<tr>
<td>Somme des poids</td>
<td>16,787</td>
<td>12,255</td>
<td>6,414</td>
<td></td>
</tr>
<tr>
<td>Distance minimale au barycentre</td>
<td>1,827</td>
<td>0,855</td>
<td>0,814</td>
<td></td>
</tr>
<tr>
<td>Distance moyenne au barycentre</td>
<td>3,890</td>
<td>3,081</td>
<td>2,316</td>
<td></td>
</tr>
<tr>
<td>Distance maximale au barycentre</td>
<td>5,390</td>
<td>9,384</td>
<td>5,440</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 5.12 Répartition des placettes sans nid en 3 classes.

Les objets centraux des classes sont les suivants définis par leurs variables quantitatives :

<table>
<thead>
<tr>
<th>Class</th>
<th>PER</th>
<th>PB</th>
<th>BM</th>
<th>GB</th>
<th>TGB</th>
<th>NT</th>
<th>N_HA</th>
<th>Dmax</th>
<th>Dmoy</th>
<th>HTmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (190)</td>
<td>34</td>
<td>8</td>
<td>12</td>
<td>8</td>
<td>1</td>
<td>63</td>
<td>514</td>
<td>60,0</td>
<td>35,0</td>
<td>37</td>
</tr>
<tr>
<td>2 (69)</td>
<td>17</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>26</td>
<td>212</td>
<td>70,0</td>
<td>25,0</td>
<td>27</td>
</tr>
<tr>
<td>3 (26)</td>
<td>9</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>33</td>
<td>269</td>
<td>100,0</td>
<td>33,3</td>
<td>40</td>
</tr>
</tbody>
</table>

Tableau 5.13 Objets centraux (n° de placette) des 3 classes des placettes sans nid par leurs variables quantitatives.

On peut aussi en rappeler les variables qualitatives :

<table>
<thead>
<tr>
<th>Class</th>
<th>STR</th>
<th>CAP</th>
<th>COMPO</th>
<th>Forêt</th>
<th>Nombre de placettes de la classe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (190)</td>
<td>R_PB_BM</td>
<td>M</td>
<td>MNO</td>
<td>Aitone</td>
<td>22</td>
</tr>
<tr>
<td>2 (69)</td>
<td>R_PB_BM</td>
<td>M</td>
<td>MNO</td>
<td>Valduniellu</td>
<td>34</td>
</tr>
<tr>
<td>3 (26)</td>
<td>R_PB</td>
<td>M</td>
<td>MNO</td>
<td>Valduniellu</td>
<td>37</td>
</tr>
</tbody>
</table>

Tableau 5.14 Objets centraux (n° de placette) des 3 classes des placettes sans nid par leurs variables qualitatives.

Mémoire EPHE-SVT- TORRE 54/114
Les 3 classes principales sont illustrées selon les critères constatés grâce au progiciel Stand Visualisation System élaboré par l’USDA Forest service en figures 5.4 à 5.6.

Placettes sans nid (93)

Figure 5.3 Répartition des placettes sans nid par classe

Figure 5.4 Schéma de la placette 190 objet central de la classe 1 des placettes sans nid (22) - progiciel SVS/USDA.

Figure 5.5 Schéma de la placette 69, objet central de la classe 2 des placettes sans nid (34) - progiciel SVS/USDA.

Figure 5.6 Schéma de la placette 26, objet central de la classe 3 des placettes sans nid (37) - progiciel SVS/USDA.

Figure 5.7 Légende des essences figurées par le progiciel SVS/USDA.

Bouleau-Sapin pectiné-Sapin mort-Hêtre-Laricio-Laricio mort
L’analyse en composantes principales est détaillée en annexe A-7. Six axes factoriels expliquent 85,5% de la variance.

Contribuent positivement le plus à l’axe 1 la monospécificité (GESS, GESS1), la surface terrière par hectare (G_HA), le nombre de gros bois (GB) et le nombre de très gros bois (TGB). A l’axe 2, positivement, le nombre de tiges (NT, N_HA), le nombre de petits bois et le nombre de perches (PER). Contribuent positivement le plus à l’axe 3 le diamètre moyen des pins laricio (Dmoy), le pourcentage d’essences autres que le Pin laricio (en pourcentage du nombre de tiges X_N puis en pourcentage de surface terrière X_G).

S’ensuit une classification hiérarchique ascendante (distance euclidienne- méthode de Ward) à partir de la valeur des coordonnées des placettes selon les 6 axes retenus de l’ACP. Elle permet de distinguer trois classes principales de placettes ainsi réparties :

<table>
<thead>
<tr>
<th>Classe</th>
<th>Objets</th>
<th>Somme des poids</th>
<th>Variance intra-classe</th>
<th>Distance minimale au barycentre</th>
<th>Distance moyenne au barycentre</th>
<th>Distance maximale au barycentre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>25</td>
<td>17,159</td>
<td>1,907</td>
<td>3,906</td>
<td>6,517</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>32</td>
<td>7,985</td>
<td>1,447</td>
<td>2,641</td>
<td>5,171</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>41</td>
<td>13,831</td>
<td>1,255</td>
<td>3,292</td>
<td>7,602</td>
</tr>
</tbody>
</table>

Tableau 5.15 Répartition des placettes avec nid en 3 classes.

Les objets centraux des classes sont les suivants en variables quantitatives :

<table>
<thead>
<tr>
<th>Classe</th>
<th>PER</th>
<th>PB</th>
<th>BM</th>
<th>GB</th>
<th>TGB</th>
<th>NT</th>
<th>N_HA</th>
<th>Dmax</th>
<th>Dmoy</th>
<th>HTmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>40</td>
<td></td>
<td>327</td>
<td>80,0</td>
<td>54,5</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>8</td>
<td>22</td>
<td>180</td>
<td>80,0</td>
<td>54,5</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>28</td>
<td>229</td>
<td>90,0</td>
<td>33,2</td>
<td>34</td>
</tr>
</tbody>
</table>

Tableau 5.16 Objets centraux (n° de placette) des 3 classes des placettes avec nid par leurs variables quantitatives.

On peut aussi en rappeler les variables qualitatives :

<table>
<thead>
<tr>
<th>Classe</th>
<th>STR</th>
<th>CAP</th>
<th>COMPO</th>
<th>Forêt</th>
<th>Nombre de placettes de la classe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R_PB_BM</td>
<td>M</td>
<td>MNO</td>
<td>Aïtone</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>R_GB_BM</td>
<td>M</td>
<td>MNO</td>
<td>Valduniellu</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>R_PB_BM</td>
<td>M</td>
<td>MNO</td>
<td>Valduniellu</td>
<td>41</td>
</tr>
</tbody>
</table>

Tableau 5.17 Objets centraux (n° de placette) des 3 classes des placettes sans nid par leurs variables qualitatives.

Les 3 classes principales sont illustrées selon les critères constatés grâce au progiciel Stand Visualisation System élaboré par l’USDA Forest service en figures 5.9. à 5.11.
5.1.2.4 Comparaison des objets centraux des deux classifications

(a) Il apparaît que les placettes sans nid sont caractérisées majoritairement par rapport aux placettes avec nid par :
 • L’absence d’arbre mort debout
 • La présence de structure R_PB

(b) Les placettes avec nid sont caractérisées majoritairement par :
 • La présence d’au moins un bois mort debout
 • L’absence de structure R_PB
5.1.2.5 Régression logistique

La régression logistique a pour but ici d’expliquer la variable qualitative « présence » selon les modalités p(ABS)=0 et p(PRES)=1 en fonction des variables quantitatives et qualitatives x1, x2,…, xn.

\[
\log \left(\frac{p(PRES)}{1-p(PRES)} \right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n \quad \text{ou encore :} \quad p(PRES) = \frac{e^{(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n)}}{1+e^{(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n)}}
\]

L’objectif étant de fournir un modèle fondé sur les données recueillies ou calculées par les agents de l’ONF, on n’a retenu que ces paramètres pour construire le modèle, à savoir : PER, PB, BM, GB, TGB, NT, N_HA, G, G_HA, GE, GE1, GE2, GDIV, GDIV1, BoisMort, Nb_chandelles, pour les variables quantitatives, CAPITAL, STRUCTURE, COMPOSITION, Altération, pour les variables qualitatives. Les calculs basés sur la fonction de lien logit fournissent \(\beta_0 \) (constante ou intercept) et les coefficients \(\beta_i \) avec intervalle de confiance de 95%.

Le tableau récapitulatif des coefficients de la régression multiple figure en annexe A-8.

A partir du modèle comprenant toutes les variables on effectue une procédure pas à pas (stepwise) descendante progressive basée sur la minimisation du critère AIC et une autre ascendante progressive basée sur le même critère. Les modèles calculés figurent en annexe A-8. Trois modèles peuvent donc être retenus suite à ces procédures.

<table>
<thead>
<tr>
<th>modèle</th>
<th>Variables</th>
<th>Nb. de variables</th>
<th>Deviance</th>
<th>AIC de Akaike</th>
</tr>
</thead>
<tbody>
<tr>
<td>B13</td>
<td>PRES_ABS ~ PER + BM + G + BoisMort + NbChand + CAPITAL + STRUCTURE + Altération</td>
<td>8</td>
<td>68,237</td>
<td>100,24</td>
</tr>
<tr>
<td>F5</td>
<td>PRES_ABS ~ Altération + NT + TGB + GE1 + GESS2</td>
<td>5</td>
<td>92,264</td>
<td>106,26</td>
</tr>
<tr>
<td>F6</td>
<td>PRES_ABS ~ Altération + NT + TGB + GE1 : GESS2</td>
<td>5</td>
<td>271,71</td>
<td>107,65</td>
</tr>
</tbody>
</table>

Tableau 5.18 Caractéristiques des modèles de régression logistique retenus après procédures pas à pas.

| Paramètres du modèle B13 | Estimation \(\beta_i \) | Wald Borne inf. (95%) | Wald Borne sup. (95%) | z value | Pr(>|z|) | Significativité |
|--------------------------|-----------------|----------------------|----------------------|---------|----------|----------------|
| Constante | 21,829 | -1,96E+02 | NA | 0,006 | 0,995 |
| PER | -0,102 | -2,19E-01 | -3,16E-04 | -1,860 | 0,063 |
| BM | -0,358 | -5,71E-01 | -1,93E-01 | -3,766 | 0,000 |
| G | 0,530 | -1,05E-01 | 1,23E+00 | 1,590 | 0,112 |
| BoisMort | -3,981 | -7,17E+00 | -1,17E+00 | -2,690 | 0,007 |
| NbChand | 3,590 | 7,89E-01 | 6,72E+00 | 2,453 | 0,014 |
| CAPITAL[T.D] | -7,589 | NA | 1,17E+02 | -0,004 | 0,997 |
| CAPITAL[T.M] | 4,429 | 1,73E+00 | 7,54E+00 | 3,086 | 0,002 |
| CAPITAL[T.R] | 9,005 | 2,66E+00 | 1,59E+01 | 2,734 | 0,006 |
| STRUCTURE[T.R_BM] | -23,015 | NA | 1,95E+02 | -0,007 | 0,995 |
| STRUCTURE[T.R_GB] | -17,028 | -1,75E+04 | 4,46E+03 | -0,002 | 0,998 |
| STRUCTURE[T.R_GB_BM] | -29,429 | -1,19E+03 | 1,12E+02 | -0,009 | 0,993 |
| STRUCTURE[T.R_PB] | -29,220 | NA | 1,78E+02 | -0,009 | 0,993 |
| STRUCTURE[T.R_PB_BM] | -30,320 | NA | 1,77E+02 | -0,009 | 0,993 |
| Altération[T.1] | 11,762 | 6,95E+00 | 1,81E+01 | 4,220 | 0,000 |
| Altération[T.4] | 9,924 | 6,78E+00 | 1,45E+01 | 5,139 | 0,000 |

Tableau 5.19 Coefficients du modèle logit B13 avec intervalle de confiance à 95%
(NS : non significatif ; * : p<0,05 ; ** : p<0,01 ; *** : p<0,001)

Les modèles F5 et F6 sont les plus parcimonieux en paramètres, on abandonne le modèle B13.

Les modèles F5 et F6 sont ensuite comparés selon un test LR (likelihood ratio) qui permet de déduire qu’ils ne sont pas significativement différents au seuil \(\alpha=0,05 \). Au final, c’est le modèle dont les paramètres sont significativement différents de 0 qui est retenu, soit F6. Il fait l’objet d’une vérification graphique figurée en annexe A-8.

Mémoire EPHE-SVT- TORRE S8/114
Tableau 5.20 Coefficients du modèle logit F6 avec intervalle de confiance à 95%.
(NS : non significatif ; * : p<0,05 ; ** : p<0,01 ; *** : p<0,001)

| Paramètres du modèle F6 | Estimation β_i (95%) | Wald Borne inf. (95%) | Wald Borne sup. (95%) | z value | $Pr(>|z|)$ | Significativité |
|-------------------------|-----------------------------|-----------------------|-----------------------|---------|-----------|---------------|
| Constante | -2,808 | -5,108 | -1,028 | -2,771 | 0,00559 | ** |
| Altération[T.1] | 4,781 | 3,244 | 6,840 | 5,39 | 7,05E-08 | *** |
| NT | -0,057 | -0,099 | -0,022 | -2,936 | 0,00332 | ** |
| TGB | 0,303 | 0,094 | 0,541 | 2,702 | 0,0069 | ** |
| GESS2:GESS1 | -7,633 | -15,390 | -0,229 | -2,002 | 0,04526 | * |

Tableau 5.20 Coefficients du modèle logit F6 avec intervalle de confiance à 95%.
(NS : non significatif ; * : p<0,05 ; ** : p<0,01 ; *** : p<0,001)

Trois points apparaissent comme « aberrants » (outliers) avec les valeurs qui suivent :

<table>
<thead>
<tr>
<th>Point</th>
<th>Placette</th>
<th>Altération</th>
<th>NT</th>
<th>TGB</th>
<th>GESS2</th>
<th>GESS1</th>
<th>PRES_ABS</th>
</tr>
</thead>
<tbody>
<tr>
<td>117</td>
<td>120</td>
<td>0</td>
<td>32</td>
<td>6</td>
<td>21%</td>
<td>77%</td>
<td>PRES</td>
</tr>
<tr>
<td>139</td>
<td>142</td>
<td>1</td>
<td>12</td>
<td>7</td>
<td>0%</td>
<td>100%</td>
<td>ABS</td>
</tr>
<tr>
<td>145</td>
<td>148</td>
<td>0</td>
<td>25</td>
<td>2</td>
<td>24%</td>
<td>61%</td>
<td>PRES</td>
</tr>
</tbody>
</table>

Tableau 5.21 Tableau des caractéristiques des points/placettes aberrants du modèle F6.

- La placette 120 présente un nid de sittelle dans un arbre partiellement mort mais considéré comme vivant.
- La placette 142 revêt bien les caractéristiques générales des placettes à nid, alors qu’elle n’en présente pas : on note néanmoins, un faible nombre d’arbres.
- La placette 148 ne disposerait pas d’arbre mort alors qu’un nid est présent, il s’agit peut-être d’une erreur de saisie la confondant avec la 149.

Pour ces raisons, il n’y a pas lieu de modifier le modèle retenu :

Equation du modèle retenu (AIC le plus faible, 5 variables significativement différentes de 0 au seuil $\alpha=0,05$):

$$p (PRES) = \exp(-2,208+4,781 \times Altération[T.1]+ 5,985 \times Altération[T.4] \times -0,057 \times NT+0,303 \times TGB-7,633 \times (GESS2:GESS1) \bigg/ (1 + \exp(-2,208+4,781 \times Altération[T.1]+ 5,985 \times Altération[T.4] \times -0,057 \times NT+0,303 \times TGB-7,633 \times (GESS2:GESS1)))$$

Afin d’estimer la pertinence du modèle, on établit le tableau de contingence entre les observations prédites et les véritables observations. La fiabilité du modèle est estimée en calculant la proportion (taux) entre prédiction et observation pour chaque modalité et puis pour l’ensemble :

<table>
<thead>
<tr>
<th>observé \ prédit</th>
<th>ABS</th>
<th>PRES</th>
<th>Total prédit</th>
<th>Taux estimé</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>86</td>
<td>12</td>
<td>98</td>
<td>88% (=86/98)</td>
</tr>
<tr>
<td>PRES</td>
<td>4</td>
<td>94</td>
<td>98</td>
<td>96% (=94/98)</td>
</tr>
<tr>
<td>Total observé</td>
<td>90</td>
<td>106</td>
<td>196</td>
<td>92% (= (86+94)/196))</td>
</tr>
</tbody>
</table>

Tableau 5.22 Taux de classification des observations (placettes) en fonction du modèle de probabilité retenu F6.

La régression logistique confirme, comme les analyses qui la précèdent, les conclusions des ornithologues sur les caractéristiques des arbres proches du site de nidification de la sittelle. Elle permet d’aboutir à un modèle de calcul de la présence de nids de sittelle sur le massif d’Aitone-Valduniellu d’une fiabilité estimée à plus de 90%.

Ces analyses peuvent être complétées pour tenter de comprendre le territoire de l’oiseau au-delà de son site de nidification.
5.1.3 Répartition de la sittelle à l’échelle du massif forestier

Considérons la répartition de la sittelle sur le massif étudié par P. Villard et al., soit 96 sites répartis sur les séries de production des forêts de Valduniellu et Aïtone en partie parcourues par l’observateur (parmi les 98 placettes, 2 d’entre elles, les numéros 138 et 163 étaient proches, mais extérieures à la forêt territoriale d’Aïtone). Les forêts constituent des espaces séparés géographiquement : on remarque sur Aïtone, 39 observations pour 834,83 ha, soit a priori 0,47 couple aux 10 ha et sur Valduniellu, 57 observations pour 2 226,47 ha, soit a priori 0,26 couple aux 10 ha.

<table>
<thead>
<tr>
<th>Forêt</th>
<th>placettes</th>
<th>Surface dans le dispositif (ha)</th>
<th>densité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aïtone</td>
<td>39</td>
<td>834,83</td>
<td>0,47</td>
</tr>
<tr>
<td>Valdu</td>
<td>57</td>
<td>2 226,47</td>
<td>0,26</td>
</tr>
<tr>
<td>Total général</td>
<td>96</td>
<td>3 061,30</td>
<td>0,31</td>
</tr>
</tbody>
</table>

Tableau 5.23 Tableau des placettes avec nid en fonction de la forêt.

5.1.3.1 Comparaison des placettes avec nid entre forêts.

On réalise une comparaison des variables quantitatives de deux sous-échantillons des placettes inventoriées avec présence de nid de sittelle déterminés par la forêt où elles se trouvent. La description comparative de ces variables figure en annexe A-9. Elle permet d’élaborer les hypothèses de comparaison indiquées au tableau 5.19. La comparaison ne porte que sur les variables significativement différentes entre les échantillons placettes sans nid versus placettes avec nid telles que déterminées au § 5.1.2.1. Les variables ne suivent pas une distribution normale (tests de Shapiro-Wilks significatifs au seuil α=0,05), on utilise le test non paramétrique U de Mann-Whitney-Wilcoxon unilatéral pour deux échantillons non appariés pour comparer les variables des sous-échantillons Aïtone et Valduniellu.

<table>
<thead>
<tr>
<th>Var.</th>
<th>PER</th>
<th>PB</th>
<th>BM</th>
<th>GB</th>
<th>TGB</th>
<th>NT</th>
<th>N_HA</th>
<th>Dmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aïtone</td>
<td>7,0±1,0</td>
<td>4,9±0,7</td>
<td>6,6±0,6</td>
<td>5,1±0,7</td>
<td>5,2±0,5</td>
<td>28,8±0,4</td>
<td>235,09±0,42</td>
<td>83,3±0,1</td>
</tr>
<tr>
<td>Valdu</td>
<td>10,3±0,8</td>
<td>3,9±0,8</td>
<td>5,0±1,0</td>
<td>4,0±0,8</td>
<td>4,7±0,6</td>
<td>28,0±0,4</td>
<td>228,74±0,40</td>
<td>88,4±0,2</td>
</tr>
<tr>
<td>H0</td>
<td>PER_Aïtone=PER_Valdu</td>
<td>PB_Aïtone=PB_Valdu</td>
<td>BM_Aïtone=BM_Valdu</td>
<td>GB_Aïtone=GB_Valdu</td>
<td>TGB_Aïtone=TGB_Valdu</td>
<td>NT_Aïtone=NT_Valdu</td>
<td>N_HA_Aïtone=N_HA_Valdu</td>
<td>Dmax_Aïtone=Dmax_Valdu</td>
</tr>
<tr>
<td>H1</td>
<td>PER_Aïtone<PER_Valdu</td>
<td>PB_Aïtone<PB_Valdu</td>
<td>BM_Aïtone<BM_Valdu</td>
<td>GB_Aïtone<GB_Valdu</td>
<td>TGB_Aïtone<TGB_Valdu</td>
<td>NT_Aïtone<NT_Valdu</td>
<td>N_HA_Aïtone<N_HA_Valdu</td>
<td>Dmax_Aïtone<Dmax_Valdu</td>
</tr>
<tr>
<td>U</td>
<td>806*</td>
<td>1301,5NS</td>
<td>1431,5**</td>
<td>1302NS</td>
<td>1234NS</td>
<td>1149,5NS</td>
<td>1149,5NS</td>
<td>861,5*</td>
</tr>
</tbody>
</table>

Var. | Dmoy | HTmax | G_HA | X_G | GESS | GESS1 | Boismort | Nb_Chand. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aïtone</td>
<td>47,0±0,3</td>
<td>37,4±0,2</td>
<td>33,49±0,34</td>
<td>0,12±0,01</td>
<td>4,08±0,34</td>
<td>3,62±0,38</td>
<td>1,7±0,8</td>
<td>1,4±1,0</td>
</tr>
<tr>
<td>Valdu</td>
<td>43,4±0,4</td>
<td>34,4±0,1</td>
<td>30,67±0,43</td>
<td>0,05±0,02</td>
<td>3,63±0,46</td>
<td>3,63±0,46</td>
<td>1,6±0,6</td>
<td>1,2±0,9</td>
</tr>
<tr>
<td>H0</td>
<td>Dmoy_Aïtone>Dmoy_Valdu</td>
<td>HTm_Aïtone = HTm_Valdu</td>
<td>GHA_Aïtone = GHA_Valdu</td>
<td>X_G_Aïtone = X_G_Valdu</td>
<td>GESS_Aïtone = GESS_Valdu</td>
<td>GESS1_Aïtone = GESS1_Valdu</td>
<td>Bm_Aïtone = Bm_Valdu</td>
<td>Nch_Aïtone = Nch_Valdu</td>
</tr>
<tr>
<td>H1</td>
<td>Dmoy_Aïtone>Dmoy_Valdu</td>
<td>HTm_Aïtone = HTm_Valdu</td>
<td>GHA_Aïtone = GHA_Valdu</td>
<td>X_G_Aïtone > X_G_Valdu</td>
<td>GESS_Aïtone > GESS_Valdu</td>
<td>GESS1_Aïtone > GESS1_Valdu</td>
<td>Bm_Aïtone > Bm_Valdu</td>
<td>Nch_Aïtone > Nch_Valdu</td>
</tr>
<tr>
<td>U</td>
<td>1345*</td>
<td>1468,5**</td>
<td>1274,5NS</td>
<td>1560,5***</td>
<td>1302NS</td>
<td>1120NS</td>
<td>1067NS</td>
<td>1129,5NS</td>
</tr>
</tbody>
</table>

Tableau 5.24 Caractéristiques dendrométriques des placettes selon la forêt où elles se trouvent. Mesures présentées sous la forme moyenne±se. H0 hypothèse nulle-H1 hypothèse alternative. Résultats des tests U de Mann-Whitney-Wilcoxon et significativité (NS : non significatif ; * : p<0,05 ; ** : p<0,01 ; *** : p<0,001)

L’analyse en composantes principales porte sur les placettes avec nid des deux forêts avec en variable explicative la forêt. La combinaison des axes 1 et 4 laisse apparaître une certaine discrimination entre forêts confirmée par l’analyse discriminante qui suit l’ACP.
Parmi les variables déterminées comme favorables à la présence de sittelle au § 5.1.2.1. Dmax est significativement plus petit en forêt d’Aïtone qu’en forêt de Valduniellu, mais Dmoy et HTmax sont significativement plus grands.

Parmi les variables déterminées comme défavorables à la présence de sittelle au § 5.1.2.1. BM et X_G sont significativement plus grands en forêt d’Aïtone qu’en forêt de Valduniellu, mais PER est significativement plus petit.

La discrimination entre les placettes avec nid des forêts d’Aïtone et de Valduniellu est aussi significative (test de permutation) comme l’indique la figure 5.15.

Le nombre des variables favorables à la présence de nid de sittelle et significativement différentes entre ces deux forêts est le même : la comparaison des variables quantitatives à l’échelle de la placette ne permet pas de répondre à la question de la différence de densité des couples de sitelles entre les deux forêts.

<table>
<thead>
<tr>
<th>Forêt/Var.</th>
<th>PER</th>
<th>BM</th>
<th>Dmax</th>
<th>Dmoy</th>
<th>HTmax</th>
<th>X_G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aïtone</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Valduniellu</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Tableau 5.25 Comparaison de l’influence des variables sur la présence de nid de sittelle selon la forêt : + favorable - défavorable.

Il faut peut-être rechercher cette réponse à une échelle plus petite que celle de la placette, à celle du territoire. Si le périmètre proche de la loge répond en effet à un besoin de reproduction de l’oiseau, le périmètre plus éloigné peut être considéré comme répondant à un besoin de nutrition de ce dernier. Remarquons aussi que Dmoy, HTmax et BM plus élevés et PER plus faible qui caractérisent les placettes à nid de la FT d’Aïtone par rapport à celles de la FT de Valduniellu plaident en faveur d’une forêt plus âgée ou à stations forestières plus productives.
5.1.3.2 Distribution en fonction des types de peuplements IFN

L’explication biologique de la distribution des territoires de la sittelle dans le massif forestier d’Aïtote-Valduniellu peut donc être recherchée dans la nature des peuplements forestiers qui l’environnent, pour ce faire, examinons la distribution des placettes du dispositif Villard en fonction du type de peuplement décrit par l’Inventaire forestier national (IFN 2003). Le détail en est fourni en annexe A-10. Il est ainsi possible de comparer la nature des peuplements forestiers IFN proches des placettes sans nid d’Aïtote de deux placettes avec nid. Il apparaît que le type de peuplements IFN concerné par la présence d’un nid de sittelle comporte systématiquement du Pin laricio.

<table>
<thead>
<tr>
<th>Nid/Peuplement IFN</th>
<th>CODE IFN</th>
<th>Total général</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRES/ABS</td>
<td>AH</td>
<td>15 48 2 1 3 15 4 3 1 5 1 98</td>
</tr>
<tr>
<td>ABS</td>
<td>CNJ CPJ FR1 FR2 MP1 MP2 QF WP ZP</td>
<td></td>
</tr>
<tr>
<td>PRES</td>
<td>0 61 0 2 19 5 5 0 3 0 96</td>
<td></td>
</tr>
<tr>
<td>Total général</td>
<td>15 109 2 2 5 34 9 8 1 8 1 194</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 5.26 Tableau de contingence des placettes du dispositif Villard en fonction du type de peuplement IFN.

Un test exact de Fischer (ddl =11, p=0,001) indique une différence significative entre absence et présence de nid notamment (tableaux 2x2) pour les peuplements de type AH (futaie de Hêtre), CNJ (jeune futaaie de Pin laricio), QF (taillis de feuillus indifférenciés) et ZP (garrigue ou maquis boisé de pins indifférenciés) dans lesquels il y a absence de nid de sittelle : les territoires composés de ce type de formation ne sont donc pas favorables à la présence de la sittelle, voilà qui confirme à nouveau les résultats des précédentes études.

Concernant les placettes avec nid seules, on peut tenter de comprendre la différence de leur densité entre les deux zones de production des deux forêts en comparant leur composition en types de peuplements IFN concernés. Cela conduit à évaluer la densité de placettes avec nid par type de peuplement IFN et par forêt, soit :

<table>
<thead>
<tr>
<th>Forêt/Nid/Peuplement IFN</th>
<th>CODE IFN</th>
<th>Totaux</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORET CN CPJ FR2 MP2 FR1 MP1 WP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AÏTONE (nb de nids)</td>
<td>18 1 19 0 0 0 1 39</td>
<td></td>
</tr>
<tr>
<td>AÏTONE (surface (ha))</td>
<td>240 25 310 16 18 0 46 654</td>
<td></td>
</tr>
<tr>
<td>AÏTONE (densité aux 100 ha)</td>
<td>7,5 4,1 6,1 0,0 0,0 0,0 2,2 6,0</td>
<td></td>
</tr>
<tr>
<td>VALDUNIELLU (nb de nids)</td>
<td>43 0 0 5 2 5 2 57</td>
<td></td>
</tr>
<tr>
<td>VALDUNIELLU (surface (ha))</td>
<td>1 396 0 0 52 75 163 144 1 831</td>
<td></td>
</tr>
<tr>
<td>VALDUNIELLU (densité aux 100 ha)</td>
<td>3,1 0,0 0,0 9,6 2,7 3,1 1,4 3,1</td>
<td></td>
</tr>
<tr>
<td>Moyenne par peuplement</td>
<td>3,7 4,1 6,1 7,4 2,1 3,1 1,6 3,9</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 5.27 Tableau des densités de placettes avec nid selon les types de peuplement IFN et par forêt.

La densité de nids de sittelle est en moyenne deux fois plus forte en forêt d’Aïtote qu’en forêt de Valduniellu, mais cette différence est complexe à cerner puisque :

- certains peuplements n’en comportent pas à Aïtote mais en détiennent à Valduniellu (MP2, futaaie de résineux avec sous étage feuillu et FR1, futaaie mixte à dominante feuillue),
- certains peuplements ne sont pas présents à Aïtote alors qu’ils le sont à Valduniellu avec une bonne densité de nids (MP1, mélange de futaaie de pins indifférenciés et de taillis à dominante feuillue)
- le feuillu à Aïtote est plutôt le Hêtre capable de concurrencer en hauteur le Pin laricio et qu’il s’agit du Bouleau ou de l’Aulne cordé à Valduniellu plutôt dominés par le Pin laricio;
- la densité des nids est en revanche plus importante dans les peuplements à dominante résineux (FR2) et surtout Pin laricio (CN) à Aïtote qu’à Valduniellu.

La cartographie des documents d’aménagement datant de 2005-2006 de ces deux forêts permet d’aller plus avant.
5.1.3.3 Distribution en fonction des types de peuplement ONF

Est utilisée l’ancienne typologie forestière établie par cartographie qualitative, plus précise que celle de l’IFN, selon une légende lissée (voir § 4.2.1.2.). Elle permet d’en déduire la composition des peuplements forestiers proches des placettes du dispositif Villard selon la même logique que pour les données de l’IFN.

Figure 5.15 Répartition géographique des placettes à nid du dispositif Villard en fonction des types de peuplements ONF.

Après correction du type de peuplement aberrant de certaines placettes et de l’incohérence IFN/ONF sur d’autres grâce à l’examen de la photo aérienne 2007 (©BD ORTHO IGN 2007) et le retour aux relevés de P. Villard et al. (cf annexe A-11), on aboutit à la répartition suivante des densités aux 10 hectares de placettes avec nid:

<table>
<thead>
<tr>
<th>Type de peuplement</th>
<th>Densité moyenne aux 10 ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORET/TYPE DE PEUPLEMENT</td>
<td>Aitone</td>
</tr>
<tr>
<td>VFD P.L</td>
<td>0,32</td>
</tr>
<tr>
<td>FD P.L</td>
<td>0,49</td>
</tr>
<tr>
<td>VFC P.L+BV</td>
<td>0</td>
</tr>
<tr>
<td>VFC P.L+SGP P.L</td>
<td>0</td>
</tr>
<tr>
<td>FC P.L+FC HET</td>
<td>1,51</td>
</tr>
<tr>
<td>FC HET+FC P.L+FC S.P</td>
<td>1,06</td>
</tr>
<tr>
<td>FC P.L+FC S.P</td>
<td>0,86</td>
</tr>
<tr>
<td>VFC P.L</td>
<td>0</td>
</tr>
<tr>
<td>FD P.L+FD S.P</td>
<td>0,68</td>
</tr>
<tr>
<td>FD P.L+FC HET</td>
<td>0,36</td>
</tr>
<tr>
<td>VFC P.L+FD HET</td>
<td>1,94</td>
</tr>
<tr>
<td>FD P.L+FD HET</td>
<td>0,29</td>
</tr>
<tr>
<td>Densité moyenne aux 10 ha</td>
<td>0,58</td>
</tr>
</tbody>
</table>

Tableau 5.28 Tableau des densités de placettes avec nid selon les types de peuplement ONF et par forêt.
D’ores et déjà, il apparaît que les peuplements mélangés à Pin laricio majoritaire d’Aitone (VFC P.L + FD HET, FC P.L + FC HET, FC HET + FC P.L + FC S.P, FC P.L + FC S.P) et de Valduniellu (VFC P.L+BV) semblent favorables à la présence de sittelle. La futaie dense et pure de Pin laricio (FD P.L) semble aussi plus favorable à la sittelle en forêt d’Aitone qu’en forêt de Valduniellu.

Ces constats conduisent à évaluer la densité de placettes avec nid par type de peuplement ONF et par forêt en regroupant les peuplements selon leur âge ou bien leur composition (voir annexe A-11) selon les abréviations :

<table>
<thead>
<tr>
<th>Peuplement simplifié</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>VF PL P</td>
<td>Vieille futaie pure de Pin laricio (>75%)</td>
</tr>
<tr>
<td>VF PL M</td>
<td>Vieille futaie mixte à Pin laricio majoritaire (50%<75%)</td>
</tr>
<tr>
<td>F PL P</td>
<td>Futaie pure de Pin laricio (>75%)</td>
</tr>
<tr>
<td>F PL M</td>
<td>Futaie mixte à Pin laricio majoritaire (50%<75%)</td>
</tr>
</tbody>
</table>

Dans toutes les catégories simplifiées de peuplement, la densité des nids de sittelle est plus forte en forêt d’Aitone qu’en forêt de Valduniellu. En regroupant à nouveau les classes on peut examiner l’intervention séparée des facteurs âge ou composition.

La densité de nids de sittelle est plus forte (0,70 vs 0,23) dans les futaies adultes de Pin laricio d’Aitone plutôt que dans celles de Valduniellu. L’explication tient peut-être au fait que ces formations sont différentes dans les deux forêts même si elles portent le même nom en raison de l’harmonisation du type futaie adulte de 30 à 120 ans: pour Aitone, elle est composée à 7% d’une jeune futaie de 30 à 60 ans et à 93% d’une futaie adulte de 60 à 120 ans, mais pour Valduniellu, la jeune futaie de 30 à 60 ans représente 27% et la futaie adulte de 60 à 120 ans 73% de la futaie adulte de 30 à 120 ans.

La densité de nids de sittelle est plus forte (0,85 vs 0,72) dans les futaies de Pin laricio mélangées d’Aitone plutôt que dans celles de Valduniellu. Or, la partie Valduniellu du dispositif Villard dispose seulement de 9% de futaie de PL mixte. En revanche, la partie Aitone de ce dispositif contient 42% de futaie de Pin Laricio mixte. Leur composition pourrait être une explication à la différence de densité de présence de nids entre les deux forêts et il apparaîtrait que le niveau de mélange de peuplements (jusqu’à un taux de 50% par définition même de ces peuplements) favorise la présence de la sittelle.

Pour aller plus loin, compte tenu du caractère territorial de l’oiseau, il est possible d’examiner cette composition en peuplements forestiers dans les territoires occupés par la sittelle.
5.1.3.4 Analyse de territoires pré-établis selon le calcul de Voronoi

Conformément aux conclusions qui précèdent, le calcul repose sur les peuplements favorables à la sittelle seuls (à Pin laricio seul ou en mélange) et les territoires ont été corrigés pour être convexes.

La surface moyenne des territoires en FT d’Aïtone est deux fois inférieure à celle des territoires en FT de Valduniellu. L’intersection entre la couverture des territoires et celle des peuplements forestiers permet d’obtenir la composition de chaque territoire en types de peuplements ONF.

<table>
<thead>
<tr>
<th>Statistique</th>
<th>Surface des territoires (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>39</td>
</tr>
<tr>
<td>Minimum</td>
<td>3,64</td>
</tr>
<tr>
<td>Maximum</td>
<td>56,08</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>10,31</td>
</tr>
<tr>
<td>Médiane</td>
<td>15,38</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>25,29</td>
</tr>
<tr>
<td>Moyenne</td>
<td>19,55</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>162,49</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>12,75</td>
</tr>
</tbody>
</table>

Tableau 5.32 Statistiques descriptives des surfaces territoires de sittelle de la FT d’Aïtone.

<table>
<thead>
<tr>
<th>Statistique</th>
<th>Surface des territoires (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>57</td>
</tr>
<tr>
<td>Minimum</td>
<td>8,18</td>
</tr>
<tr>
<td>Maximum</td>
<td>96,23</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>18,08</td>
</tr>
<tr>
<td>Médiane</td>
<td>27,03</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>41,39</td>
</tr>
<tr>
<td>Moyenne</td>
<td>32,72</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>409,93</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>20,25</td>
</tr>
</tbody>
</table>

Tableau 5.33 Statistiques descriptives des surfaces territoires de sittelle de la FT de Valduniellu.

Figure 5.16 Carte de répartition des territoires de sittelles dans le périmètre du dispositif Villard
On peut construire le tableau suivant :

<table>
<thead>
<tr>
<th>surface territoire (S_T)</th>
<th>0-10 HA</th>
<th>10-20 HA</th>
<th>20-30 HA</th>
<th>>30 HA</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AÏTONE</td>
<td>8</td>
<td>14</td>
<td>10</td>
<td>7</td>
<td>39</td>
</tr>
<tr>
<td>VALDUNIELLU</td>
<td>1</td>
<td>19</td>
<td>12</td>
<td>25</td>
<td>57</td>
</tr>
<tr>
<td>TOTAL</td>
<td>9</td>
<td>33</td>
<td>22</td>
<td>32</td>
<td>96</td>
</tr>
</tbody>
</table>

Tableau 5.34 Tableau de contingence des surfaces de territoires par classe de surface en fonction de la forêt.

La variable S_T ne suit pas une distribution normale (tests de Shapiro-Wilks significatifs au seuil α=0,05), on utilise le test non paramétrique U de Mann-Whitney-Wilcoxon unilatéral pour deux échantillons non appariés pour comparer les variables des sous-échantillons Aïtone et Valduniellu. On peut rejeter l’hypothèse d’indépendance des deux échantillons (U=614, p<0,01) et conclure que la taille des territoires de sittelle de la forêt d’Aïtone est inférieure à celle de ceux de la forêt de Valduniellu de façon hautement significative (risque < 1%).

Les types de peuplements forestiers occupant les territoires d’une taille inférieure à 10 hectares peuvent aussi être classés selon la superficie relative qu’ils occupent dans ces territoires par rapport à celle qu’ils occupent dans le massif forestier : ressortent VFC PL, FC PL + FD HET et FC PL + FC HET.

![Diagramme des superficies relatives occupées par les types de peuplements présents dans les territoires < 10 ha](image_url)

Figure 5.17 Graphique des superficies relatives occupées par les types de peuplements présents dans les territoires < 10 ha

Une analyse en composantes principales des territoires selon leur composition en types de peuplements ONF suivie d’une analyse discriminante dont les résultats sont présentés en annexe A-12 confirment la discrimination entre les deux forêts du point de vue de leur composition en peuplements ONF, mais le pourcentage total de variance des axes F1 et F2 de 31% ne permet pas de mettre en avant le caractère structurant d’un de ces types de peuplements.

Afin de tenter d’expliquer mieux la surface du territoire de la sittelle par celle des types de peuplements de Pin laricio qui la constituent, des régressions linéaires multiples ont été réalisées : avec en variable à expliquer le logarithme en base 10 de la surface du territoire considéré LOG(S_T) dont on peut considérer qu’il suit une loi Normale (tests de Shapiro-Wilk sur LOG(S_T) de chacun des deux sous-échantillons Aïtone et Valduniellu non significatifs) et en variables explicatives les surfaces des peuplements les plus significatives. La méthode « regsubsets » ayant abouti aux modèles est précisée au § 4.4 et l’analyse graphique des résidus des modèles est détaillée en annexe A-12.
Modèle AÏTONE: \(\text{LOG}_S _T \sim (\text{FD.P.L}+\text{FD.HET}) + (\text{FC.P.L}+\text{FC.HET}) + (\text{FD.P.L}+\text{FD.S.P}) + (\text{FC.P.L}+\text{FD.HET}) + (\text{VFC.P.L} + \text{SGP.P.L}) + (\text{VFD.P.L}) \)

\(R^2 \) ajusté : 0,828

| Paramètres du modèle | Estimation \(\beta_i \) | Ecart-type | \(t \) value | \(Pr(>|t|) \) | Significativité |
|----------------------|--------------------------|------------|---------------|----------------|----------------|
| Constante | 0,677910 | 0,046308 | 14,639 | 3,34e-15 | *** |
| \(\text{FD.P.L}+\text{FD.HET} \) | 0,022258 | 0,010860 | 2,049 | 0,049246 | * |
| \(\text{FC.P.L}+\text{FC.HET} \) | 0,035571 | 0,008645 | 4,115 | 0,000278 | *** |
| \(\text{FD.P.L}+\text{FD.S.P} \) | 0,036094 | 0,007137 | 5,377 | 8,04e-06 | *** |
| \(\text{FC.P.L}+\text{FD.HET} \) | 0,019895 | 0,008236 | 2,415 | 0,022015 | * |
| \(\text{VFC.P.L} \) | 0,023288 | 0,007028 | 3,231 | 0,002990 | ** |
| \(\text{SGP.P.L} \) | 0,051622 | 0,006916 | 7,464 | 2,56e-08 | *** |
| \(\text{VFC.P.L}+\text{SGP.P.L} \) | 0,027923 | 0,005534 | 5,046 | 2,05e-05 | *** |
| \(\text{VFD.P.L} \) | 0,029882 | 0,006789 | 4,402 | 0,000125 | ** |

Tableau 5.35 Caractéristiques du modèle de régression linéaire multiple de composition des territoires pour la forêt d’Aîtone. Significativité (NS : non significatif ; * : \(p<0,05 \) ; ** : \(p<0,01 \) ; *** : \(p<0,001 \))

Modèle VALDUNIELLU: \(\text{LOG}_S _T \sim (\text{VFC.P.L}+\text{SGP.P.L}) + (\text{VFC.P.L}) + (\text{SGP.P.L}) + (\text{VFD.P.L}) + (\text{FD.P.L}) \)

\(R^2 \) ajusté : 0,8907

| Paramètres du modèle | Estimation \(\beta_i \) | Ecart-type | \(t \) value | \(Pr(>|t|) \) | Significativité |
|----------------------|--------------------------|------------|---------------|----------------|----------------|
| Constante | 1,033737 | 0,023204 | 44,550 | < 2e-16 | *** |
| \(\text{VFC.P.L}+\text{SGP.P.L} \) | 0,012270 | 0,003744 | 3,278 | 0,00189 | ** |
| \(\text{VFC.P.L} \) | 0,013450 | 0,002471 | 5,442 | 1,5e-06 | *** |
| \(\text{SGP.P.L} \) | 0,015211 | 0,002352 | 6,468 | 7,7e-08 | *** |
| \(\text{VFD.P.L} \) | 0,010156 | 0,001296 | 7,835 | 6,4e-10 | *** |
| \(\text{FD.P.L} \) | 0,013788 | 0,001449 | 9,515 | 6,82e-13 | *** |

Tableau 5.36 Caractéristiques du modèle de régression linéaire multiple de composition des territoires pour la forêt de Valduniellu. Significativité (NS : non significatif ; * : \(p<0,05 \) ; ** : \(p<0,01 \) ; *** : \(p<0,001 \))

Sont surlignés, les peuplements de Pin laricio qui contribuent de façon significative le moins à la surface des territoires (coefficients \(\beta_i \) les plus petits).

Les surfaces des futaies pures de Pin laricio adulte ou âgée (>75%) contribuent à diminuer la surface des territoires dans les deux forêts, ce qui conduit à nuancer la conclusion fondée sur la seule densité de nids à l’hectare (§ 5.1.3.3) qui mettait en avant l’influence des peuplements mélangés (50% <PL< 75%) plus présents à Aîtone qu’à Valduniellu.

5.1.3.5 Analyse des coupes passées

(a) Méthode d’aménagement appliquée pendant les quarante dernières années

Partant de forêts souvent âgées à peuplements hétérogènes en essences, âges et qualité de bois, le traitement mis en œuvre par les services de l’ONF depuis les années 1970 jusqu’au début des années 2000 avait pour objectifs :

- D’augmenter la superficie en Pin laricio, essence reconnue comme la plus intéressant économique parlant, au détriment des essences dites secondaires (Hêtre, Pin maritime, Sapin pectiné) grâce notamment à une régénération naturelle favorisée par la mise en éclairage de surfaces importantes (PL essence de lumière);
- D’homogénéiser la qualité des coupes par une amélioration de la qualité technologique du bois produit et par la régularisation des peuplements;
- De régulariser la production de bois sur le moyen terme pour favoriser des débouchés industriels pérennes et l’amortissement des investissements consacrés aux infrastructures (emprunts);
- D’augmenter la production de bois en réduisant le diamètre ou l’âge d’exploitabilité de l’essence principale, ce qui permet d’accroître le nombre des rotations sur la même parcelle.

Mémoire EPHE-SVT- TORRE 67/114
Pour ce faire, l’âge d’exploitabilité pour le Pin laricio a été diminué de 250 ans à 180 ans (voire dans les meilleures stations à 150 ans), soit, en diamètre à 1,30 m, d’environ 90 cm à 75 cm, voire 60 cm. S’agissant de traitement en futaa régulière, il appartenait à l’aménagiste de répartir dans chaque forêt cette durée de renouvellement D sur la surface totale boisée S, entraînant par là une surface à régénérer s pendant la durée de l’aménagement d telle que s=S x d÷D. (exemple : d= 20 ans, D= 180 ans, S= 1 800 ha, s= 200 ha).

Ainsi, pour une forêt donnée est défini un groupe de régénération Er dont la surface minimale est s (groupe de régénération strict) ou sr (sr>s, groupe de régénération élargi), sachant que l’objectif à la fin de l’aménagement (d’une durée d+b où b<<d) est d’atteindre la surface à régénérer s. Le reste de la forêt est divisé en groupe de préparation Ep (parcelles qui seront amenées à passer en régénération lors de l’aménagement suivant) et groupe d’amélioration Ea où l’âge des parcelles est encore éloigné de celui de l’exploitabilité. La particularité de la futaa par parquets tient que le groupe de régénération est réparti non pas en parcelles mais en unités équivalentes plus petites dites parquets (ou sous-parcelles) dispersées dans la forêt en raison du risque de destruction de la régénération par le feu (Cerutti, 1990) par exemple : les 200 ha à régénérer peuvent être dispersés en 20 parquets de 10 ha.

La sylviculture qui s’ensuit distingue donc deux types de coupes (ONF, 1969) :

- Celles dites d’amélioration constituent des opérations culturales visant à sélectionner les arbres d’élite les plus rémunérateurs pour la production finale et à favoriser leur croissance en éliminant les sujets qui les concurrencent ou les mal conformés. Elles sont périodiques (exemple tous les 20 ans) et assises par contenance (surface). Elles sont pratiquées tant sur le groupe de préparation que sur le groupe d’amélioration.
- Celles dites de régénération visent à la fois à recoller les arbres qui ont été favorisés et qui arrivent à l’âge d’exploitabilité convenu mais aussi à régénérer le peuplement, pour une nouvelle rotation, par voie naturelle (semis). Elles peuvent être réalisées en une coupe unique prévue à l’avance dans l’aménagement et assise par contenance, mais le plus souvent, afin d’obtenir la régénération naturelle, elles sont réalisées en coupes progressives, assises par volume sur une durée relativement courte (de l’ordre de 5 ans) pour ne pas léser la régénération par les dégâts d’abattage ou par l’envahissement, favorisé par la lumière, d’une végétation adventice.

On distingue alors la première coupe d’ensemencement (exemple 40% du volume est abattu), puis la coupe secondaire sur régénération partiellement acquise (deux ans après où ne demeure plus que 10 à 20% du volume sur pied), enfin la définitive qui extrait les derniers arbres. En nombre d’arbres par hectare, cela fait par exemple : 300 arbres-> coupe d’ensemencement->180 arbres-> coupe secondaire-> 60 arbres-> coupe définitive->0. Si la régénération naturelle n’est pas obtenue au-delà d’un certain seuil de surface (80%), elle doit être complétée d’une régénération artificielle.

(b) Bilan de la gestion passée pour les forêts d’Aïtone et de Valduniellu

Figure 5.18 Cartographie des dernières coupes de parquets de régénération réalisées en forêt d'Aitone avant 1992 (pas de chiffre) et entre 1992 et 2005 (numéro de parquet régénéré)

Figure 5.19 Cartographie des dernières coupes de parquets de régénération réalisées en forêt de Valduniellu avant 1993 (pas de chiffre) et entre 1993 et 2005 (numéro de parquet régénéré)
On peut synthétiser les données sur les coupes des parquets de régénération et celles pour y accéder (emprises) pratiquées dans ces deux forêts durant la quinzaine d’années précédant la mise en place du dispositif de Villard et al.

<table>
<thead>
<tr>
<th>Forêt</th>
<th>Surface du dispositif (ha)</th>
<th>Nombre d’années d’exploitation</th>
<th>Données</th>
<th>Type de coupe</th>
<th>% de surface rase exploitée</th>
<th>Moyenne par an</th>
<th>écart-type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aïtone</td>
<td>834,83</td>
<td>14</td>
<td></td>
<td>ENSEMENT-CEMENT</td>
<td>6 715</td>
<td>2 363</td>
<td>10 308</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SECONDAIRE</td>
<td>43,91</td>
<td>20,95</td>
<td>48,50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DEFINITIVE</td>
<td>152,93</td>
<td>112,82</td>
<td>212,53</td>
</tr>
<tr>
<td>Valduniellu</td>
<td>2 226,47</td>
<td>10</td>
<td></td>
<td>ENSEMENT-CEMENT</td>
<td>12 028</td>
<td>0</td>
<td>16 672</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SECONDAIRE</td>
<td>103,21</td>
<td>0,00</td>
<td>133,26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DEFINITIVE</td>
<td>116,54</td>
<td>0,00</td>
<td>125,11</td>
</tr>
</tbody>
</table>

Tableau 5.37 Synthèse des coupes de parquets réalisées en forêts d’Aïtone et de Valduniellu les 15 années précédant la mise en place du dispositif Villard et al.

Il apparaît que le volume exploité relatif à la surface exploitée en forêt d’Aïtone (171,51 m3 /ha) est plus important qu’en forêt de Valduniellu (121,37 m3/ha) de façon très hautement significative (test non paramétrique U de Mann-Whitney-Wilcoxon unilatéral pour deux échantillons non appariés U = 166, p< 0,001), ce qui laisse à penser que le volume sur pied du pin laricio est plus important en forêt d’Aïtone qu’en forêt de Valduniellu, ce qui revient encore à dire que les peuplements exploités y sont soit plus âgés, soit plus productifs, soit les deux.

En revanche, la différence de superficie de coupes rases entre les forêts (48,8 ha vs 133,26 ha) qui aurait pu expliquer la différence de densité de couples de sittelles par destruction d’habitats n’est pas significative (test non paramétrique U de Mann-Whitney-Wilcoxon unilatéral pour deux échantillons non appariés U = 36, p = 0,99).

Il est à noter que les volumes exploités par hectare et par an, tant en forêt d’Aïtone, qu’en forêt de Valduniellu, sur les durées étudiées et sur les périmètres considérés, sont environ 1,5 à 2 fois la production moyenne connue du Pin laricio (= 5-8 m3/ha/an), ce qui constitue (ONF, communication personnelle 2013) une décapitalisation des peuplements sur la durée des derniers aménagements appliqués à ces forêts. Ainsi, appliquée à chaque périmètre concerné, la surface réellement régénérée, compte tenu de la durée sur laquelle elle a été réalisée, permet d’estimer l’âge d’exploitation des peuplements si le traitement régulier était maintenu tel quel dans le temps: pour Aïtone, 240 ans ; pour Valduniellu, 143 ans. Cela penche, en conséquence, pour des peuplements plus jeunes en forêt de Valduniellu.

Après avoir déterminé la distance de chaque nid à la dernière coupe la plus proche (NEAR_DIST) et déduit le nombre de nids les plus proches de chaque dernière coupe (NB_NIDS), on a tenté d’expliquer ces variables quantitatives par : le type de coupe, l’année de coupe, la forêt.

Aucune influence n’a pu être démontrée de façon significative (tableau 5.38), hors celle du nombre de nids proches de la dernière coupe qui apparaît hautement significativement supérieur en forêt d’Aïtone (test non paramétrique U de Mann-Whitney-Wilcoxon unilatéral pour deux échantillons non appariés U = 706,5, p = 0,001).
Enfin, il est intéressant de regarder de plus près les 7 nids situés au sein des coupes (distance nulle). Après examen de la couverture photographique aérienne de 2007, le constat suivant peut être dressé :

Tableau 5.39 Caractéristiques des placettes à nid situées dans les coupes.

<table>
<thead>
<tr>
<th>PLACETTE</th>
<th>FORET</th>
<th>PARCELLES</th>
<th>PER</th>
<th>PB</th>
<th>BM</th>
<th>GB</th>
<th>TGB</th>
<th>GB2</th>
<th>NT</th>
<th>X_G</th>
<th>STRUCTURE</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Valdu</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>14</td>
<td>4</td>
<td>0,1577</td>
<td>R_GB_BM</td>
<td>ilot de gros arbres</td>
</tr>
<tr>
<td>78</td>
<td>Valdu</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>13</td>
<td>0,0000</td>
<td>R_GB_BM</td>
<td>en réalité à 70 m environ de la coupe</td>
</tr>
<tr>
<td>118</td>
<td>Aitone</td>
<td>14</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>15</td>
<td>19</td>
<td>0,1191</td>
<td>R_GB_BM</td>
<td>ilot de gros arbres</td>
</tr>
<tr>
<td>154</td>
<td>Aitone</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>17</td>
<td>27</td>
<td>0,0189</td>
<td>IR</td>
<td>imprécision GPS extérieur coupe</td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>Aitone</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>0,3000</td>
<td>IR</td>
<td>imprécision GPS extérieur coupe</td>
</tr>
<tr>
<td>158</td>
<td>Aitone</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>0,3478</td>
<td>R_GB_BM</td>
<td>imprecision GPS extérieur coupe</td>
</tr>
<tr>
<td>167</td>
<td>Aitone</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>0,3077</td>
<td>R_GB_BM</td>
<td>imprecision GPS extérieur coupe</td>
</tr>
</tbody>
</table>

Mise à part l’erreur de la placette 78, les nids sont dans des îlots soit très proches de la coupe (Aitone 154, 156, 158 et 167) soit à l’intérieur du périmètre coupé (Aitone 118 et Valduniellu 8). Cela laisse à penser qu’en cas de destruction de son territoire, la sittelle recherche des conditions similaires de vie dans les bouquets d’arbres les plus proches. Qu’en est-il alors pour les nouveaux aménagements en vigueur? La superposition de la localisation des nids identifiés en 2005 avec celle des parquets à exploiter (figures en annexe A-13) permet de déterminer que 6 territoires sur Aitone et 8 sur Valduniellu sont susceptibles d’être détruits si aucune précaution n’est prise par le gestionnaire. Ils figurent au tableau 5.40.

Tableau 5.40 Caractéristiques des territoires susceptibles d’être détruits lors de la mise en œuvre des nouveaux aménagements.

<table>
<thead>
<tr>
<th>NID</th>
<th>FORET</th>
<th>PARCELLE</th>
<th>PLACETTE</th>
<th>PER</th>
<th>PB</th>
<th>BM</th>
<th>GB</th>
<th>TGB</th>
<th>GB2</th>
<th>NT</th>
<th>X_G</th>
<th>STRUCTURE</th>
<th>DISTANCE A LA COUPE ANTERIEURE</th>
<th>PARQUET</th>
<th>SURFACE</th>
<th>PE_ONF</th>
</tr>
</thead>
<tbody>
<tr>
<td>124</td>
<td>Aitone</td>
<td>6</td>
<td>124</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td>22</td>
<td>0,28%</td>
<td>IR</td>
<td>211,9</td>
<td>VII</td>
<td>3,9665</td>
<td>VFD P.L</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Aitone</td>
<td>10</td>
<td>127</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>9</td>
<td>7</td>
<td>16</td>
<td>19</td>
<td>23,61%</td>
<td>R_GB_BM</td>
<td>41,9</td>
<td>X</td>
<td>5,2573</td>
<td>F D P.L +F D S.P</td>
</tr>
<tr>
<td>139</td>
<td>Aitone</td>
<td>3</td>
<td>139</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>11</td>
<td>1,120%</td>
<td>R_GB_BM</td>
<td>85,6</td>
<td>IV</td>
<td>1,3837</td>
<td>VFD P.L</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>Aitone</td>
<td>5</td>
<td>148</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>14</td>
<td>37,29%</td>
<td>R_GB_BM</td>
<td>93,7</td>
<td>XXI</td>
<td>1,1047</td>
<td>VFC P.L</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>Aitone</td>
<td>6</td>
<td>153</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>10</td>
<td>13</td>
<td>29,51%</td>
<td>IR</td>
<td>107,4</td>
<td>XIX</td>
<td>2,9077</td>
<td>VFC P.L</td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>Aitone</td>
<td>3</td>
<td>199</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>11</td>
<td>17,29%</td>
<td>R_GB_BM</td>
<td>24,5</td>
<td>V</td>
<td>0,4378</td>
<td>VFD P.L</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Valdu</td>
<td>17</td>
<td>9</td>
<td>15</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>18,41,24%</td>
<td>R_PB_BM</td>
<td>166,3</td>
<td>IX</td>
<td>12,6990</td>
<td>SGP P.L</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Valdu</td>
<td>17</td>
<td>10</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>9,20,68%</td>
<td>R_PB_BM</td>
<td>138,4</td>
<td>IX</td>
<td>12,6990</td>
<td>SGP P.L</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Valdu</td>
<td>4</td>
<td>21</td>
<td>25</td>
<td>7</td>
<td>15</td>
<td>8</td>
<td>3</td>
<td>11</td>
<td>58,00%</td>
<td>R_PB_BM</td>
<td>39,1</td>
<td>I</td>
<td>6,5239</td>
<td>SGP P.L</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Valdu</td>
<td>8</td>
<td>24</td>
<td>2</td>
<td>0</td>
<td>9</td>
<td>7</td>
<td>3</td>
<td>10</td>
<td>21,00%</td>
<td>R_GB_BM</td>
<td>113,0</td>
<td>IV</td>
<td>6,9093</td>
<td>SGP P.L + BV</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Valdu</td>
<td>23</td>
<td>38</td>
<td>12</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>22,00%</td>
<td>R_PB_BM</td>
<td>342,9</td>
<td>VII</td>
<td>6,8113</td>
<td>SGP P.L</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Valdu</td>
<td>61</td>
<td>55</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>28,00%</td>
<td>IR</td>
<td>15,2</td>
<td>XIV</td>
<td>5,8382</td>
<td>SGP P.L</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Valdu</td>
<td>62</td>
<td>56</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>28,00%</td>
<td>IR</td>
<td>31,8</td>
<td>XIV</td>
<td>5,8382</td>
<td>SGP P.L</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Valdu</td>
<td>60</td>
<td>87</td>
<td>11</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>25,00%</td>
<td>IR</td>
<td>90,4</td>
<td>XV</td>
<td>5,4771</td>
<td>SGP P.L</td>
<td></td>
</tr>
</tbody>
</table>

Remarquons ici que les placettes à sittelle concernées (d’une aire totale de 1 225 m2) comportent toutes, même celles composées de peuplements jeunes (SGP P.L), au moins un TGB. La variabilité de la formation décrite par interprétation de la photo aérienne (PE_ONF) au regard de la description typologique du même peuplement (STRUCTURE) est aussi notable.

Mémoire EPHE-SVT- TORRE 71/114
5.1.4 Premières conclusions

Les premières analyses réalisées sur le massif d’Aïtone-Valduniellu dans le cadre de ce mémoire (§ 5.1.1 à 5.1.2) ont permis de répondre à la question : quelles variables dendrométriques du milieu forestier très proche (les placettes de 1 225 m² au total équivalent à une placette d’environ 20 m de rayon autour du site de nidification), caractérisent le mieux le site de nidification de la sittelle à savoir :

(a) Pour les variables qualitatives :

<table>
<thead>
<tr>
<th>Variables qualitatives</th>
<th>Favorable à la présence sittelle</th>
<th>Défavorable à la présence sittelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPITAL</td>
<td>Riche</td>
<td>Dense</td>
</tr>
<tr>
<td>STRUCTURE</td>
<td>IR, R_GB_BM</td>
<td>R_PB</td>
</tr>
<tr>
<td>Présence de bois mort debout</td>
<td>oui</td>
<td>non</td>
</tr>
<tr>
<td>Présence de chandelles</td>
<td>oui</td>
<td>non</td>
</tr>
<tr>
<td>Altération</td>
<td>élevée</td>
<td>faible</td>
</tr>
</tbody>
</table>

Tableau 5.41 Tableau des variables qualitatives ayant une influence sur la présence de la sittelle.

(b) Pour les variables quantitatives :

<table>
<thead>
<tr>
<th>Variable quantitative (placette 1225 m²)</th>
<th>PER</th>
<th>PB</th>
<th>BM</th>
<th>GB</th>
<th>TGB</th>
<th>NT</th>
<th>N_HA</th>
<th>Dmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Très favorable</td>
<td>< 8,0</td>
<td>< 4,0</td>
<td>< 5,2</td>
<td>> 5,2</td>
<td>> 5,1</td>
<td>< 27,3</td>
<td>< 223</td>
<td>> 88 cm</td>
</tr>
<tr>
<td>Favorable</td>
<td>< 9,6</td>
<td>< 4,6</td>
<td>< 6,2</td>
<td>> 4,6</td>
<td>> 4,5</td>
<td>< 29,7</td>
<td>< 242</td>
<td>> 85 cm</td>
</tr>
<tr>
<td>Défavorable</td>
<td>> 15,7</td>
<td>> 8,2</td>
<td>> 8,3</td>
<td>< 4,2</td>
<td>< 2,3</td>
<td>> 39,0</td>
<td>> 319</td>
<td>< 65 cm</td>
</tr>
<tr>
<td>Très défavorable</td>
<td>> 19,1</td>
<td>> 9,8</td>
<td>> 9,7</td>
<td>< 3,4</td>
<td>< 1,9</td>
<td>> 42,6</td>
<td>> 355</td>
<td>< 60 cm</td>
</tr>
<tr>
<td>Variable quantitative (placette 1225 m²)</td>
<td>Dmoy</td>
<td>HTmax</td>
<td>G_HA</td>
<td>X_G</td>
<td>GESS</td>
<td>GESS1</td>
<td>BoisMort</td>
<td>NbChand</td>
</tr>
<tr>
<td>Très favorable</td>
<td>> 47 cm</td>
<td>> 38 m</td>
<td>> 34 m²</td>
<td>6% <</td>
<td>> 4,1 m²</td>
<td>> 3,9 m²</td>
<td>> 1,8</td>
<td>> 1,4</td>
</tr>
<tr>
<td>Favorable</td>
<td>> 44 cm</td>
<td>> 37 m</td>
<td>> 31 m²</td>
<td>8% <</td>
<td>> 3,7 m²</td>
<td>> 3,5 m²</td>
<td>> 1,6</td>
<td>> 1,2</td>
</tr>
<tr>
<td>Défavorable</td>
<td>35 cm <</td>
<td>30 m <</td>
<td>26 m² <</td>
<td>19% ></td>
<td>3,1 m² <</td>
<td>2,8 m² <</td>
<td>< 0,6</td>
<td>< 0,6</td>
</tr>
<tr>
<td>Très défavorable</td>
<td>31 cm <</td>
<td>28 m <</td>
<td>23 m² <</td>
<td>25% ></td>
<td>2,7 m² <</td>
<td>2,4 m² <</td>
<td>< 0,4</td>
<td>< 0,4</td>
</tr>
</tbody>
</table>

Tableau 5.42 Tableau des variables quantitatives ayant une influence sur la présence de la sittelle.

confirmant ainsi les conclusions des ornithologues avec les outils des forestiers. Il a pu être établi un modèle mathématique (régression logistique) de probabilité de présence de la sittelle en fonction de caractéristiques dendrométriques relevées par les agents de l’ONF lors de leurs inventaires dendrométriques en forêt de production.

Les analyses suivantes (§ 5.1.3) ont permis d’aller un peu plus loin en identifiant les types de peuplements proches du nid les plus favorables selon la densité de l’oiseau. Cependant, la description de ces types de peuplements plutôt qualitative n’aura pas permis de répondre de façon totalement convaincante à la question de la composition et de la superficie du territoire global de l’oiseau. La comparaison des forêts d’Aïtone et de Valduniellu aura mis en avant que des peuplements dont le mélange comprend au moins 50% de Pin laricio ne sont pas moins accueillants pour la sittelle que des peuplements purs.

L’examen de l’historique des coupes entre les forêts d’Aïtone et de Valduniellu a, enfin, mis en évidence de façon significative que la forêt d’Aïtone était mieux dotée en gros bois que celle de Valduniellu, ce qui constitue une explication plausible à la plus forte présence de la sittelle à Aïtone, compte tenu des comparaisons précédentes.

Il convient, pour aller plus loin, de tenter de s'appuyer sur les inventaires quantitatifs plus précis réalisés par les services de l’ONF en zone de production forestière, préalablement à l’élaboration des documents de gestion des forêts, et pour ce faire, examiner un autre massif qui en dispose.
5.2 Le massif forestier de Rospa-Sorba.

La forêt territoriale de Rospa-Sorba était la seule, fin 2009, à bénéficier d’un inventaire typologique ONF (préalable à l’aménagement de 2006) et de relevés « sittelle », c’est pourquoi les premiers travaux de ce mémoire ont porté sur elle.

5.2.1 Analyses à partir des placettes dendrométriques les plus proches

La méthode décrite au § 4.4.2. a été testée pour un nombre de placettes n=3,4 et 9. On ne présente ici que les résultats pour n=4 (soit, 272 placettes typologiques), les plus significatifs. Les 4 placettes dendrométriques sont situées en moyenne à 41,3 m de la placette avec ou sans sittelle (écart-type 17,5 m). Les variables quantitatives retenues sont, cette fois, le nombre de pins laricio par ha et par catégorie de diamètre (L_PER_HA, L_PB_HA, L_BM_HA, L_GB_HA, L_TGB_HA, L_RGB_HA, L_TOT_HA), le nombre total d’arbres des autres essences à l’hectare (X_TOT_HA), le nombre total de bois morts debout à l’hectare quelle que soit l’essence (BmortD_HA). Les variables qualitatives retenues sont celles considérées par l’ONF établies à l’échelle de la somme des 4 placettes voisines : STRUCTURE, COMPOSITION, CAPITAL.

- 47 points avec sittelle participent ainsi à cette analyse (point rouge entouré d’une zone tampon de 90m sur la figure 5.23).
- 21 points sans sittelle participent ainsi à cette analyse (en vert entouré d’une maille carrée de 90m sur la figure 5.23).

Figure 5.20 Carte de localisation des sittelles en FT de Rospa-Sorba

Figure 5.21 Carte de localisation des placettes typologiques en FT de Rospa-Sorba

Figure 5.22 Dispositif statistique de comparaison des sites sans sittelle et avec sittelle en FT de Rospa-Sorba
5.2.1.1 Analyse à partir des variables quantitatives moyennes des 4 placettes typologiques les plus proches

On réalise une comparaison des variables quantitatives des deux échantillons de placettes inventoriées : celles avec présence de sittelle (PRES) et celles sans (ABS). La description comparative (fournie en annexe A-14) permet d’élaborer les hypothèses de comparaison indiquées au tableau 5.43. Aucune des variables ne suit une distribution normale, on utilise donc le test non paramétrique de Mann-Whitney-Wilcoxon unilatéral pour deux échantillons non appariés pour comparer les variables des échantillons de placettes absence (ABS) et présence (PRES).

<table>
<thead>
<tr>
<th>Var.</th>
<th>L-PER _HA</th>
<th>L_PB _HA</th>
<th>L_BM _HA</th>
<th>L_GB _HA</th>
<th>L_TGB _HA</th>
<th>L_RGB _HA</th>
<th>L_TOT _HA</th>
<th>X_TOT _HA</th>
<th>N_TOT _HA</th>
<th>BmortD _HA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>43,48</td>
<td>40,47</td>
<td>76,62</td>
<td>27,60</td>
<td>11,06</td>
<td>38,66</td>
<td>199,22</td>
<td>14,54</td>
<td>213,76</td>
<td>15,82</td>
</tr>
<tr>
<td></td>
<td>± 9,96</td>
<td>± 7,22</td>
<td>± 10,32</td>
<td>± 4,42</td>
<td>± 3,16</td>
<td>± 5,40</td>
<td>± 14,35</td>
<td>± 10,01</td>
<td>± 16,05</td>
<td>± 5,12</td>
</tr>
<tr>
<td>PRES</td>
<td>42,93</td>
<td>32,44</td>
<td>79,20</td>
<td>40,36</td>
<td>20,87</td>
<td>61,23</td>
<td>215,80</td>
<td>4,57</td>
<td>220,37</td>
<td>8,04</td>
</tr>
<tr>
<td></td>
<td>± 6,69</td>
<td>± 3,63</td>
<td>± 6,87</td>
<td>± 2,91</td>
<td>± 2,11</td>
<td>± 3,08</td>
<td>± 13,09</td>
<td>± 1,97</td>
<td>± 13,58</td>
<td>± 2,09</td>
</tr>
<tr>
<td>U</td>
<td>509 NS</td>
<td>554 NS</td>
<td>485 NS</td>
<td>319*</td>
<td>260***</td>
<td>241***</td>
<td>434 NS</td>
<td>489 NS</td>
<td>482 NS</td>
<td>566 NS</td>
</tr>
</tbody>
</table>

Tableau 5.43 Caractéristiques dendrométriques des placettes selon l’absence ou la présence de sittelle. Mesures présentées sous la forme moyenne±se. H0 hypothèse nulle-H1 hypothèse alternative. Résultats des tests de Mann-Whitney-Wilcoxon et significativité (NS : non significatif ; * : p<0,05 ; ** : p<0,01 ; *** : p<0,001)

La présence de sittelle est favorisée :
- de façon très hautement significative (p<0,001) par : un plus grand nombre de très gros bois de Pin laricio,
 un plus grand nombre de gros et très gros bois de Pin laricio à l’hectare;
- de façon significative (p<0,05) par : un plus grand nombre de gros bois de Pin laricio à l’hectare.

A noter le nombre plus grand de bois morts debout (non significatif) dans les points sans sittelle, qui pourrait être dû au passage du feu qui a parcouru ces endroits plus que les autres.

5.2.1.2 Analyse en composantes principales suivie d’une analyse discriminante

L’ACP est réalisée sur toutes les variables quantitatives du tableau 5.43. Les résultats figurent en annexe A-15. Elle est suivie d’une analyse discriminante significative au seuil α= 0,001 qui donne les coefficients suivants par variable:

<table>
<thead>
<tr>
<th>Var.</th>
<th>L-PER _HA</th>
<th>L_PB _HA</th>
<th>L_BM _HA</th>
<th>L_GB _HA</th>
<th>L_TGB _HA</th>
<th>L_RGB _HA</th>
<th>L_TOT _HA</th>
<th>X_TOT _HA</th>
<th>N_TOT _HA</th>
<th>BmortD _HA</th>
</tr>
</thead>
<tbody>
<tr>
<td>βi</td>
<td>-0,0908</td>
<td>-0,1045</td>
<td>0,1179</td>
<td>0,1860</td>
<td>0,4109</td>
<td>0,4109</td>
<td>0,1032</td>
<td>-0,1075</td>
<td>0,0639</td>
<td>-0,4076</td>
</tr>
</tbody>
</table>

Tableau 5.44 Coefficients des combinaisons linéaires discriminantes. Significatifs au seuil α= 0,001.Test de Monte Carlo 999 itérations.

On constate la discrimination positive significative la plus forte pour la variable L_TGB_HA, ce qui confirme les résultats des tests de Mann-Whitney-Wilcoxon. En revanche, la forte discrimination négative de la variable BmortD_HA est à noter : le feu a sans doute fait partir les sittelles.

5.2.1.3 Analyse à partir des variables qualitatives.

Les tests du Khi carré d’indépendance appliqués aux tableaux croisés STRUCTURE, COMPOSITION et CAPITAL x PRESENCE de SITTELLE ne sont pas significatifs.

Mémoire EPHE-SVT-TORRE 74/114
5.2.2 Modèles de régression logistiques présence/absence

5.2.2.1 Application du modèle de régression logistique calculé pour le massif d’Aïtone-Valduniellu

Le modèle absence/présence calculé pour le massif d’Aïtone-Valduniellu a été appliqué aux 2 094 placettes typologiques du massif de Rospa-Sorba.

\[
p (\text{PRES}) = \frac{\exp(-2.208+4.781 \times \text{Altération[T.1]} + 5.985 \times \text{Altération[T.4]} - 0.057 \times NT + 0.303 \times TGB - 7.633 \times \text{GESS2:GESS1})}{1 + \exp(-2.208+4.781 \times \text{Altération[T.1]} + 5.985 \times \text{Altération[T.4]} - 0.057 \times NT + 0.303 \times TGB - 7.633 \times \text{GESS2:GESS1})}
\]

Selon l’hypothèse de probabilité retenue le nombre de sites potentiels à sittelle varie : pour \(p>0,5 \): 277 sites, \(p>0,6 \): 229 sites, \(p>0,7 \): 198 sites, \(p>0,8 \): 163 sites et \(p>0,9 \): 117 sites.

En comparant ces sites potentiels pour la probabilité de présence \(p>0,5 \) avec ceux « réels » de la zone de production, soit 95 sites, on compte 31 sites potentiels à moins de 50 m d’un site « réel », les doublons éliminés (50 m étant la distance minimale entre deux placettes dendrométriques), pour lesquels on peut donc considérer qu’ils ont été prévus par le modèle. Inversement, 64 placettes, les doublons éliminés, peuvent être considérées comme non prévues par le modèle. Le taux de prévision peut être estimé ainsi :

<table>
<thead>
<tr>
<th>observé \ prédit</th>
<th>ABS</th>
<th>PRES</th>
<th>Total prédit</th>
<th>Taux estimé</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>1753</td>
<td>64</td>
<td>1817</td>
<td>96,5%</td>
</tr>
<tr>
<td>PRES</td>
<td>246</td>
<td>31</td>
<td>277</td>
<td>11,2%</td>
</tr>
<tr>
<td>Total observé</td>
<td>1999</td>
<td>95</td>
<td>2094</td>
<td>85,2%</td>
</tr>
</tbody>
</table>

Tableau 5.45 Tableau de prédiction de la sittelle à \(p>0,5 \).

Figure 5.23 Carte de comparaison des sites potentiels à sittelle (\(p>0,9 \)) et des sites relevés sur le massif de Rospa-Sorba
Pour la probabilité de présence p\(>0.9\) avec ceux « réels » de la zone de production, soit 95 sites, on compte 15 sites potentiels à moins de 50 m d’un site « réel », les doublons éliminés (50 m étant la distance minimale entre deux placettes dendrométriques), pour lesquels on peut donc considérer qu’ils ont été prévus par le modèle. Inversement, 80 placettes, les doublons éliminés, peuvent être considérées comme non prévues par le modèle. Le taux de prévision peut donc être estimé ainsi :

<table>
<thead>
<tr>
<th>Observe \ Prédit</th>
<th>ABS</th>
<th>PRES</th>
<th>Total prédit</th>
<th>Taux estimé</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>1897</td>
<td>80</td>
<td>1977</td>
<td>96,0%</td>
</tr>
<tr>
<td>PRES</td>
<td>102</td>
<td>15</td>
<td>117</td>
<td>12,8%</td>
</tr>
<tr>
<td>Total observé</td>
<td>1999</td>
<td>95</td>
<td>2094</td>
<td>91,3%</td>
</tr>
</tbody>
</table>

Tableau 5.46 Tableau de prédiction de la sittelle à p\(>0.9\).

Dans tous les cas, le taux de prévision de la présence de sittelle est faible. La prévision ne correspond à la réalité que dans le petit nombre de cas où on a à la fois une description précise de la placette typologique pour les variables Nb_Bois_mort debout et Altération et une localisation précise de la sittelle (forêt de Vezzani). Les éléments d’imprécision sont a priori :

(a) La diversité des méthodes et des dates de relevés de sittelle, le calcul qui se base sur le rattachement de la position de la sittelle à la placette typologique la plus proche à une distance inférieure à 50 m n’est de ce fait pas forcément pertinent. L’étude des 95 points fait ainsi apparaître une forte variabilité de la probabilité de présence calculée de la sittelle:

<table>
<thead>
<tr>
<th>Statistique</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d'observations</td>
<td>95</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,000</td>
</tr>
<tr>
<td>Maximum</td>
<td>0,996</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>0,017</td>
</tr>
<tr>
<td>Médiane</td>
<td>0,090</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>0,314</td>
</tr>
<tr>
<td>Moyenne</td>
<td>0,241</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>0,094</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>0,307</td>
</tr>
</tbody>
</table>

Tableau 5.47 Statistiques descriptives des probabilités calculées de la présence de sittelle (modèle F6) sur les placettes typologiques les plus proches des relevés de localisation.

(b) La part d’interprétation des données relatives au bois mort et à son altération entre le modèle et les relevés typologiques qui entraîne une erreur sur le calcul de probabilité de présence de la sittelle. Ainsi sur les 277 placettes typologiques pour lesquelles la probabilité de présence calculée de la sittelle est supérieure à 0,5 28 n’ont pas d’arbre mort debout (Altération=0 du modèle).

(c) Des perturbations écologiques peuvent expliquer aussi que l’on ne trouve pas de sittelle là où elle est attendue comme le montre la figure 5.26 qui reconstitue l’historique des feux sur le massif de Rospa-Sorba.
Figure 5.25 Historique des feux et présence de sittelle réelle sur le massif de Rospa-Sorba.

(d) Le modèle peut ne pas être reproductible d’un massif forestier à l’autre : 80% (3 048 ha) de la forêt du massif d’Aïtone-Valduniellu est située à l’étage montagnard contre 58% (619 ha) pour le massif de Rospa-Sorba ; le massif de Rospa-Sorba fait l’objet régulièrement d’incendies de forêts, ce qui n’est pas le cas du massif d’Aïtone-Valduniellu, facteur d’explication de la discrimination négative de la variable BmortD_HA sur la présence de la sittelle. La densité de la population de sittelles est d’ailleurs de 0,31 couple aux 10 hectares (96/3 061) sur les séries de production du massif d’Aïtone-Valduniellu alors qu’elle est plus de trois fois plus élevée, 1,06 couple aux 10 hectares (95/894), sur celles du massif de Rospa-Sorba.

Pour s’en faire une idée, on peut comparer les placettes avec sittelles des deux forêts, en utilisant pour le massif de Rospa-Sorba la placette typologique la plus proche (moyenne 22,7 m-min. 1,7m-max. 48,2m), et, les surfaces des placettes mesurées étant différentes dans les deux cas (1 225 m2 vs 706 m2), en remanant les variables quantitatives à l’hectare. Aucune des variables ne suivant une distribution normale, on utilise donc le test non paramétrique de Mann-Whitney- Wilcoxon unilatéral pour deux échantillons non appariés pour comparer les variables des échantillons de placettes du massif d’Aïtone-Valduniellu (Aito-Valdu) et du massif de Rospa-Sorba (Rospa-Sorba). La description comparative (fournie en annexe A-16) permet d’élaborer les hypothèses de comparaison indiquées au tableau 5.48.

<table>
<thead>
<tr>
<th>Var.</th>
<th>PER_HA</th>
<th>PB_HA</th>
<th>BM_HA</th>
<th>GB_HA</th>
<th>TGB_HA</th>
<th>NT_HA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aito-Valdu</td>
<td>73±7</td>
<td>35±3</td>
<td>46±4</td>
<td>36±3</td>
<td>40±2</td>
<td>231±10</td>
</tr>
<tr>
<td>Rospa-Sorba</td>
<td>52±9</td>
<td>57±6</td>
<td>113±8</td>
<td>72±5</td>
<td>52±5</td>
<td>347±16</td>
</tr>
<tr>
<td>H0</td>
<td>PER_HA_AV= PER_HA_RS</td>
<td>PB_HA_AV= PB_HA_RS</td>
<td>BM_HA_AV= BM_HA_RS</td>
<td>GB_HA_AV= GB_HA_RS</td>
<td>TGB_HA_AV= TGB_HA_RS</td>
<td>NT_HA_AV= NT_HA_RS</td>
</tr>
<tr>
<td>H1</td>
<td>PER_HA_AV></td>
<td>PB_HA_AV<</td>
<td>BM_HA_AV<</td>
<td>GB_HA_AV<</td>
<td>TGB_HA_AV<</td>
<td>NT_HA_AV<</td>
</tr>
<tr>
<td>U</td>
<td><0,0001 ***</td>
<td>0,101 NS</td>
<td><0,0001 ***</td>
<td><0,0001 ***</td>
<td>0,134 NS</td>
<td><0,0001 ***</td>
</tr>
</tbody>
</table>
Les sites à sittelle de Rospa-Sorba comportent de façon très hautement significative plus de tiges par hectare (NT_HA) que ceux d’Aïtone-Valduniellu, et notamment, plus de bois moyens (BM_HA) et de gros bois (GB_HA) par hectare, mais aussi une surface terrière totale (G_HA) supérieure avec, en particulier, une surface terrière en essences diverses (plutôt en sous-étage) GDIV_HA très supérieure alors que la surface terrière GESS2_HA en seconde essence prioritaire (plutôt co-dominante) y est inférieure. La surface terrière de la première essence prioritaire (plutôt Pin laricio) GESS1_HA y est aussi supérieure, de façon significative.

Concernant la structure des peuplements forestiers proches des localisations de sittelles, le tableau 5.49 la décrit :

<table>
<thead>
<tr>
<th>Massif/Structure</th>
<th>Sans</th>
<th>IR</th>
<th>R_BM</th>
<th>R_GB</th>
<th>R_GB_BM</th>
<th>R_PB</th>
<th>R_PB_BM</th>
<th>Total général</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aïtone-Valdu</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>11</td>
<td>70</td>
<td>96</td>
</tr>
<tr>
<td>Rospa-Sorba</td>
<td>1</td>
<td>17</td>
<td>11</td>
<td>27</td>
<td>11</td>
<td>1</td>
<td>27</td>
<td>95</td>
</tr>
<tr>
<td>Total général</td>
<td>1</td>
<td>19</td>
<td>13</td>
<td>28</td>
<td>21</td>
<td>12</td>
<td>97</td>
<td>191</td>
</tr>
</tbody>
</table>

Certains effectifs théoriques étant inférieurs à 5, on ne peut pas appliquer de test du χ² d’homogénéité pour tester la pertinence de cette hypothèse. A défaut, le test exact de Fischer (ddl=6, p<0,0001) nous indique que l’on peut rejeter l’hypothèse d’indépendance des échantillons, c’est-à-dire que la structure des peuplements forestiers autour des lieux de localisation des sittelles est différente entre les massifs d’Aïtone-Valduniellu et de Rospa-Sorba.

Le calcul du Khi carré :

<table>
<thead>
<tr>
<th>Massif/Structure</th>
<th>Sans</th>
<th>IR</th>
<th>R_BM</th>
<th>R_GB</th>
<th>R_GB_BM</th>
<th>R_PB</th>
<th>R_PB_BM</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aïtone-Valdu</td>
<td>0,503</td>
<td>5,969</td>
<td>3,146</td>
<td>12,144</td>
<td>0,029</td>
<td>4,093</td>
<td>9,259</td>
<td>35,143</td>
</tr>
<tr>
<td>Rospa-Sorba</td>
<td>0,508</td>
<td>6,031</td>
<td>3,179</td>
<td>12,272</td>
<td>0,029</td>
<td>4,136</td>
<td>9,356</td>
<td>35,513</td>
</tr>
<tr>
<td>Total</td>
<td>1,011</td>
<td>12,000</td>
<td>6,326</td>
<td>24,417</td>
<td>0,059</td>
<td>8,229</td>
<td>18,615</td>
<td>70,655</td>
</tr>
</tbody>
</table>

Montre dans cette différence de structure le poids des structures :

- régulière à gros bois (R_GB) et irrégulière (IR) plutôt présentes à Rospa-Sorba,
- régulière à petits bois tendance bois moyens (R_PB_BM) plutôt présente à Aïtone-Valduniellu.

Ceci étant, le modèle reste intéressant, dès lors que les données dendrométriques d’une forêt y ont été relevées, pour :

- planifier une prospection ;
- ne pas oublier de parcourir des secteurs potentiellement favorables à la présence de sittelle.

En effet, comme le montrent le tableau 5.51 et la figure 5.27, sur le massif forestier de Rospa-Sorba, pour 75% des sites à sittelle relevés la distance (sans doublon) la plus proche d’une placette typologique à présence de sittelle calculée (p>0,5) est inférieure à 157m. Un site observé à sittelle n’est donc jamais très éloigné d’une placette potentielle à sittelle.

Mémoire EPHE-SVT–TORRE 78/114
5.2.2.2 Modèle logistique absence/présence issu des données de la forêt de Rospa-Sorba

A partir du modèle comprenant toutes les variables retenues pour la forêt de Rospa-Sorba au § 5.2.1.1, à savoir, le nombre de pins laricio par ha et par catégorie de diamètre (L_PB_HA, L_BM_HA, L_GB_HA, L_TGB_HA, L_RGB_HA, L_TOT_HA), le nombre total d’arbres des autres essences à l’héctare (X_TOT_HA), le nombre total d’arbres à l’héctare (N_TOT_HA), le nombre total de bois morts debout à l’héctare quelle que soit l’essence (BmortD_HA), on effectue une procédure pas à pas (stepwise) descendante progressive basée sur la minimisation du critère AIC et une autre ascendante progressive basée sur le même critère.

<table>
<thead>
<tr>
<th>Modèle</th>
<th>Variables</th>
<th>Nb. de variables</th>
<th>Deviance</th>
<th>AIC de Akaike</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS1</td>
<td>PRES_ABS ~ L_PB_HA+L_BM_HA+L_GB_HA+L_TGB_HA+L_TOT_HA+X_TOT_HA+BmortD_HA</td>
<td>7</td>
<td>66,384</td>
<td>80,384</td>
</tr>
<tr>
<td>RS2</td>
<td>PRES_ABS ~ L_GB_HA+L_TGB_HA+BmortD_HA</td>
<td>3</td>
<td>67,09</td>
<td>75,09</td>
</tr>
<tr>
<td>RS3</td>
<td>PRES_ABS ~ L_GB_HA+L_GB_HA</td>
<td>2</td>
<td>69,819</td>
<td>75,819</td>
</tr>
</tbody>
</table>

La comparaison des modèles RS2 et RS3 ne démontre pas de différence significative au seuil α=0,05 (Pr(>Chi)=0,09867). On conserve donc le modèle le plus simple et dont les coefficients sont tous significatifs au seuil α=0,05, soit RS3 :

| Paramètres du modèle RS3 | estimation βi | Wald Borne inf. (95%) | Wald Borne sup. (95%) | z value | Pr(>|z|) | Significativité |
|--------------------------|----------------|------------------------|-----------------------|---------|----------|----------------|
| Constante | -1,45928 | -2,86769 | -0,05087 | -2,031 | 0,0423 | * |
| L_GB_HA | 0,03803 | 0,00646 | 0,06959 | 2,361 | 0,0182 | * |
| L_TGB_HA | 0,06108 | 0,1289 | 0,10926 | 2,484 | 0,0130 | * |

La comparaison des modèles RS2 et RS3 ne démontre pas de différence significative au seuil α=0,05 (Pr(>Chi)=0,09867). On conserve donc le modèle le plus simple et dont les coefficients sont tous significatifs au seuil α=0,05, soit RS3 :

\[p \text{ (PRES)} \approx \exp(-1,45928+0,03803x \text{L_GB_HA} + 0,06108x \text{L_TGB_HA}) /(1 + \exp(-1,45928+0,03803x \text{L_GB_HA} + 0,06108x \text{L_TGB_HA})) \]

Il fait l’objet d’une vérification graphique figurée en annexe A-17.

Appliqué aux 2094 placettes typologiques du massif de Rospa-Sorba, il apparaît que, selon l’hypothèse de probabilité retenue, le nombre de sites potentiels à sittelle varie : pour p>0,5: 1 395 sites, p>0,6: 1 238 sites, p> 0,7: 1 079 sites, p>0,8: 880 sites, p>0,9: 593 sites et p>0,99 : 159 sites. Ce modèle est donc beaucoup plus optimiste que le précédent, tout en ayant le même défaut de base, à savoir : la diversité des méthodes et des dates de relevés de sittelle.
L’étude des 95 points « sittelle » fait aussi apparaître ici une variabilité de la probabilité de présence calculée de la sittelle, selon le modèle RS3, comme le montrent le tableau 5.54 et la figure 5.28.

<table>
<thead>
<tr>
<th>Statistique</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>95</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,189</td>
</tr>
<tr>
<td>Maximum</td>
<td>1,000</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>0,438</td>
</tr>
<tr>
<td>Médiane</td>
<td>0,780</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>0,943</td>
</tr>
<tr>
<td>Moyenne</td>
<td>0,689</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>0,080</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>0,283</td>
</tr>
</tbody>
</table>

Tableau 5.54 Statistiques descriptives des probabilités calculées de la présence de sittelle (modèle RS3) sur les placettes typologiques les plus proches des localisations observées.

Malgré tout, 67 observations de sittelles sur les 95 ont une probabilité $P>0,5$ d’en avoir avec le modèle RS3 vs 18 avec le modèle F6.

5.2.3 **Recherche de l’influence du type de tige de Pin laricio à partir de l’analyse de territoires pré-établis selon le calcul de Voronoï**

Selon un calcul identique à celui réalisé au § 5.1.3.4. sur le périmètre de la forêt d’Aitone-Valduniellu, 73 territoires sont établis (figure 5.28). Cependant, afin de pouvoir décrire les territoires de manière homogène en termes de placettes typologiques, la surface retenue ne peut être que celle de l’ensemble des placettes inventoriées. On ne retient donc pour l’analyse que les territoires entièrement inclus dans le dispositif typologique de l’ONF, soit 48 territoires. Leur surface varie ainsi :

<table>
<thead>
<tr>
<th>Variable (S_T (ha))</th>
<th>Observations</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Moyenne</th>
<th>Ecart-type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48</td>
<td>2,631</td>
<td>19,810</td>
<td>6,894</td>
<td>3,316</td>
</tr>
</tbody>
</table>

Tableau 5.55 Statistique descriptive de la surface des territoires de sittelle (polygones de Voronoï) en forêt de Rospa-Sorba.

![Figure 5.27 Distribution des placettes typologiques les plus proches des localisations observées, en fonction des probabilités de présence de sittelle calculées selon le modèle RS3.](image)

![Figure 5.28 Carte de localisation des territoires de sittelle (polygones de Voronoï) retenus en FT de Rospa-Sorba.](image)
S’ensuivent des régressions linéaires avec en variable à expliquer le logarithme en base 10 de la surface du territoire considéré \(\log(S_T) \) dont on peut considérer qu’il suit une loi Normale (test de Shapiro-Wilk sur \(\log(S_T) \) non significatif) et en variable explicative le nombre moyen de tiges de Pin laricio par hectare (L_HA) du territoire par catégorie PB, BM, GB, TGB. La surface est corrélée positivement à toutes les catégories de tiges sauf les TGB, pour lesquelles la corrélation est négative de façon significative au seuil de 95% avec un coefficient \(R=0,415 \) (figure 5.30).

| | Estimate | Std. Error | t value | Pr(>|t|) |
|----------------|--------------|------------|---------|----------|
| (Intercept) | 0,961429 | 0,059279 | 16,219 | < 2e-16 *** |
| L_TGB_HA | -0,008376 | 0,002708 | -3,093 | 0,00336 ** |

Tableau 5.56 Caractéristiques de la droite de régression \(\log(S_T) \) par \(L_{TGB} \)

Figure 5.29 Surface des territoires de sittelles (polygones de Voronoï) en fonction du nombre moyen de Très Gros Bois par ha.

L’analyse des résidus est figurée en annexe A-18.

On en déduit que la présence de TGB de Pin laricio contribue à diminuer la taille du territoire de sittelle ce qui revient à augmenter sa densité en forêt.

5.2.4 Analyse géostatistique de la distribution de la sittelle par la méthode du plus proche voisin

Pour tester si la distribution de l’oiseau ressemble à un motif connu ou plutôt du hasard, on utilise l’indicateur statistique \(R \) (pour « randomness », disposition au hasard). C’est le quotient entre \(r_{obs} \), la distance moyenne observée entre les plus proches voisins de la distribution évoquée et \(r_{exp} \), la distance moyenne entre les plus proches voisins d’une distribution connue (par exemple de Poisson).

\[
R = \frac{r_{obs}}{r_{exp}^{0.5}} \text{ avec } n = \text{ nombre de points de la distribution et } A \text{ aire de la région étudiée.}
\]

Figure 5.29 Surface des territoires de sittelles (polygones de Voronoï) en fonction du nombre moyen de Très Gros Bois par ha.

L’analyse des résidus est figurée en annexe A-18.

On en déduit que la présence de TGB de Pin laricio contribue à diminuer la taille du territoire de sittelle ce qui revient à augmenter sa densité en forêt.

5.2.4 Analyse géostatistique de la distribution de la sittelle par la méthode du plus proche voisin

Pour tester si la distribution de l’oiseau ressemble à un motif connu ou plutôt du hasard, on utilise l’indicateur statistique \(R \) (pour « randomness », disposition au hasard). C’est le quotient entre \(r_{obs} \), la distance moyenne observée entre les plus proches voisins de la distribution évoquée et \(r_{exp} \), la distance moyenne entre les plus proches voisins d’une distribution connue (par exemple de Poisson).

\[
R = \frac{r_{obs}}{r_{exp}^{0.5}} \text{ avec } n = \text{ nombre de points de la distribution et } A \text{ aire de la région étudiée.}
\]

Figure 5.29 Surface des territoires de sittelles (polygones de Voronoï) en fonction du nombre moyen de Très Gros Bois par ha.

L’analyse des résidus est figurée en annexe A-18.

On en déduit que la présence de TGB de Pin laricio contribue à diminuer la taille du territoire de sittelle ce qui revient à augmenter sa densité en forêt.

5.2.4 Analyse géostatistique de la distribution de la sittelle par la méthode du plus proche voisin

Pour tester si la distribution de l’oiseau ressemble à un motif connu ou plutôt du hasard, on utilise l’indicateur statistique \(R \) (pour « randomness », disposition au hasard). C’est le quotient entre \(r_{obs} \), la distance moyenne observée entre les plus proches voisins de la distribution évoquée et \(r_{exp} \), la distance moyenne entre les plus proches voisins d’une distribution connue (par exemple de Poisson).

\[
R = \frac{r_{obs}}{r_{exp}^{0.5}} \text{ avec } n = \text{ nombre de points de la distribution et } A \text{ aire de la région étudiée.}
\]

Figure 5.29 Surface des territoires de sittelles (polygones de Voronoï) en fonction du nombre moyen de Très Gros Bois par ha.

L’analyse des résidus est figurée en annexe A-18.

On en déduit que la présence de TGB de Pin laricio contribue à diminuer la taille du territoire de sittelle ce qui revient à augmenter sa densité en forêt.

5.2.4 Analyse géostatistique de la distribution de la sittelle par la méthode du plus proche voisin

Pour tester si la distribution de l’oiseau ressemble à un motif connu ou plutôt du hasard, on utilise l’indicateur statistique \(R \) (pour « randomness », disposition au hasard). C’est le quotient entre \(r_{obs} \), la distance moyenne observée entre les plus proches voisins de la distribution évoquée et \(r_{exp} \), la distance moyenne entre les plus proches voisins d’une distribution connue (par exemple de Poisson).

\[
R = \frac{r_{obs}}{r_{exp}^{0.5}} \text{ avec } n = \text{ nombre de points de la distribution et } A \text{ aire de la région étudiée.}
\]

Figure 5.29 Surface des territoires de sittelles (polygones de Voronoï) en fonction du nombre moyen de Très Gros Bois par ha.

L’analyse des résidus est figurée en annexe A-18.

On en déduit que la présence de TGB de Pin laricio contribue à diminuer la taille du territoire de sittelle ce qui revient à augmenter sa densité en forêt.

5.2.4 Analyse géostatistique de la distribution de la sittelle par la méthode du plus proche voisin

Pour tester si la distribution de l’oiseau ressemble à un motif connu ou plutôt du hasard, on utilise l’indicateur statistique \(R \) (pour « randomness », disposition au hasard). C’est le quotient entre \(r_{obs} \), la distance moyenne observée entre les plus proches voisins de la distribution évoquée et \(r_{exp} \), la distance moyenne entre les plus proches voisins d’une distribution connue (par exemple de Poisson).

\[
R = \frac{r_{obs}}{r_{exp}^{0.5}} \text{ avec } n = \text{ nombre de points de la distribution et } A \text{ aire de la région étudiée.}
\]

Figure 5.29 Surface des territoires de sittelles (polygones de Voronoï) en fonction du nombre moyen de Très Gros Bois par ha.

L’analyse des résidus est figurée en annexe A-18.

On en déduit que la présence de TGB de Pin laricio contribue à diminuer la taille du territoire de sittelle ce qui revient à augmenter sa densité en forêt.

5.2.4 Analyse géostatistique de la distribution de la sittelle par la méthode du plus proche voisin

Pour tester si la distribution de l’oiseau ressemble à un motif connu ou plutôt du hasard, on utilise l’indicateur statistique \(R \) (pour « randomness », disposition au hasard). C’est le quotient entre \(r_{obs} \), la distance moyenne observée entre les plus proches voisins de la distribution évoquée et \(r_{exp} \), la distance moyenne entre les plus proches voisins d’une distribution connue (par exemple de Poisson).

\[
R = \frac{r_{obs}}{r_{exp}^{0.5}} \text{ avec } n = \text{ nombre de points de la distribution et } A \text{ aire de la région étudiée.}
\]

Figure 5.29 Surface des territoires de sittelles (polygones de Voronoï) en fonction du nombre moyen de Très Gros Bois par ha.

L’analyse des résidus est figurée en annexe A-18.

On en déduit que la présence de TGB de Pin laricio contribue à diminuer la taille du territoire de sittelle ce qui revient à augmenter sa densité en forêt.

5.2.4 Analyse géostatistique de la distribution de la sittelle par la méthode du plus proche voisin

Pour tester si la distribution de l’oiseau ressemble à un motif connu ou plutôt du hasard, on utilise l’indicateur statistique \(R \) (pour « randomness », disposition au hasard). C’est le quotient entre \(r_{obs} \), la distance moyenne observée entre les plus proches voisins de la distribution évoquée et \(r_{exp} \), la distance moyenne entre les plus proches voisins d’une distribution connue (par exemple de Poisson).

\[
R = \frac{r_{obs}}{r_{exp}^{0.5}} \text{ avec } n = \text{ nombre de points de la distribution et } A \text{ aire de la région étudiée.}
\]

Figure 5.29 Surface des territoires de sittelles (polygones de Voronoï) en fonction du nombre moyen de Très Gros Bois par ha.

L’analyse des résidus est figurée en annexe A-18.

On en déduit que la présence de TGB de Pin laricio contribue à diminuer la taille du territoire de sittelle ce qui revient à augmenter sa densité en forêt.

5.2.4 Analyse géostatistique de la distribution de la sittelle par la méthode du plus proche voisin

Pour tester si la distribution de l’oiseau ressemble à un motif connu ou plutôt du hasard, on utilise l’indicateur statistique \(R \) (pour « randomness », disposition au hasard). C’est le quotient entre \(r_{obs} \), la distance moyenne observée entre les plus proches voisins de la distribution évoquée et \(r_{exp} \), la distance moyenne entre les plus proches voisins d’une distribution connue (par exemple de Poisson).

\[
R = \frac{r_{obs}}{r_{exp}^{0.5}} \text{ avec } n = \text{ nombre de points de la distribution et } A \text{ aire de la région étudiée.}
\]
Pour tester la différence de moyenne entre les distributions, on émet les hypothèses :

- **H0** la moyenne des distances des plus proches voisins de la distribution observée et celle des distances des plus proches voisins de la distribution attendue sont semblables
- **H1** la moyenne des distances de la distribution observée et celle des distances de la distribution attendue sont différentes. Le calcul donne (voir détails en annexe A-19) :

 \[r_{\text{obs}} = 170.65 \]
 \[r_{\text{exp}} = 188.77 \]
 \[R = 0.90 \]
 \[\text{L'erreur type } z = -2.13 \]
 \[p: 0.0033 \]

On peut donc rejeter l’hypothèse H0 avec une probabilité de plus de 99% et conclure que la moyenne des distances des plus proches voisins de la distribution observée et celle des distances de la distribution attendue sont significativement différentes. On peut dire avec 99% de chances de ne pas se tromper que la distribution de la sittelle dans le massif de Rospa-Sorba n’est pas aléatoire. Comme R< 1, la distribution est regroupée.

5.2.5 Recherche de l’influence du type de structure du peuplement à l’aide des méthodes d’estimation à partir d’observations ponctuelles (krigeage)

Parmi les facteurs susceptibles d’expliquer la distribution de la sittelle dans le massif de Rospa-Sorba, la structure du peuplement est souvent avancée par les ornithologues (Müller, 1992 a et b).

Dans le massif de Rospa-Sorba, à la différence du massif d’Aitone-Valduniellu, (i) la localisation des sittelles n’a pas toujours été très précisément établie, (ii) il n’y a pas de relevé dendrométrique au pied de chaque localisation. En conséquence, si l’on souhaite connaître la structure du peuplement à l’endroit où a été localisée la sittelle, il faut avoir une estimation des variables dendrométriques qui servent à l’établir : \(N_{PB}, N_{BM}, N_{RGB} (=N_{GB}+N_{TGB}) \) et \(N_{TOT} \). Or, la meilleure estimation de ces valeurs, et donc du type de structure qui en découle (§ 4.2.2.2. (b)), vu que l’on dispose de relevés précis de ces variables sur la partie productive du massif en question, est donnée par un calcul selon une interpolation par krigeage (Gratton, 2002).

Chaque variable contribuant à établir la structure du peuplement a donc fait l’objet d’un calcul, grâce au module Geostatistical analyst d’ArcGis 9.2, selon la méthode du krigeage ordinaire détaillée en annexe A-20.

Il en est résulté quatre grilles de pixels (une par variable) de dimension 15 m x 15 m (taille approximative des relevés dendrométriques), chaque pixel contenant la valeur estimée de la variable concernée. La calculette raster du module Spatial analyst d’ArcGis 9.2 ™ESRI a permis le calcul de la structure par la formule issue de la clef de détermination de cette dernière sous la forme du code numérique nécessaire au calcul de la grille :

<table>
<thead>
<tr>
<th>STRUCTURE</th>
<th>CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR</td>
<td>1</td>
</tr>
<tr>
<td>R_GB</td>
<td>2</td>
</tr>
<tr>
<td>R_GB_BM</td>
<td>3</td>
</tr>
<tr>
<td>R_BM</td>
<td>4</td>
</tr>
<tr>
<td>R_PB_BM</td>
<td>5</td>
</tr>
<tr>
<td>R_PB</td>
<td>6</td>
</tr>
</tbody>
</table>

Tableau 5.57 Codification numérique de la structure des peuplements

La carte des types de structure a pu être élaborée ainsi, et, par croisement avec la localisation des sittelles, la structure du peuplement de Pin laricio à cet endroit a pu être établie (figure 5.31).
Pour tester si la distribution de la sittelle dépend de la structure du peuplement, on la compare avec une distribution aléatoire du même nombre de points (134) dont la valeur de la structure en chaque point a aussi été calculée par croisement avec la carte des types de structure. On en tire le tableau de contingence :

<table>
<thead>
<tr>
<th>Distribution/ type de structure</th>
<th>IR</th>
<th>R_GB</th>
<th>R_GB_BM</th>
<th>R_BM</th>
<th>R_PB_BM</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITTELLE</td>
<td>82</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>41</td>
<td>134</td>
</tr>
<tr>
<td>HASARD</td>
<td>52</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>58</td>
<td>134</td>
</tr>
<tr>
<td>Total</td>
<td>134</td>
<td>14</td>
<td>15</td>
<td>6</td>
<td>99</td>
<td>268</td>
</tr>
</tbody>
</table>

Tableau 5.58 Tableau de contingence de la localisation des sittelles selon le critère « structure » du peuplement forestier dans le massif de Rospa-Sorba.

Certains effectifs théoriques étant inférieurs à 5, on ne peut pas appliquer de test du χ² d’homogénéité pour tester la pertinence de l’hypothèse d’indépendance des distributions. A défaut, le test exact de Fischer (ddl=4, p= 0,003) nous indique que l’on peut rejeter l’hypothèse d’indépendance des échantillons, c’est-à-dire qu’il est probable de façon hautement significative (p<0,01) que la structure du peuplement dans le massif de Rospa-Sorba joue sur la présence de nids de sittelle. Le calcul du Khi carré :

<table>
<thead>
<tr>
<th>Khi carré par case</th>
<th>IR</th>
<th>R_GB</th>
<th>R_GB_BM</th>
<th>R_BM</th>
<th>R_PB_BM</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITTELLE</td>
<td>3,358</td>
<td>1,286</td>
<td>0,300</td>
<td>1,333</td>
<td>1,460</td>
<td>7,737</td>
</tr>
<tr>
<td>HASARD</td>
<td>3,358</td>
<td>1,286</td>
<td>0,300</td>
<td>1,333</td>
<td>1,460</td>
<td>7,737</td>
</tr>
<tr>
<td>Total</td>
<td>6,716</td>
<td>2,571</td>
<td>0,600</td>
<td>2,667</td>
<td>2,919</td>
<td>15,474</td>
</tr>
</tbody>
</table>

Tableau 5.59 Calcul du Khi carré de la table de contingence des distributions sittelle et hasard en fonction de la variable structure.

montre le poids de la structure IR plutôt favorable à la présence de sittelle (61% des localisations), puis celle R_PB_BM (31%), assez proche de la précédente (voir clef de détermination des types de structures § 4.2.2.2.b. tableau 4.7). Il semble donc que la sittelle privilégie aussi pour son installation une structure irrégulière de peuplement de Pin laricio.

Mémoire EPHE-SVT- TORRE 83/114
6 DISCUSSION

6.1 Synthèse des résultats

6.1.1 Résultats des études sur le massif d’Aïtone-Valduniellu

A partir de l’expérience mise en place par Villard et al. en 2005 sur les séries de production du massif d’Aïtone-Valduniellu consistant à mesurer sur chaque placette d’un plan d’échantillonnage présence/absence de nids de sittelles les variables dendrométriques susceptibles de caractériser le mieux l’habitat forestier présent autour du nid (dans un rayon d’environ 20 m), et ayant transformé ces variables en variables conformes à la typologie utilisée par les forestiers gestionnaires des lieux, il a été possible d’établir par voie de comparaisons statistiquement significatives:

(a) sur les variables qualitatives:
- que la présence d’au moins une chandelle ou un bois mort debout était indispensable à la présence de nids de sittelle en forêt de production de Pin laricio,
- qu’une altération avancée de cet arbre mort était préférable (au moins la perte partielle d’écorce),
- que l’habitat autour du nid était préférentiellement de structure de type irrégulier (IR) ou régulier à gros bois tendance bois moyens (R_GB_BM) et qu’au contraire, une structure de type régulier à petits bois (R_PB) lui était défavorable.

(b) sur les variables quantitatives, confortées par une analyse en composantes principales suivie d’une classification, que l’habitat de la sittelle était favorisé dans un rayon d’environ 20 m autour du nid par, dans un ordre d’importance (poids dans la régression logistique au § 5.1.2.5) décroissant de gauche à droite dans le tableau 6.1 les valeurs optimales (les valeurs minimales et maximales des placettes avec nid ont été adjointes):

<table>
<thead>
<tr>
<th>Variable quantitative</th>
<th>GESS1_HA (m²)</th>
<th>G_HA (m²)</th>
<th>X_G (%)</th>
<th>GESS_HA (m²)</th>
<th>TGB_HA (tiges/ha)</th>
<th>N_HA (tiges/ha)</th>
<th>GB_HA (tiges/ha)</th>
<th>PER_HA (tiges/ha)</th>
<th>PB_HA (tiges/ha)</th>
<th>BM_HA (tiges/ha)</th>
<th>Dmoy (cm)</th>
<th>Dmax (cm)</th>
<th>Htmax (m)</th>
<th>BoisMort (tiges/ha)</th>
<th>NbChand (tiges/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimale</td>
<td>> 28</td>
<td>> 31</td>
<td>< 8</td>
<td>> 30</td>
<td>> 37</td>
<td>242 <</td>
<td>> 38</td>
<td>< 78</td>
<td>38 <</td>
<td>< 51</td>
<td>> 44</td>
<td>> 85</td>
<td>> 37</td>
<td>< 13</td>
<td>> 10</td>
</tr>
<tr>
<td>Minimale</td>
<td>7</td>
<td>9</td>
<td>0</td>
<td>7</td>
<td>8</td>
<td>82</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>60</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maximale</td>
<td>64</td>
<td>64</td>
<td>41</td>
<td>64</td>
<td>102</td>
<td>572</td>
<td>131</td>
<td>310</td>
<td>122</td>
<td>147</td>
<td>83</td>
<td>110</td>
<td>50</td>
<td>49</td>
<td>49</td>
</tr>
</tbody>
</table>

Tableau 6.1 Variables quantitatives optimales, minimales et maximales pour les placettes à nid du massif d’Aïtone-Valduniellu.

La cohérence des facteurs entre eux est à noter puisque la somme des nombres de tiges recommandés par catégorie égale bien le total recommandé, et, si l’on applique rapidement à ces nombres le diamètre moyen de leur classe, la surface terrière totale est très voisine (32,8 m²) de la surface terrière totale conseillée.

La comparaison de modèles issus de régressions logistiques a aussi permis de mettre en évidence que, parmi les variables décrivant l’habitat, celles dont le poids importait le plus étaient dans l’ordre d’importance:

- le rapport des surfaces terrières de la seconde essence prioritaire sur la première essence prioritaire (GESS2 : GESS1), corrélé négativement à la présence de sittelle,
- le niveau d’altération du bois mort (Altération[T.4]), corrélé positivement à la présence de sittelle,
- la présence de bois mort debout (Altération[T.1]), corrélé positivement à la présence de sittelle,
- le nombre de très gros bois (TGB), corrélé positivement à la présence de sittelle,
- et le nombre total de tiges (NT), corrélé négativement à la présence de sittelle.

Ces critères, même s’ils restent contraints par la constitution actuelle des peuplements forestiers tels que les a façonnés la sylviculture appliquée à ces deux forêts depuis au moins deux générations d’aménagements forestiers, sont révélateurs de besoins fondamentaux (i) en bois mort debout, plutôt altéré correspondant à la nécessité pour l’oiseau d’établir sa loge pour sa phase de reproduction, (ii) d’une structure verticale composite qui lui permet de se cacher pour éviter sa prédation, (iii) en très gros bois, forts producteurs de cônes et nourriciers en période hivernale.
Des explications à la différence de densité de la sittelle entre les séries de production des deux forêts étudiées (Aitone : 0,47 couple aux 10 ha et Valduniellu : 0,26 couple aux 10 ha) ont été recherchées dans l’examen des variables dendrométriques relevées à l’échelle de la placette autour du nid. Aucune explication totalement satisfaisante n’ayant pu être tirée de ce travail, on s’est intéressé à la définition des peuplements proches des nids, et, à défaut de disposer d’un inventaire typologique précis de ces forêts, à la définition des peuplements forestiers tels que les ont décrits l’IFN, puis l’ONF.

Dans le premier cas (IFN), la différence entre les placettes des deux forêts porte à la fois sur la présence de la futaie feuillue à Pin laricio en forêt d’Aitone seule et celle de la jeune futaie de pins indifférenciés (CPJ) en forêt de Valduniellu seule. Dans le second (ONF), la différence entre forêts porte (i) sur la nature des peuplements mélangés à Pin laricio majoritaire favorables à la sittelle : à Aitone, VFC P.L + FD HET, FC P.L + FC HET, FC HET + FC P.L + FC S.P, FC P.L + FC S.P, et à Valduniellu, VFC P.L+BV, (ii) sur l’âge pour les formations communes : FD P.L plus âgée à Aitone qu’à Valduniellu (iii) sur le taux de mélange des peuplements (jusqu’à un taux de 50% par définition même de ces peuplements) plus important à Aitone qu’à Valduniellu, qui suggère une importance du sous-étage (Sapin, Hêtre, Bouleau).

Au-delà de la simple placette, les peuplements ont ensuite été examinés à l’échelle des territoires occupés calculés selon la méthode de Voronoï. Des régressions linéaires multiples ont été réalisées : avec en variable à expliquer le logarithme en base 10 de la surface du territoire considéré LOG(S_T) et en variables explicatives la superficie des différents types de peuplements forestiers les composant. Il est apparu que les surfaces des futaies pures de Pin laricio (PL >75%) adulte et âgée contribueraient à diminuer la surface des territoires dans les deux forêts. De ce fait, cela a mis en retrait l’hypothèse de l’importance des peuplements mélangés dans la présence de la sittelle et a privilégié celle de l’âge ou de la taille des pins laricio.

Enfin, la comparaison de la gestion passée récente des forêts d’Aitone et de Vaduniellu a démontré de façon significative que le volume exploité relatif à la surface exploitée en forêt d’Aitone (171,51 m3/ha) a été plus important qu’en forêt de Valduniellu (121,37 m3/ha), ceci mettant en exergue soit, une productivité accrue de la forêt d’Aitone, soit, un âge plus élevé de ses pins laricio avant coupes. Accessoirement, le milieu proche de la coupe reste plus favorable à Aitone qu’à Valduniellu, puisque le nombre de nids alentour y est plus important et la distance à la coupe moindre.

6.1.2 Résultats des études sur le massif de Rospa-Sorba

Des inventaires typologiques précis ayant été réalisés dans les forêts qui composent ce massif, il a été envisagé d’y examiner à nouveau l’habitat de la sittelle à partir des données dendrométriques relevées à proximité de la localisation (parfois présumée) de la sittelle, s’agissant d’un massif dont les conditions tant écologiques (étage de végétation, sol, pluviométrie, aléa incendie,...) que de gestion (sylviculture appliquée ces quarante dernières années) diffèrent du précédent.

Ainsi, un dispositif d’échantillonnage présence/absence a été reconstitué, sur la seule forêt territoriale de Rospa-Sorba, a posteriori sur le modèle de celui de Villard et al. Compte tenu de la non-superposition de la localisation de la sittelle et des placettes typologiques, ont été recherchées certaines caractéristiques dendrométriques, plutôt relatives au Pin laricio, des 3,4 puis 9 placettes les plus proches des points de localisation ou pas des sittelles pour en calculer la moyenne arithmétique. Les résultats les plus significatifs l’ont été pour n=4. Les 4 placettes de 15 m de rayon, réparties régulièrement à environ 50 m les unes des autres et distantes de 41,3 m en moyenne (écart-type 17,5 m) du point de localisation ou pas des sittelles, forment une surface relevée d’environ ¼ ha sur l’hectare autour du point. Il apparaît la confirmation que la présence de sittelles dans cette forêt est favorisée, de façon au moins significative, par la présence de gros bois et celle de très gros bois de Pin laricio.

Par contre, le bois mort n’est pas un facteur discriminant, sa quantité semble même défavorable si l’on tient compte de l’analyse factorielle des correspondances qui a porté sur ces mesures. L’explication est sans doute la destruction par le feu à plusieurs reprises de l’habitat qui n’en a pas amélioré la qualité pour la sittelle tout en engendrant un nombre important d’arbres morts debout mais non exploitables par cette dernière.

Mémoire EPHE-SVT- TORRE 85/114
Sur la zone de production du massif de Rospa-Sorba ont été échantillonnées et mesurées par les services de l’ONF, selon leur méthode typologique propre, 2 094 placettes. Pour en connaître le potentiel d’accueil de sittelles, il a été appliqué à ces placettes successivement deux modèles: le premier établi à partir du modèle de régression logistique calculé pour le massif d’Aitone-Valduniellu (modèle F6) s’est révélé plutôt optimiste au regard des 95 couples de sittelles relevés, le second établi à partir du modèle de régression logistique calculé pour la forêt de Rospa-Sorba seule (modèle RS3) est plutôt très optimiste.

<table>
<thead>
<tr>
<th>modèle</th>
<th>Nb placettes P>0,5</th>
<th>Nb placettes P>0,6</th>
<th>Nb placettes P>0,7</th>
<th>Nb placettes P>0,8</th>
<th>Nb placettes P>0,9</th>
</tr>
</thead>
<tbody>
<tr>
<td>F6</td>
<td>277</td>
<td>229</td>
<td>198</td>
<td>163</td>
<td>117</td>
</tr>
<tr>
<td>RS3</td>
<td>1 395</td>
<td>1 238</td>
<td>1 079</td>
<td>880</td>
<td>593</td>
</tr>
</tbody>
</table>

Tableau 6.2 Nombres de placettes potentielles à sittelles en forêt de production du massif de Rospa-Sorba calculés selon les modèles de régression logistique F6 et RS3.

Formule du modèle F6 :
\[
p(PRES) \approx \exp(-2,208+4,781x\text{Altération}[T.1]+5,985x\text{Altération}[T.4]-0,057x\text{NT}+0,303x\text{TGB}-7,633x(\text{GESS2:GESS1})/(1 + \exp(-2,208+4,781x\text{Altération}[T.1]+5,985x\text{Altération}[T.4]-0,057x\text{NT}+0,303x\text{TGB}-7,633x(\text{GESS2:GESS1})))
\]

Formule du modèle RS3 :
\[
p(PRES) \approx \exp(-1,45928+0,03803xL_{\text{GB_HA}}+0,06108xL_{\text{TGB_HA}})/(1 + \exp(-1,45928+0,03803xL_{\text{GB_HA}}+0,06108xL_{\text{TGB_HA}}))
\]

Les deux modèles souffrent tous deux de la diversité des méthodes et des dates employées pour relever les sittelles dans le massif de Rospa-Sorba. Cependant, sans doute en raison des différences de caractéristiques et de gestion entre le massif forestier de Rospa-Sorba et celui d’Aitone-Valduniellu, c’est le modèle établi à partir des données de la forêt de Rospa-Sorba qui donne les meilleurs résultats pour les placettes dendrométriques les plus proches de sittelles : 67 points sittelles sur les 95 relevés ont une probabilité P>0,5 d’en accueillir avec le modèle RS3 vs 18 avec le modèle F6. La différence plus ou moins marquée entre modèles et réalité est peut-être à imputer à la nécessité d’un territoire nourricier, au-delà du simple territoire favorable à la reproduction des 20 m autour du nid.

La comparaison des caractéristiques dendrométriques des placettes avec sittelle entre les deux massifs fait d’ailleurs apparaître un nombre supérieur très hautement significatif de tiges par hectare (NT_HA) à Rospa-Sorba, et notamment, plus de bois moyens (BM_HA) et de gros bois (GB_HA) par hectare, mais aussi une surface terrière totale (G_HA) supérieure avec, en particulier, une surface terrière en essences diverses (plutôt en sous-étage) GDIV_HA très supérieure et une surface terrière de la première essence prioritaire (plutôt Pin laricio) GESS1_HA supérieure alors que la surface terrière GESS2_HA en seconde essence prioritaire (plutôt co-dominante) y est inférieure. En termes de structure des peuplements proches des localisations des sittelles, les futaies régulières à gros bois (R_GB) et irrégulières (IR) sont plutôt caractéristiques de celles du massif de Rospa-Sorba, tandis que la futaise régulière à petits bois tendance bois moyens (R_PB_BM) est majoritaire à Aitone-Valduniellu. Ces facteurs sont susceptibles d’expliquer la densité très supérieure de sittelles en forêt de production du massif de Rospa-Sorba : 1,06 couple aux 10 hectares vs 0,31 couple aux 10 hectares pour le massif d’Aitone-Valduniellu.

A une échelle plus petite, avec une moyenne de 6,8 hectares (48 territoires, min.2,63 ha-max.19,81ha) en forêt de Rospa-Sorba, le territoire d’un couple de sittelles en forêt territoriale de Rospa-Sorba calculé à partir de la méthode de Voronoï sur la série de production, voit sa superficie diminuer de façon significative en fonction du nombre moyen de très gros bois à l’hectare relevés sur les placettes le composant.

A l’échelle du massif de Rospa-Sorba, la mise en œuvre d’une analyse géostatistique selon la méthode du plus proche voisin démontre un regroupement significatif des sites à sittelles. Une explication a été recherchée à travers un modèle de calcul lissé de structure des peuplements selon la méthode de krigage ordinaire. Il apparaît de façon significative que les localisations de sittelles se situent préférentiellement dans les peuplements à structure irrégulière.
6.2 Sitta whiteheadi vs Sitta canadensis

Afin d'examiner ces conclusions à la lumière d'autres travaux scientifiques, portant sur des espèces similaires, il apparaît opportun de s'intéresser à une espèce voisine ayant fait l'objet de nombreux travaux : la sittelle du Canada ou sittelle à poitrine rousse qui fait partie du même groupe canadensis de la famille des Sittidae.

6.2.1 Habitats

Ainsi, nonobstant une aire de répartition beaucoup plus vaste pour la sittelle à poitrine rousse, il s'avère :

- Qu'elle montre une préférence pour les forêts mâtures comportant des chandelles (Zeiner, 1990) et une forte strate arborescente (Marchand , et al., 1995);

- Que la superficie du territoire de la sittelle à poitrine rousse serait de l'ordre de 3-5 hectares, soit 2 à 3 couples aux 10 hectares (Sabo , et al., 1978) pour un habitat de bonne qualité, à savoir, constitué de forêt dense et mâture ou surannée (Marchand , et al., 1995), soit une densité similaire à la sittelle corse dans les forêts à vieux bois (Thibault, et al., 2011).

- Que cette densité décroît à l’occasion de coupes qui suppriment gros bois et bois à cavités. La sittelle à poitrine rousse niche effectivement dans un trou d’arbre mort debout ou d’une grosse branche morte d’un arbre encore vivant (Marchand , et al., 1995), comme la sittelle corse.

- Que le remplacement des forêts matures mixtes de Californie par des forêts homogènes et équillennes diminue le nombre de sittelles (Adams & Morrison, 1993 cité par (Ghalambor, et al., 1999)).

- Que la sittelle à poitrine rousse du Sud-ouest de la Virginie évite pendant l’hiver les coupes claires de moins de 3 ans de forêts mixtes à pin et chêne (Connor & al., 1979 cité par (Ghalambor, et al., 1999)).
6.2.2 Alimentation

A l’instar de la sittelle corse, la sittelle à poitrine rousse a deux régimes alimentaires distincts selon la saison :

- En été, elle glane les insectes sur les différentes parties de troncs, pratique rarement la chasse au vol (Zeiner, 1990). Elle peut profiter des attaques de Tordeuse des bourgeois de l’épinette (Choristoneura fumiferana Clem.) pour se déplacer vers les peuplements atteints, ce qui a pour effet d’augmenter temporairement sa densité de population (Marchand, et al., 1995).
- En hiver, elle consomme les graines des conifères qu’elle prélève sur les cônes en les extrayant avec le bec (Zeiner, 1990). Elle est capable de migrer vers le sud en cas de carence de nourriture en zone boréale (Godfrey, 1986 cité par (Marchand, et al., 1995)).

6.2.3 Comportement social

A la différence de la sittelle corse, les oiseaux, en hiver, peuvent occuper à plusieurs (au-delà du couple estival, 1 à 4 oiseaux) un territoire variant entre 3 et 4 hectares. Les assemblages se font entre mâles seuls, ou mâles et femelles, avec parfois des attitudes agressives entre eux. Ce comportement serait susceptible d’expliquer la capacité de migration de l’espèce, les oiseaux étrangers au couple initial n’ayant à défendre ni couple, ni territoire (Matthyssen, 1998).

6.2.4 Reproduction

La loge qui va servir de nid est perforée, comme dans le cas de la sittelle corse, dans du bois pourri, situé dans une chandelle, une branche morte ou une portion morte d’un arbre vivant, souvent à partir d’un trou de pic préexistant (Zeiner, 1990). Les arbres choisis ont en général un diamètre à hauteur de poitrine supérieur à 20 cm et une hauteur moyenne de 12 m (2 à 30m), l’entrée de la cavité étant située à une hauteur moyenne de 7 m (1,5m à 15m) (Harestad et Keisier cités par (Marchand, et al., 1995)). Elle est remplie d’aiguilles, de végétaux environnants et de lichens. En outre le couple la garnit de résine à l’entrée, voire à l’intérieur, sans doute pour constituer un obstacle aux prédateurs (Ghalambor, et al., 1999).

La nidification peut avoir lieu d’avril jusqu’au début août, en général autour de juin. 4 à 7 œufs produits sont couvés par la femelle pendant environ 12 jours. Les oisillons sont nourris par les deux parents pendant 18 à 21 jours avant de quitter le nid (Zeiner, 1990).

6.2.5 Statut de protection

Considérée comme « Least concerned » par l’UICN, la sittelle à poitrine rousse ne dispose pas de statut de protection, sa population serait même en augmentation.

6.2.6 Gestion de l’habitat de la sittelle à poitrine rousse.

La sittelle à poitrine rousse se révèle, par sa biologie, comme une espèce très proche de la sittelle corse, mis à part sur sa capacité de migration. Il est donc opportun de connaître les mesures prises sur le continent américain pour la gestion de son habitat, bien qu’elle ne soit pas particulièrement considérée comme une espèce à protéger.

On note quelques recommandations de gestion dans la littérature :

- Pour maintenir la population nicheuse, conserver 36 arbres morts debout à bois tendre ou pourri et 36 autres à bois plus dur aux 40 hectares (Raphael & White, 1984 cité par (Ghalambor, et al., 1999)).
- Le diamètre moyen de ces arbres debout doit être supérieur à 30-38 cm (Harestad et Keiser, 1989 cité par (Ghalambor, et al., 1999)).
- Les arbres présentant une pourriture des racines sont aussi intéressants (Steeger & Hitchcock 1998 cité par (Ghalambor, et al., 1999)).
- S’assurer dans les blocs de coupe de maintenir des massifs de forêts résiduelles avec une composition de résineux qui ont une superficie de plus de 20 ha à plus de 150 m d’une bordure. Une certaine proportion de ces massifs devrait avoir une superficie supérieure à 50 ha à plus de 150 m d’une lisière (Bujold, 2013).
Cependant, parmi les méthodes les plus avancées en recherche, il est souhaitable d’évoquer celles qui sont élaborées au Québec, résumées sous le vocable d’« aménagement écosystémique en forêt boréale » (Gauthier, et al., 2008). La stratégie générale du mode de gestion préconisé vise notamment le maintien de vieilles forêts et la réduction de leur fragmentation pour limiter l’érosion de la biodiversité forestière.

Les traitements conseillés simulent les aléas subis par les forêts (feux, épidémies d’insectes, tempêtes,...) pour recréer des succédanés de ces vieilles forêts et de leurs attributs (notamment bois morts, bois à cavités et gros bois). Dans la région concernée, l’historique des forêts avant leur exploitation est reconstitué à partir de l’analyse des forêts naturelles existantes, afin de déterminer la nature des perturbations qu’elles ont subies, le pas de temps qui sépare ces dernières et leur intensité. Une sylviculture appropriée, recréant les conditions de ces perturbations spécifiques à la région, leur est alors appliquée, en fonction de leur structure et de leur composition afin de tenter de recréer les milieux façonnés par ces perturbations avant l’ère industrielle. Le tableau 6.3 en résume la teneur.

<table>
<thead>
<tr>
<th>Structure d’âge</th>
<th>Structure du peuplement</th>
<th>Traitement au Québec</th>
<th>Abréviation</th>
<th>Rôle dans l’aménagement</th>
<th>Equivalence en France</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equienne</td>
<td>Régulière</td>
<td>Coupe totale avec ou sans protection de la régénération</td>
<td>CPRS ou CPRHS</td>
<td>Reproduire l’effet d’un feu, d’une épidémie d’insectes ou d’un chablis très sévères</td>
<td>Coupe rase sur semis acquis ou suivie de plantation par parcelle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coupes progressives régulières: coupes partielles d’ensemencement suivies d’une coupe finale.</td>
<td>CPR= CPE + (CPRS ou CPRHS)</td>
<td>Reproduire l’effet d’un feu, d’une épidémie d’insectes ou d’un chablis relativement sévères</td>
<td>Coupes progressives de régénération par parcelle</td>
</tr>
<tr>
<td>Semi-équienne</td>
<td>Relativement irrégulière</td>
<td>Coupes progressives irrégulières par bandes ou par trousées</td>
<td>CPI</td>
<td>Analogue à une perturbation progressive de type dépérissement et chablis.</td>
<td>Coupes progressives de régénération par parquets</td>
</tr>
<tr>
<td>Multiétagée</td>
<td>Multiétagée</td>
<td>Coupes périodiques peu fréquentes mais sévères (=25 ans)</td>
<td>CPI</td>
<td>Analogue à une épidémie d’insectes ou de chablis partiels.</td>
<td>Coupes jardinatoires</td>
</tr>
<tr>
<td>Inéquienne</td>
<td>Irrégulière</td>
<td>Coupes périodiques fréquentes mais peu sévères (=10 ans)</td>
<td>CPI</td>
<td>Analogue à la mortalité par sénescence</td>
<td>Coupes jardinées</td>
</tr>
</tbody>
</table>

Tableau 6.3 Principaux systèmes sylvicoles au Québec, tableau simplifié d’après (Gauthier, et al., 2008).

A noter que les coupes partielles peuvent être déclinées plus finement :
- En CPPTM, coupes avec protection des petites tiges marchandes, préservant les arbres d’un diamètre à hauteur de poitrine inférieur à 15 cm au lieu de 9 cm pour les CPRHS,
- En CAMC, coupes adaptées visant le maintien du couvert, utilisées en fonction de l’objectif essence ou de la structure du peuplement (ici multi-étagé) recherchés.

L’analyse des perturbations de forte intensité a permis de définir les peuplements qui succèdent à la perturbation en fonction de leur composition et de leur structure sous l’appellation de « cohortes » schématisées en figure 6.3.

Figure 6.3 Comparaison des effets de la dynamique naturelle (succession à partir d’un feu très sévère) et de la sylviculture (succession à partir d’une coupe rase) sur la structure d’un peuplement d’Épinette noire, source : (Leduc, et al., 2002).
Ces principes posés, la sittelle à poitrine rousse faisant partie des oiseaux forestiers associés aux forêts âgées (> 100 ans) et à la présence de bois mort (Gauthier, et al., 2008), la gestion de son habitat doit nécessairement passer par des coupes jardinées s’il est en cohorte 3 ou par une évolution vers la cohorte 3 s’il est en cohorte 1 par voie de coupes progressives avec rétention de vieux ou de gros bois ou encore s’il est en cohorte 2 par voie de coupes jardinoïdes avec rétention de vieux et de gros bois, en espérant par là un retour plus rapide à la futaie irrégulière.

Par ailleurs, il est avéré que la pratique des CPPTM et des CPHRS en futaie mature d’épinette noire n’a pas permis d’atténuer la diminution de la densité de sittelle à poitrine rousse. Cette dernière est corrélée avec le niveau de rétention pratiqué sur les tiges résineuses de plus de 27,1 cm de diamètre à 1,30 m et sur les chicots (chandelles) > 9,1 cm de diamètre à 1,30 m. Il apparaît aussi qu’un niveau de rétention de 5 à 22% de la surface terrière en futaie mature ne suffit pas à en maintenir la densité et qu’il faudrait y en maintenir au moins 40% sous la forme de gros arbres (Rioux, 2006). Cette dernière n’est pas non plus présente dans les premiers termes de la sylvigénèse qui suivent les CPRS (Rioux, 2006).

En revanche, il semble que la CAMC prélevant 33% de cette surface terrière seulement ne porte pas préjudice, un an après la coupe à la population de sittelle à poitrine rousse (Gauthier, et al., 2008).

Rappelons qu’en tant qu’excavateur faible, la sittelle à poitrine rousse a besoin de la présence de bois tendre ou de trous de pics, les bois préservés de la coupe sont soit pourris, soit déjà perforés. Les recommandations sur le maintien des espèces de pics paraissent donc pouvoir lui être appliquées. Ces dernières nécessitent d’intégrer une meilleure connaissance de la dynamique de création et d’évolution des chandelles, la relation avec les cortèges d’insectes susceptibles de servir de base de nourriture aux pics, la quantification de la présence de cavités portées et celle des cavités utilisées aux excavateurs primaires et celles des cavités utiles aux usagers secondaires (Drapeau, et al., 2009).

Ce que l’on doit retenir de la comparaison avec la sittelle à poitrine rousse, c’est :
• le même besoin en bois mort debout pourri ou bien en bois debout à cavités,
• la présence de gros bois en nombre suffisant par hectare,
• la nécessité d’une structure irrégulière,
• au moins dans un rayon proche du nid, un nombre de gros bois producteurs de graines en nombre suffisant pour permettre aux oiseaux de passer l’hiver
• et un territoire qui, dans de telles conditions, peut atteindre les 3 à 5 hectares.

La différence, essentielle, c’est la capacité de la sittelle à poitrine rousse de migrer plus au sud en cas de difficultés alimentaires, pour notamment s’intéresser aux insectes ravageurs des forêts. Enfin, il apparaît l’importance de mettre en pratique des méthodes sylvicoles qui ne contribuent pas à détruire les forêts matures, mais à les maintenir, avec des peuplements plus jeunes, dans une mosaique équilibrée du paysage.

6.3 Recommandations pour une gestion forestière compatible avec la conservation de la sittelle corse

6.3.1 De la cueillette d’arbres à l’industrie du bois.

A la différence du Nouveau Monde, les pratiques forestières en Corse peuvent être difficilement analysées à la lumière du fonctionnement écologique de forêts naturelles résiduelles, totalement absentes de l’île. Il faut, de fait, faire appel à l’Histoire pour comprendre la composition et la structure des forêts actuelles.

Les formations à Pin laricio (Pinus nigra subsp. laricio, Maire) et Bruyère arborescente (Erica arborea, L.) occupant les étages de végétation mésoméditerranéen et supraméditerranéen inférieur ont largement régressé à partir de 2500 BP au profit de formations à Chêne vert (Quercus ilex, L.) et Pin maritime (Pinus pinaster Aiton subsp. Hamiltonii (Ten.) Villar)), (Carcailllet, et al., 1997). Comme d’autres forêts méditerranéennes, elles ont subi les pressions anthropiques conjointes du défrichement par le feu (debbiu) ou la hache et du libre parcours du bétail depuis l’installation de l’Homme sur l’île (8000 BP) jusqu’au Moyen-Age tardif (XIV ème siècle) sous le régime féodal, (Rota, et al., 2001). Celles de la chaîne centrale de la Corse, occupant l’étage montagnard, se sont maintenues, malgré des incendies, mais d’origine naturelle, moins fréquents et à temps de retour plus important. Difficultes d’accès, ces dernières n’ont fait, pendant cette période, l’objet que d’une exploitation de cueillette seule répondant aux usages des communautés locales (bois de chauffe, bois de charpente pour la construction, pâturages caprin et porcin).
Précisément, en termes d’exploitation (cf Annexe A-2), la forêt publique est passée de la cueillette (XV- XVIIèmes siècles) à l’extraction minière par concessions et coupes rases (XVIII-XIXèmes siècles) pour aboutir à des méthodes plus modernes fondées sur une sylviculture de prélèvement de réserves sous forme jardinoïde du début du XXème siècle jusque dans les années 1970 où une politique fondée sur la production prioritaire de Pin laricio, accompagnant un nouvel effort de desserte, a mis en œuvre le traitement en futaie par sous-parcelles (sous-parcelles de l’ordre de 5 ha à 10 ha) avec réduction de l’âge d’exploitabilité en moyenne de 240 ans à 180 ans, qui a entraîné un rajeunissement des peuplements puis un déficit de gros bois pour les exploitants dotés de matériel de sciage plutôt adapté aux gros diamètres qu’aux petits.

Ce traitement sylvicole a été pratiqué depuis les années 1970 (cf § 5.1.3.5), avec ses variantes, jusqu’à l’adoption, à l’occasion du programme Life Pin Laricio (1998-2004), d’une nouvelle typologie des peuplements forestiers à Pin laricio et essences associées, puis l’approbation par l’Etat et la Collectivité territoriale de Corse du Schéma régional d’aménagement fixant le cadre des documents d’aménagement des forêts publiques en 2011 dont les préconisations élargissent le champ des méthodes sylvicoles et permettent la prise en compte d’autres contraintes que la seule production de bois ou la protection contre les incendies de forêt (environnementales, paysagère, touristique, pastorale, ...).

Complétant les travaux des ornithologues, la présente étude permet d’établir les recommandations de gestion visant la conservation de l’habitat de la sittelle corse et conséquemment de l’espèce. L’oiseau restant très sédentaire sur un territoire qu’il défend toute l’année (Mathyssen, et al., 1989), cela amène à considérer deux habitats comme emboîtés :

- un habitat printanier et estival concentré sur la loge et ses alentours voué à la reproduction et à l’élevage des jeunes;
- un habitat hivernal plus large où la recherche des graines de Pin laricio pour la survie est privilégiée.

Les mesures de conservation de la sittelle corse doivent donc avoir pour objectifs de préserver concomitamment les habitats qui lui conviennent.

6.3.2 Conserver des arbres morts debout et/ou à trous de pics

La présence d’arbres morts debout partiellement écorcés de type A notamment, (Brichetti, et al., 1987) a été confirmée par les analyses statistiques qui ont considéré comme des explications significatives à la présence de sittelle la présence de bois mort debout ou de chandelle et leur altération.

![Figure 6.4 Types de troncs utilisés par la Sittelle corse](image)
Le bois mort debout en voie de décomposition et/ou à trous de pics est nécessaire à l’édification de la loge pour la reproduction de la sittelle car celle-ci n’est qu’un excavateur faible. Il constitue aussi un réservoir alimentaire en raison de la présence de nombreux insectes dans les écorces en décomposition qui permet un régime alimentaire riche à une période où l’oiseau a particulièrement besoin d’énergie. De ce point de vue, il apparaît comme le cœur d’un habitat printanier et estival concentré sur la loge et ses alentours. Pendant l’hiver, ses fentes et crevasses constituent autant d’abris potentiels pour la sittelle et de caches pour sa nourriture de prédilection en cette période, les graines de Pin laricio.

Il est donc indispensable de maintenir des bois morts debout suffisamment décomposés ou sénescents à trous de pics de manière dispersée dans les parcelles et ce, quel que soit le traitement sylvicole qui leur est appliqué.

Actuellement, les directives et recommandations nationales du gestionnaire en ce domaine (Office national des forêts, 2009) préconisent en moyenne le maintien à l’occasion des coupes:

- D’au moins 1 arbre mort ou sénescent par hectare, de 35 cm de diamètre minimum (arbres foudroyés ou chandelles de volis, arbres champignonnés, …)
- Et d’au moins 2 arbres (arbres bio) par hectare pris parmi les catégories suivantes : arbres à cavités visibles ou vieux ou très gros arbres.

De telles mesures, déjà discutées lors de l’élaboration au plan régional d’une doctrine de gestion de l’habitat prioritaire à Pin laricio dans le cadre du programme Life (Office national des forêts, 2006), ont été relayées dans le schéma régional d’aménagement qui constitue « le référentiel de base en matière de choix de politique forestière régionale à appliquer aux forêts des collectivités et en matière de cadrage des référentiels techniques de gestion » (Office national des forêts, 2011) et prévoit:

- De conserver 1 à 2 tiges dépérissantes par hectare, si possible de diamètre supérieur à 30 cm, sauf tiges porteuses de pathogènes ravageurs et sauf dans les séries destinées à l’accueil du public ou à la protection de la forêt contre l’incendie.
- De conserver tous les bois morts sur pied lors des martelages, devant permettre d’atteindre l’objectif d’un volume global (bois morts debout et gisant) de 5 à 15 m³ par hectare en moyenne (à comparer avec la situation actuelle de 1 à 4,9 m³ par hectare en moyenne), ceci étant valable surtout en séries d’intérêt écologique et séries de production.

Concrètement parlant, il n’y a pas lieu d’exploiter les arbres morts ou dépérisants lorsqu’ils n’ont pas de valeur économique élevée, sauf en cas de risque pour la sécurité des personnes ou du point de vue phytosanitaire (Gosselin , et al., 2010). La note technique ONF n° 3 relative aux arbres à conserver pour la biodiversité (Office national des forêts, 2010) précise que « la conservation pour la biodiversité de 3 arbres par hectare (1 arbre mort ou sénescent, 2 arbres à cavités, ou gros ou vieux) doit se faire de façon volontaire et raisonnée, à l’échelle de la parcelle, quand ils existent. »

Les arbres à cavités hautes de pics, définis par la : « présence de trous de pics de forme ovale, de 8 x 10 cm environ, souvent à grande hauteur », à conserver, sont marqués de manière spécifique.

Les arbres morts retenus ne doivent pas être totalement isolés du peuplement, il est préférable qu’ils appartiennent en futuie régulière à des bouquets plutôt proches des lisières de la coupe pour éviter la prédation de l’oiseau, rappelons qu’un arbre de plus de 20 cm de diamètre à une distance maximale de 20 m du nid ainsi déterminé serait aussi opportun (Villard, et al., 2014).
Ces arbres sont donc désignés « dispersés en futaie irrégulière et en bouquets en futaie régulière ». Il est précisé qu’ils sont choisis parmi ceux de faible valeur marchande (catégories C ou D) et que leur désignation doit s’effectuer au plus tôt parmi des arbres adultes. La gestion dans le temps du stock de ces arbres s’effectue notamment grâce au maintien d’îlots de sénescence qui ne font pas l’objet d’une exploitation et dont les arbres vont jusqu’à leur effondrement.

Il est conseillé d’étudier la mise en place des îlots de sénescence au moment de la rédaction d’un nouvel aménagement de forêt et sur le terrain, lors de la phase de régénération d’une parcelle (futaie régulière). Une désignation la plus précoce est possible dans les peuplements déjà dotés de vieux arbres (futaie irrégulière) (Gosselin, et al., 2010). Rappelons que l’objectif de ces îlots concerne le maintien de la biodiversité forestière en général et non uniquement la sittelle. La surface qu’ils doivent couvrir à terme est de l’ordre de 3% minimum de la superficie gérée (Office national des forêts, 2009). En futaie régulière, leur surface minimum doit être de 0,5 hectare (Office national des forêts, 2006). Les critères suivants peuvent être retenus pour l’implantation des îlots :

(a) Valeur naturelle
 • Essences indigènes en station (diverses)
 • Bois à cavités (trous de pic déjà présents)
 • Diamètre des arbres déjà supérieur à 50 cm
 • Bois morts et arbres dépérisants déjà présents
 • Étagement au sein de l’îlot

(b) Exploitation du bois alentours
 • Situation en limite de transport
 • Absence d’entrave à l’exploitation alentours

(c) Sécurité
 • Eloignement des routes et chemins fréquentés
 • Absence de danger pour les bûcherons lors de travaux ultérieurs

(d) Social
 • Visibilité afin de promouvoir ce genre de prestation auprès du public
 • Choix d’îlots intéressant du point de vue de l’impact sur le paysage

(Office de l’environnement du canton du Jura suisse, 2008).

6.3.3 Maintenir des gros pins laricio

Les comparaisons de présence/absence de la sittelle développées dans cette étude (cf § 5.1.2.1 et § 5.2.1.1) ont confirmé la pertinence de l’habitat optimal de la sittelle tel que défini par Villard et al., et en particulier la nécessité de conserver quatre très gros bois de Pin laricio (Diamètre à 1,30 m > 62,5 cm) dans un rayon de 20 m autour du nid dont au moins un de diamètre supérieur à 80 cm (Villard, et al., 2014). Ceci étant posé, en raison des répercussions sylvicoles et économiques sur la gestion pratiquée que cela peut entraîner, il convient d’examiner de plus près les résultats avant d’étendre de façon linéaire ces normes à l’hectare ou aux trois hectares, taille du territoire optimal de la sittelle (Thibault, et al., 2002). Il est aussi nécessaire, tant que faire se peut, de proposer une répartition des très gros bois à conserver (isolés ou en îlots) dans la parcelle à traiter.

Mémoire EPHE-SVT- TORRE 93/114
6.3.3.1 Validation des résultats à l’échelle du territoire de la sittelle

L’analyse à partir des variables quantitatives moyennes des placettes typologiques les plus proches du nid réalisée en forêt de Rospa-Sorba (§ 5.2.1.1) a mis en évidence que le rayon pertinent pour expliquer le choix de son habitat de printemps par la sittelle était les 60 -70 m autour de son nid (4 placettes de rayon 15 m à une distance moyenne de 41,3 m, écart-type 17,5 m), ce qui représente environ 1,1 à 1,5 ha. Pour la sittelle à poitrine rousse, le rayon est de l’ordre de 100 m (Warren, et al., 2005), soit, 3,1 ha. Dans ces conditions, le nombre de très gros bois (TGB) de Pin laricio à l’hectare susceptible d’être préconisé est de l’ordre de 19 par ha et le nombre de gros bois (GB, 47,5 cm < Diamètre à 1,30 m < 62,5 cm) de 37 par ha. Ce qui conduit indicativement, en prenant la valeur moyenne des diamètres des classes d’arbres considérées à des surfaces terrières respectives en Pin laricio de 7,8 m2 (TGB, 72,5 cm) et 8,8 m2 (GB, 55 cm), soit un total (GB+ TGB) de 16,6 m2/ha, comparable à la valeur analogue de cette surface terrière moyenne de 16,1 m2/ha en forêt territoriale de Rospa-Sorba (1 493 placettes), composée à 96% de Pin laricio.

Par ailleurs, grâce à des modèles de calcul de production de graines, Moneglia (2010) a démontré que la taille du territoire utile à la sittelle pouvait varier en période hivernale de 0,7 à 4,7 ha en forêt d’Asco en fonction de l’année (cf Annexe A-1§A-1.4). La production de graines dépendant directement du diamètre de l’arbre (Moneglia, 2003), la conservation des gros semenciers permet de répondre aux besoins alimentaires de la sittelle, même concurrencée par la mésange noire, même en mauvaises années de production de graines (Moneglia, 2010) (cf Annexe A-1§A-1.3).
Enfin, la régression linéaire significative entre le logarithme en base 10 de la surface de territoire des couples de sittelles en forêt territoriale de Rospa-Sorba et le nombre de TGB de Pin laricio évalué sur chacun des territoires (§ 5.2.3) confirme l’influence du nombre de TGB sur la surface du territoire comme le montre le tableau 6.6.

<table>
<thead>
<tr>
<th>Nombre de TGB de PL/ha</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface terrière moy. (m²/ha)</td>
<td>2,1</td>
<td>4,1</td>
<td>6,2</td>
<td>8,3</td>
<td>10,3</td>
<td>12,4</td>
<td>14,4</td>
<td>16,5</td>
<td>18,6</td>
</tr>
<tr>
<td>Surface du territoire de sittelle</td>
<td>8,3</td>
<td>7,5</td>
<td>6,8</td>
<td>6,2</td>
<td>5,6</td>
<td>5,1</td>
<td>4,6</td>
<td>4,2</td>
<td>3,8</td>
</tr>
</tbody>
</table>

Tableau 6.6 Influence du nombre de TGB de Pin laricio sur la surface du territoire de sittelles

En conséquence, il apparaît :
(i) que la présence de TGB de Pin laricio est bien étendue à l’ensemble du territoire du couple de sittelles et non au strict environnement le plus proche du nid seulement,
(ii) que plus le nombre de très gros bois est important, plus le territoire de la sittelle est petit,
(iii) que les TGB de Pin laricio permettent de garantir mieux la survie hivernale de la sittelle que les arbres de dimension inférieure en raison du nombre minimum de graines qu’ils produisent, même en mauvaise année de production.

L’augmentation du nombre de territoires de sittelles, le paramètre principal de la conservation de l’espèce, peut être aussi obtenu par une augmentation du diamètre d’exploitabilité du Pin laricio, au moins sur une partie du peuplement géré. Rappelons en effet, que le traitement régulier jusqu’alors appliqué était fondé sur un diamètre d’exploitabilité maximum, dans les stations de production les plus fréquentes (27 et 22, voir tableau 6.7), de 60 cm à 1,30 m.

<table>
<thead>
<tr>
<th>Classe de fertilité</th>
<th>37</th>
<th>35</th>
<th>27</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production moyenne</td>
<td>16 m³/ha/an</td>
<td>12 m³/ha/an</td>
<td>8 m³/ha/an</td>
<td>5 m³/ha/an</td>
</tr>
<tr>
<td>Diamètre d’exploitabilité</td>
<td>70 cm</td>
<td>65 cm</td>
<td>60 cm</td>
<td>50 cm</td>
</tr>
<tr>
<td>Age d’exploitabilité</td>
<td>100 ans</td>
<td>150 ans</td>
<td>180 ans</td>
<td>180 ans</td>
</tr>
</tbody>
</table>

Tableau 6.7 Différents scénarios de traitement régulier en fonction du type de station de production. Source : (Office national des forêts, 1999).

Plusieurs solutions se présentent alors au sylviculteur qui se doit de conserver les TGB, voire les TTGB (Diamètre à 1,30 m > 77,5 cm) selon le traitement appliqué :
(a) En futaie irrégulière pied à pied, dispersés de manière diffuse dans la parcelle ;
(b) En futaie irrégulière par collectif, par îlots d’environ 1 ha contenant au moins 20 TGB dont 8 TTGB ;
(c) En futaie régulière par parquets, des parquets d’une superficie maximale d’environ 3 ha contenant au moins 60 TGB dont 24 TTGB.

6.3.3.2 Discussion autour d’un exemple de mesures de conservation de gros bois prises par l’ONF

A l’échelle de la parcelle, les instructions en vigueur (Office national des forêts, 2011) indiquent (pages 211 et 212) :
« la conservation lors des opérations de martelage de 1 à 2 tiges dépérissantes par ha, 1 à 2 tiges mal conformées par ha, 2 à 5 arbres sentinelles (semenciers de haute qualité) par ha ».

L’exemple suivant, pris en forêt territoriale de Valduniello, en illustre la démarche. Il s’agit de conserver des arbres dans deux parquets (VIII, parcelle 16 et IX, parcelle 17). Les parquets de futaie régulière, respectivement de 3,49 ha et 12,70 ha, ont fait l’objet de coupes progressives de régénération. La régénération étant considérée comme désormais acquise, la coupe définitive a été décidée, selon l’aménagement de la forêt (Pioli, 2010) : parquet VIII, 3,49 ha en 2008, parquet IX, 6,70 ha en 2010 et 6 ha en 2016, à quoi il faut ajouter le parquet X, voisin, participant au territoire n°10 de sittelle, 4,81 ha prévus en 2011 et 10 ha prévus en 2018. Les parquets contiennent deux nids de sittelles (§ 5.1.3.5 tableau 5.40) et recoupent trois territoires (§ 5.1.3.4), les territoires n° 104, 9 et 10 (figure 6.7). Le personnel de l’ONF, pour procéder à la désignation des arbres à conserver, a mis en application non seulement les normes nationales déclinées au niveau local dans le schéma régional d’aménagement des forêts publiques (Office national des forêts, 2011), mais aussi les premières recommandations issues du plan national de restauration de la sittelle (Villard, et al., 2007). Le tableau 6.8 décrit la répartition des arbres maintenus.
Figure 6.7 Types d’ilots de vieux bois mis en place en Forêt territoriale de Valduniellu sur parquets de régénération acquise devant passer en coupe. Source : (Lèbre, 2013)

<table>
<thead>
<tr>
<th>mode de conservation/ type d'arbre</th>
<th>arbre relais</th>
<th>arbre relais</th>
<th>îlot 1</th>
<th>îlot 2</th>
<th>îlot 3</th>
<th>îlot 4</th>
<th>Total général</th>
<th>Parquet</th>
<th>surface (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>33</td>
<td>7</td>
<td>8</td>
<td>31</td>
<td>13</td>
<td>94</td>
<td>VIII</td>
<td>2,99</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>33</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>46</td>
<td>IX</td>
<td>10,50</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td>32</td>
<td>24</td>
<td>11</td>
<td>IX</td>
<td>0,63</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>75</td>
<td>9</td>
<td>9</td>
<td>32</td>
<td>24</td>
<td>151</td>
<td>VIII</td>
<td>1,04</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>75</td>
<td>9</td>
<td>9</td>
<td>32</td>
<td>24</td>
<td>151</td>
<td>VIII</td>
<td>0,50</td>
</tr>
<tr>
<td>Total général</td>
<td>94</td>
<td>46</td>
<td>11</td>
<td>151</td>
<td>184</td>
<td>151</td>
<td>184</td>
<td>VIII</td>
<td>16,19</td>
</tr>
</tbody>
</table>

Tableau 6.8 Description des arbres maintenus dans les parquets de régénération VIII et IX en FT de Valduniellu (Lèbre, 2013).
Soit à considérer l’ensemble des arbres « bio » et des arbres « sentinelle » répartis entre 4 îlots d’une surface totale de 2,70 ha et un ensemble diffus (arbres relais) sur une surface de 13,49 ha, soit 140 arbres en tout hors chandelles, cela donne une densité de 10,4 arbres conservés par hectare, ce qui pourrait paraître satisfaisant au regard des 8 TTGB par ha préconisés mais à prendre en compte les diamètres réels des arbres conservés, il s’avère que le nombre de TTGB est seulement de 3,34/ha et celui des TGB de 4,91/ha. Par ailleurs, en effectuant la coupe des parquets sur 13,49 ha le type de peuplement restant n’est constitué que de semis, gaulis ou perchis voire petits bois issus des coupes progressives précédentes hors ces 140 arbres non exploités.

Il est donc opportun de vérifier la pertinence de la démarche du maintien des arbres désignés au regard des caractéristiques connues des territoires de sittelles dans le massif d’Aitone-Valduniellu. Le tableau 6.9 récapitule les valeurs des variables quantitatives dans un rayon de 20 m autour des nids 9 et 10, avant coupe.

<table>
<thead>
<tr>
<th>Variable quantitative / nid</th>
<th>Avant coupe définitive (données P Villard 2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PER (nb tiges)</td>
<td>21</td>
</tr>
<tr>
<td>PB (nb tiges)</td>
<td>8</td>
</tr>
<tr>
<td>BM (nb tiges)</td>
<td>4</td>
</tr>
<tr>
<td>GB (nb tiges)</td>
<td>0</td>
</tr>
<tr>
<td>TGB (nb tiges)</td>
<td>1</td>
</tr>
<tr>
<td>TGB (nb tiges)</td>
<td>34</td>
</tr>
<tr>
<td>NT (nb tiges)</td>
<td>0,59</td>
</tr>
<tr>
<td>GESS (m2)</td>
<td>0,59</td>
</tr>
<tr>
<td>GESS1 (m2)</td>
<td>0,00</td>
</tr>
<tr>
<td>GESS2 (m2)</td>
<td>1,39</td>
</tr>
<tr>
<td>G (m2)</td>
<td>41</td>
</tr>
<tr>
<td>X_G (%)</td>
<td>15</td>
</tr>
<tr>
<td>Dmoy (cm)</td>
<td>90</td>
</tr>
<tr>
<td>Dmax (cm)</td>
<td>32</td>
</tr>
<tr>
<td>Htmax (m)</td>
<td>1</td>
</tr>
<tr>
<td>NbChand (nb tiges)</td>
<td>107</td>
</tr>
</tbody>
</table>

Tableau 6.9 Valeurs des variables quantitatives avant la coupe définitive dans un rayon de 20 m autour des nids 9 et 10.

L’ONF ayant maintenu les arbres recensés par P. Villard en 2005, avec une probabilité de présence de la sittelle, calculée selon le modèle F6 (§ 6.1.1), de valeurs respectives de 0,97 pour le nid 9 et 0,98 pour le nid 10, le maintien de la sittelle serait assuré.

Cependant, à l’échelle du territoire de la sittelle, la question reste posée pour le territoire 104 qui perd un quart de sa surface de vieille futaie par exploitation du parquet IX.

Pour les territoires 9 et 10, le calcul est étendu à leur aire en tenant compte des arbres réservés et en prenant l’hypothèse d’une régénération après coupe composée de semis, gaulis perchis à densité 1 100 tiges/ha dont 10 perchis. Les valeurs des variables quantitatives sont aussi comparées aux valeurs minimales nécessaires à la présence d’un nid en forêt territoriale de Valduniellu (§ 6.1.1). Les résultats figurent au tableau 6.10.

<table>
<thead>
<tr>
<th>Variable quantitative / territoire</th>
<th>Après coupe définitive (données S Lèbre 2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GESS1 HA (m2)</td>
<td>4</td>
</tr>
<tr>
<td>G_HA (m2)</td>
<td>5</td>
</tr>
<tr>
<td>X_G (%)</td>
<td>0</td>
</tr>
<tr>
<td>GESS_HA (m2)</td>
<td>107</td>
</tr>
<tr>
<td>TGB_HA (tiges/ha)</td>
<td>0</td>
</tr>
<tr>
<td>N_HA (tiges/ha)</td>
<td>103</td>
</tr>
<tr>
<td>GB_HA (tiges/ha)</td>
<td>0</td>
</tr>
<tr>
<td>PER_HA (tiges/ha)</td>
<td>0</td>
</tr>
<tr>
<td>PB_HA (tiges/ha)</td>
<td>101</td>
</tr>
<tr>
<td>BM_HA (tiges/ha)</td>
<td>4</td>
</tr>
<tr>
<td>Dmoy (cm)</td>
<td>105</td>
</tr>
<tr>
<td>Dmax (cm)</td>
<td>40</td>
</tr>
<tr>
<td>Htmax (m)</td>
<td>1</td>
</tr>
<tr>
<td>NbChand (tiges/ha)</td>
<td>1</td>
</tr>
<tr>
<td>Surface (ha)</td>
<td>10</td>
</tr>
</tbody>
</table>

Valeurs minimales des placettes à nid

Les valeurs de surfaces terrières et de diamètre moyen sont inférieures aux valeurs minimales relevées dans les placettes à nid de Valduniellu: le suivi de la réaction des sittelles dans ces parcelles est nécessaire pour y vérifier leur maintien, et ce, d’autant que l’exploitation du parquet X, partie des territoires 9 et 10 est programmée pour 2016.

6.3.3.3 Généralisation aux échelles plus petites

A l’échelle de la forêt, les îlots de vieillissement sont reconnus comme partie prenante d’une « trame de vieux bois » à l’instar des îlots de sénescence, des réserves biologiques intégrales laissées à leur évolution naturelle et des séries écologiques où l’intervention est minimale. Le schéma régional d’aménagement (Office national des forêts, 2011) indique d’ailleurs (page 211): « la nécessité de recourir à ces îlots (vieillissement et sénescence) apparaît réduite en Corse en raison du relief qui engendre de nombreux îlots non exploitables et de la proximité d’autres séries où ces critères de vieillesse et de sénescence sont respectés ».

Mémoire EPHE-SVT- TORRE 97/114
Nonobstant la faiblesse du réseau des réserves biologiques en peuplement de Pin laricio (cf § 6.5.3), resterait donc à vérifier que les peuplements de Pin laricio inscrits en série écologique comportent une densité d’au moins autant de territoires de sittelles que les séries de production.

A l’échelle de la région, les instructions de l’ONF en forêt domaniale (Office national des forêts, 2009) et susceptibles d’être mises en œuvre en forêts publiques, prévoient un objectif d’îlots de vieux bois de 3% de la superficie forestière dont 2% en îlots de vieillissement. Appliqué à la totalité de la superficie en Pin laricio dont celle non exploitée, cet objectif risque de ne pas inciter à la création d’îlots de vieillissement en forêt de production. C’est apparemment le volet économique qui a été privilégié en limitant de facto le diamètre d’exploitabilité à 70 cm.

Les dernières ventes de bois (septembre 2013) donnent une idée de la valeur qui est prêtée par les exploitants forestiers au Pin laricio : un prix moyen de 21 €/m3 variant entre 8,10 € à 49,50 € pour la meilleure coupe. Les invendus sont importants 66% en volume, les exploitants reprochant le manque de bois de « belle qualité sciage » au profit d’une qualité moindre « coffrage ». Le chiffre d’affaire produits un environ 200 000 € pour 11 500 m3 vendus (toutes essences). Cela devrait replacer sa juste valeur de production de bois de qualité en corse.

En termes de qualité, il est vrai que les coupes actuelles sont, du fait de la sylviculture jusqu’à récemment pratiquée, en général composées d’arbres plus jeunes qu’au moment des premières dessertes des années 1970. Les coupes dites d’amélioration consistant en éclaircies de futale régulière sont délaisées par les exploitants au profit des quelques unes définitives. De ce fait, la sylviculture de ce type doit être subventionnée et le bois d’éclaircie part en copeaux destiné à l’unité de chauffage à partir de biomasse de Corte...

Une alternative pourrait donc être la production de bois de qualité qui passerait, sur les stations forestières où cela est possible, à savoir acides à neutres et assez fraîches à assez sèches des étages supra-méditerranéen et montagnard (Office national des forêts USAE, 2005) par une augmentation du diamètre d’exploitabilité du Pin laricio. Ces stations sont d’ailleurs celles où l’espèce est la mieux représentée et sa longévité la moins risquée en termes de production de bois. Il s’agit, en effet, des classes de fertilité 22 à 27 du guide de sylviculture du Pin laricio de Corse (Office national des forêts, 1999). Dans cette hypothèse, un diamètre de 80 cm pourrait être atteint dans les meilleures stations de cette catégorie en 200 ans et les moins bonnes, 250 ans.

Une étude récente de l’Institut technologique Forêt, Cellulose, Bois, Construction et Ameublement (FCBA) commandée par l’Office de développement agricole et rural de la Corse (FCBA, 2013), destinée à caractériser les contraintes mécaniques du Pin laricio afin d’en permettre un tri industriel des produits, vient d’ailleurs de démontrer la qualité élevée (Classe C30) des échantillons transmis pour ceux fournir correspondant aux critères suivants :

« 1 – Des arbres d’âge mûr > 120 ans et plus,
2 – une hauteur de prélèvement < 10 m,
3 – une hauteur de la 1ère branche verte > 20 m
4 – Des grumes classées en catégorie A ou B »

En termes économiques, il y a donc aussi lieu de produire du bois plus âgé et de meilleure qualité que celui actuellement proposé à la vente.

La consultation des anciens aménagements démontre encore que les âges d’exploitabilité n’ont jamais été aussi faibles. Et l’histoire des forêts de nous dire qu’après une exploitation trop intensive, les forestiers ont toujours été amenés à reconstituer le capital de production des forêts en allongeant l’âge d’exploitabilité (cf annexe A-2).

Enfin, la conservation des gros semenciers peut aussi s’avérer intéressante, en termes de résilience, dans le cas de forêts parcourues par le feu pour leur reconstitution (Moneglia, 2010), les gros arbres résistant mieux à cette perturbation.
6.3.4 **Favoriser une structure irrégulière des peuplements**

Des conseils de sylviculture ont été déjà prodigués:

- En futaie régulière, la rotation des coupes devrait s'effectuer d'abord dans les parcelles mitoyennes du territoire connu afin qu'elles constituent par la suite un habitat à nouveau favorable susceptible d'être occupé par la sittelle (Beck, 1992);
- pour la forêt traitée en futaie régulière par parquets, des coupes successives non jointives et la réduction de la surface de régénération à moins de 4 ha, surface au-delà de laquelle, les sittelles disparaissent avec leur territoire en raison de la saturation des capacités de l'habitat (Villard, et al., 2007);
- afin de pallier l'isolement des gros pins dans les coupes d'ensemencement susceptible de favoriser la prédation de la sittelle, il est conseillé de laisser des îlots en position centrale reliés par des corridors arborés (Villard, et al., 2007).

Ceci étant, la comparaison des densités de sittelle entre les massifs d’Aïtone-Valduniello et de Rospa-Sorba l’un géré en futaie régulière et faisant l’objet d’exploitations soutenues depuis au moins une cinquantaine d’années (§ 3.1), l’autre en partie en futaie irrégulière et ayant moins fait l’objet d’exploitation (§ 3.2), met en exergue un rapport de un à trois (0,31 couple par ha vs 1,06 couple par ha). Plus loin, à l’échelle de la placette déjà, les structures IR et R_GB_BM sont favorables à la sittelle et la structure R_PB favorisée par le traitement régulier, défavorable (§ 6.1.1).

On peut ainsi schématiser ce territoire en considérant un noyau autour de l’arbre porteur du nid d’un rayon de 60 m concentrant une vingtaine de TGB (Diamètre à 1,30 m > 62,5 cm) ou les plus 8 gros TGB (Diamètre à 1,30 m > 80 cm) sur ces 1,13 ha et un second cercle concentrique de taille variable mais d’autant plus petite que le nombre de TGB y est important. Les profils (figure 6.9) sont ceux d’une futaie irrégulière, ce que confirme la typologie ONF (tableau 6.11).

<table>
<thead>
<tr>
<th>Surfaces des cercles</th>
<th>Type d’arbres</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,13 HA</td>
<td>PER</td>
<td>PB</td>
</tr>
<tr>
<td>nombre</td>
<td>88</td>
<td>43</td>
</tr>
<tr>
<td>Surface terrière</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m2)</td>
<td>1,56</td>
<td>1,71</td>
</tr>
<tr>
<td>2,67 HA</td>
<td>PER</td>
<td>PB</td>
</tr>
<tr>
<td>nombre</td>
<td>208</td>
<td>101</td>
</tr>
<tr>
<td>Surface terrière</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m2)</td>
<td>3,68</td>
<td>4,02</td>
</tr>
</tbody>
</table>

Tableau 6.11 Répartition des tiges sur la surface optimum de 3,8 ha.

A l’échelle de la forêt, la structure la plus favorable à la sittelle est aussi, comme il a été démontré pour la forêt de Rospa-Sorba (cf § 5.2.5), la futaie irrégulière. Restent donc deux modes de traitements favorables à la sittelle pour aboutir à cette structure: la futaie irrégulière pied à pied et la futaie irrégulière par collectif (figures 6.10 et 6.11).
Quid alors des peuplements mélangés ?
La sittelle préfère les peuplements à majorité de Pin laricio : puisqu'elle privilégie une proportion de la surface terrière des essences autres que le Pin laricio (X_G) inférieure à 8% sur le massif d’Aitone-Valduniellu. Comment alors gérer les mélanges : Pin laricio/Hêtre, Pin laricio/ Sapin, Pin laricio/ Pin maritime, Pin laricio/ Chêne vert ? Simplement en considérant deux étages de peuplements et en maintenant les espèces d’ombre (Hêtre, Sapin et Chêne vert) dans le sous-étage dans un objectif d’éducation de l’espèce de l’étage dominant. Le Pin maritime, essence pionnière après feu, a, quant à lui, une longévité beaucoup plus courte que le Pin laricio (au moins deux fois moindre). Il doit donc être exploité plus tôt.

La sylviculture doit être dynamique mais maintenir cependant une surface terrière assez importante (de l’ordre de 31 m2/ha) et composée à au moins 85% de Pin laricio (tableau 6.12). Les 8 placettes de la forêt de Valduniellu dont la proportion de surface terrière en essences autres que le Pin laricio est supérieure à 10% contiennent du Bouleau ou de l’Aulne en sous-étage, confirmant ce qui précède.

<table>
<thead>
<tr>
<th>GDIV/G</th>
<th>Aitone</th>
<th>Valduniellu</th>
<th>Total massif</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>37</td>
<td>63</td>
<td>98</td>
</tr>
<tr>
<td><1%</td>
<td>1</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>1%<5%</td>
<td>1</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>10%<42%</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>41</td>
<td>57</td>
<td>98</td>
</tr>
</tbody>
</table>

Tableau 6.12 Composition en essences diverses (% de surface terrière) des placettes à nids du massif d’Aitone-Valduniellu

La sylviculture irrégulière a aussi l’avantage d’être le meilleur compromis économique au regard des investissements à réaliser (Bruciamacchie, et al., 2012). Elle nécessite cependant une technicité avérée des acteurs et, dans le cas présent, des diamètres d’exploitabilité plus importants que ceux habituellement retenus, en raison du maintien nécessaire d’une surface terrière en Pin laricio minimale de 28 m2/ha à comparer aux 25 m2/ha conseillés.
6.3.5 *Stratégie de gestion à l'échelle du massif.*

Soit à considérer l’ensemble maximum des peuplements forestiers à *Pin laricio* de l’Actuel en Corse, d’âges et de structure variés et plus ou moins mélangés dont la connaissance nous est fournie par l’IFN (voir liste des variables) sous la forme d’une typologie cartographique, on peut tenter d’avoir une estimation du niveau de la fragmentation de ces peuplements en examinant (tableau 6.13):

- Celle due aux incendies et à l’exploitation de ces forêts comme ayant produit les jeunes peuplements,
- Celle due à l’artificialisation en croisant les surfaces avec l’état des infrastructures construites par l’homme.

<table>
<thead>
<tr>
<th>Type de peuplement IFN de Pin laricio : du plus de PL (>75%) vers moins de PL (<10%)</th>
<th>Surface initiale (ha)</th>
<th>Coupes ou incendies (ha)</th>
<th>Ligne électrique (ha) emprise théorique 50 m</th>
<th>Voie ferrée (ha) emprise théorique 15 m</th>
<th>Route nationale (ha) emprise théorique 30 m</th>
<th>Route départementale (ha) emprise théorique 15 m</th>
<th>Route forestière (ha) emprise théorique 15 m</th>
<th>Piste DFCI (ha) emprise théorique 15 m</th>
<th>Zones d’appui à la lutte incendies (ha) emprise théorique 100 m</th>
<th>Surface totale impactée (ha)</th>
<th>% fragmenté (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>26 111</td>
<td>2214</td>
<td>85</td>
<td>30</td>
<td>21</td>
<td>240</td>
<td>914</td>
<td>201</td>
<td>167</td>
<td>3 853</td>
<td>14,76%</td>
</tr>
<tr>
<td>CN9</td>
<td>476</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>57</td>
<td>12,07%</td>
</tr>
<tr>
<td>CR</td>
<td>980</td>
<td>574</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>583</td>
<td>59,48%</td>
<td></td>
</tr>
<tr>
<td>FR2</td>
<td>2 006</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>21</td>
<td>95</td>
<td>63</td>
<td>6</td>
<td>197</td>
<td>9,82%</td>
</tr>
<tr>
<td>WP</td>
<td>12 176</td>
<td>0</td>
<td>21</td>
<td>1</td>
<td>6</td>
<td>40</td>
<td>80</td>
<td>26</td>
<td>21</td>
<td>195</td>
<td>1,60%</td>
</tr>
<tr>
<td>WP9</td>
<td>6 112</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>18</td>
<td>0,29%</td>
</tr>
<tr>
<td>MP2</td>
<td>8 192</td>
<td>0</td>
<td>26</td>
<td>0</td>
<td>4</td>
<td>117</td>
<td>71</td>
<td>70</td>
<td>40</td>
<td>328</td>
<td>4,00%</td>
</tr>
<tr>
<td>MR2</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>12,83%</td>
<td></td>
</tr>
<tr>
<td>MP9</td>
<td>337</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0,16%</td>
</tr>
<tr>
<td>MP1</td>
<td>11 657</td>
<td>0</td>
<td>65</td>
<td>18</td>
<td>32</td>
<td>252</td>
<td>109</td>
<td>78</td>
<td>48</td>
<td>602</td>
<td>5,17%</td>
</tr>
<tr>
<td>MR1</td>
<td>131</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>6,40%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR9</td>
<td>75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3,00%</td>
</tr>
<tr>
<td>Surface (ha)</td>
<td>68 274</td>
<td>2845</td>
<td>210</td>
<td>31</td>
<td>70</td>
<td>678</td>
<td>1282</td>
<td>444</td>
<td>286</td>
<td>5 846</td>
<td>8,56%</td>
</tr>
</tbody>
</table>

Tableau 6.13 Types de peuplement à *Pin laricio* et fragmentation.

Sources : (Inventaire forestier national, 2003), (Institut géographique national, 2010), (Office national des forêts, 2011), (Directions départementales des territoires et de la mer de Haute-Corse et de Corse du Sud, 2013)

Les forêts de production à *Pin laricio* (CN), les plus intéressantes pour la sittelle (Villard, et al., 2014) sont fragmentées à 15% sous l’influence des incendies, des coupes et des infrastructures qui les parcourent. Qui plus est, un examen de l’état des projets à venir donne une idée de l’impact supplémentaire à venir (tableau 6.14), soit environ 2% avec les équipements de défense des forêts contre l’incendie prévus, sans prendre en compte de nouveaux équipements de desserte pourtant prévus mais non encore cartographiés.

<table>
<thead>
<tr>
<th>Type de peuplement IFN de Pin laricio : du plus de PL (>75%) vers moins de PL (<10%)</th>
<th>Surface initiale (ha)</th>
<th>Pistes DFCI prévues (ha)</th>
<th>Zones d’appui à la lutte incendies à réaliser (ha)</th>
<th>Surface totale risquant d’être impactée (ha)</th>
<th>% risquant d’être impacté (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>26 111</td>
<td>154</td>
<td>309</td>
<td>463</td>
<td>1,77%</td>
</tr>
<tr>
<td>CN9</td>
<td>476</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,00%</td>
</tr>
<tr>
<td>CR</td>
<td>980</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>0,42%</td>
</tr>
<tr>
<td>FR2</td>
<td>2 006</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>0,34%</td>
</tr>
<tr>
<td>MP1</td>
<td>11 657</td>
<td>19</td>
<td>165</td>
<td>184</td>
<td>1,58%</td>
</tr>
<tr>
<td>MP2</td>
<td>8 192</td>
<td>23</td>
<td>116</td>
<td>139</td>
<td>1,69%</td>
</tr>
<tr>
<td>MP9</td>
<td>337</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,00%</td>
</tr>
<tr>
<td>MR1</td>
<td>131</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1,83%</td>
</tr>
<tr>
<td>MR2</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,00%</td>
</tr>
<tr>
<td>MR9</td>
<td>75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,00%</td>
</tr>
</tbody>
</table>

Mémoire EPHE-SVT- TORRE 101/114
Les conclusions que l'on doit en tirer sont :

(i) De limiter fortement la surface des coupes rases à l'échelle des massifs et de mieux les répartir dans l'espace ;

(ii) De mieux intégrer les équipements DFCI en forêt par des techniques alternatives : plutôt brûlage dirigé supprimant le sous-bois que coupes à blanc particulièrement impactantes (100 m d'emprise) ;

(iii) D’imposer aux opérateurs de grandes infrastructures des mesures compensatrices en boisements de Pin laricio et/ou en conservation d’îlots de vieillissement rémunérés aux propriétaires sur des territoires voisins ;

(iv) De mieux réfléchir à la desserte des forêts : réseau secondaire de pistes pérennes en cas de traitement irrégulier à rotations courtes et répétées, mais plutôt de pistes temporaires en cas de traitement régulier à temps de rotation plus long (> 20 ans) (Gauthier , et al., 2008), ces paramètres sont à prendre en considération dans les schémas de desserte prévus au Plan pluriannuel régional de développement forestier (PPRDF) approuvé en 2012 conjointement par l’État et la Collectivité territoriale de Corse (Direction régionale de l'agriculture, de l'alimentation et de la forêt et Office de développement agricole régional de Corse, 2012) ;

(v) D’utiliser des méthodes d’exploitation plus fines alternatives au tracteur débardeur comme le câble-mât ;

(vi) De convaincre socio-professionnels et représentants des propriétaires forestiers, tant publics que privés, notamment à l’occasion des échanges lors de l’élaboration des Plans de massifs en forêt privée et des Chartes forestières de territoires, et plus particulièrement sur le secteur retenu dit « à Pin laricio » (44 communes et 9 861 ha de forêts de production) de la nécessité de mettre en œuvre ces mesures de gestion durable.

6.3.6 Stratégie de gestion à l’échelle régionale.

Une des questions que pourrait se poser le gestionnaire est de savoir si, à l’échelle du paysage, il serait pertinent d’étendre les surfaces en Pin laricio. Il s’agit d’une question complexe, qui a ses défenseurs qui fondent leur opinion sur l’intérêt économique de l’essence, le bois ayant les meilleures qualités de tous les résineux présents sur l’île, et sur la moindre inflammabilité de ses peuplements au regard de ceux composés majoritairement de Pin maritime. S’il est vrai que le Pin laricio est relativement plastique puisqu’on peut le trouver jusqu’au mésoméditerranéen (150 m) en ubac et jusqu’au subalpin (2000 m) en adret, son installation artificielle pose certainement :

- Des problèmes de coût des travaux : les plantations en étage inférieur au montagnard, son lieu de prédilection, fortement concurrencées par une végétation à dominante de maquis (au mésoméditerranéen) ou à Pin maritime (au supraméditerranéen) mieux adaptée, nécessiteraient des entretiens coûteux ;
- Des risques de destruction par les feux, beaucoup plus fréquents dans ces zones plus anthropisées ;
- Des difficultés d’accès au foncier, majoritairement privé à ces étages de végétation et très compliqué à régler en Corse, du fait à la fois d’un fort morcellement, mais aussi d’une indivision marquée, voire d’une absence de titres de propriétés.

Il est par ailleurs à noter que la comparaison des surfaces des peuplements de production à essence majoritaire de Pin laricio et des volumes de Pin laricio fournis par les inventaires forestiers de l’IFN 1977, 1988 et 2003 démontrent une propension de l’essence à s’étendre naturellement, malgré les forts incendies de la fin des années 80 et du début des années 2000 qui les ont fortement impactés :
Ceci s’explique notamment par la reconquête des zones voulues autrefois au pastoralisme (Saïd, 2000), le Pin laricio étant caractérisé par une dynamique de végétation post-pionnière, attestée par sa capacité de colonisation à partir des zones refuges présentes en Corse au cours de la dernière glaciation (Afzal-Rafii, et al., 2006). Les simulations effectuées à partir de certains modèles de changement climatique vont aussi dans le sens d’une remontée altitudinale du Pin laricio, mais d’un maintien global de son aire de répartition jusqu’en 2100 (Barbet-Massin, et al., 2011). Les surfaces actuelles relevées par l’Inventaire forestier national en boisements lâches montagnards (WP et WP9, forêts ouvertes où les pins sont majoritaires dans le couvert), soit plus de 18 000 ha représentant presque autant que la superficie de production, donnent une idée de la dynamique de reconquête du Pin laricio.

Le gestionnaire, lors de l’élaboration de l’aménagement forestier pourra notamment simuler l’évolution des landes montagnardes grâce au modèle mis au point par (Saïd, 2000). Hors perturbations, ce modèle prévoit une reconquête totale des landes montagnardes en 2050 si rien ne s’oppose à la dynamique actuelle, et un temps de 160 ans en partant d’une lande pour obtenir une forêt de laricii.

De ce fait, il convient plutôt que d’étendre artificiellement l’aire du Pin laricio, de le favoriser dans l’étage de végétation où il est en concurrence avec le Pin maritime et d’améliorer la capacité d’accueil de ses habitats pour la sittelle. Cela passe nécessairement par une politique volontariste de la Collectivité territoriale de Corse d’inciter les exploitants forestiers à privilégier l’utilisation du Pin maritime pour la biomasse (rotations courtes) et le Pin laricio pour la production de bois d’œuvre de qualité (rotations longues) en finançant les équipements et la formation nécessaires à ces socio-professionnels afin de leur permettre d’acquérir les compétences et les outils indispensables à une gestion plus complexe des forêts.

6.4 Perspectives à court terme

Dès aujourd’hui, il est possible de compléter le travail de ce mémoire en améliorant les calculs réalisés par la prise en compte de données sur d’autres massifs forestiers (Ascu et Tartagine-Melaghja par exemple, déjà bien étudiés).

6.4.1 Affiner les modèles de régression logistique absence-présence de la sittelle.

Avec la montée en puissance des aménagements forestiers et des études préalables (inventaires typologiques et d’espèces protégées) il devient possible, par analogie avec la méthode utilisée dans ce mémoire pour la forêt territoriale de Rospa-Sorba, d’engager assez facilement des calculs de régression logistique sur d’autres forêts pour lesquelles on dispose des données similaires. Il serait cependant souhaitable que, pour la sittelle, la détermination de sa localisation soit plus précise ; il faudrait, en conséquence, privilégier l’inventaire des nids au printemps plutôt que l’écoute ou la repasse. Pour ce faire, dans les forêts déjà parcourues, il faut préciser les inventaires de présence de la sittelle, peut-être grâce aux modèles de présence élaborés et affiner ces derniers par retour de l’information plus précise de la localisation des couples. La gestion passée reste néanmoins un critère à prendre en compte, les modèles Aïtone-Valduniellu et Rospa-Sorba se sont montrés, certainement en raison de cet aspect historique, assez différents (voir § 3.2 p 23). Les perturbations, notamment celles engendrées par les incendies, sont aussi à intégrer.

6.4.2 Étendre la connaissance des variables indicatrices de la présence de sittelle à l’ensemble des zones de production des massifs forestiers à Pin laricio.

La technique de calcul par krigeage peut d’ores et déjà être étendue pour les variables quantitatives régionalisées (GESS1_HA, G_HA, X_G, GESS_HA, TGB_HA, N_HA, GB_HA, ...) et qualitatives (structure, capital, composition,...) à l’ensemble des parties de forêts de Pin laricio ayant bénéficié d’inventaires typologiques. Le croisement de ces données avec la présence réelle de sittelle peut permettre par comparaison des valeurs prises dans ces forêts de connaître encore plus finement les caractéristiques des variables indicatrices, tant quantitatives que qualitatives qui contribuent à la présence de la sittelle. Beaucoup de données disponibles restent à exploiter.
6.4.3 **Mieux connaître la relation âge-diamètre du Pin laricio**

Dans la perspective de mieux connaître les relations âge-production, une étude à partir d’analyses de tiges (mesures d’arbres abattus et comptage de cernes) d’environ 200 pins laricio avait été conduite par l’ONF (Roth, 1995). Il conviendrait d’en tirer les conclusions appropriées, voire de la compléter par des notions de stations de production à partir des éléments fournis par le catalogue des stations forestières des peuplements à Pin laricio (Office national des forêts USAE, 2005), l’objectif étant d’amener une meilleure connaissance de l’âge du Pin laricio, nécessaire pour la détermination et la gestion des îlots de vieillissement.

6.4.4 **Compléter les inventaires en séries autres que production.**

Ce mémoire n’a pu exploiter que les inventaires forestiers pratiqués en forêt de production. Actuellement, les séries d’aménagement autres n’en bénéficient pas. Cependant, les inventaires en séries de production s’étant avérés riches d’enseignements, il serait intéressant de les reproduire dans les parties de forêt de Pin laricio non exploitées. Les modèles susceptibles d’en être tirés permettraient d’affiner encore les techniques de gestion sylvicole.

6.4.5 **Mieux cerner le comportement de la sittelle hors période de reproduction**

La notion de territoire est assez variable, en particulier dès lors que l’on ne se situe plus en période de reproduction où sa défense permet d’en délimiter le contour. Il s’agirait d’affiner les caractéristiques de l’habitat de l’espèce grâce à un suivi individuel des oiseaux par radiotracking dans quelques habitats de superficie et de composition très variées. En sus de mieux cerner la notion de territoire au regard de son domaine vital (Matthyssen, 1998), l’objectif de l’expérimentation serait de préciser l’utilisation des ressources par l’oiseau ainsi que son comportement avec ses voisins, ce qui a été réalisé en période de reproduction (Thibault, et al., 2005), mais pas en période hivernale.

6.4.6 **Mieux appréhender l’histoire des forêts corse**

La comparaison des massifs d’Aitone-Valduniellu d’une part et de Rospa-Sorba de l’autre a mis en évidence l’effet significatif de la gestion passée de ces forêts sur la population de sittelles. Les documents d’aménagement portent un chapitre résumant cette gestion à l’échelle récente qui n’est souvent pas assez poussé en termes d’analyses pour permettre d’en tirer des éléments pour une démarche de gestion à venir. On peut distinguer selon que l’on remonte dans le temps la possibilité d’étudier:

- **(i)** La période récente à travers les archives disponibles à l’Office national des forêts : sommiers de forêts tenus par les agents forestiers, cartes anciennes établies depuis la mise en place du régime forestier, soit environ depuis 1852 (accords Blondel);
- **(ii)** Les périodes historiques française, grâce aux cartographies reconstituées à partir du Plan terrier de la Corse conduit de 1770 à 1795 (Musée de la Corse, musée régional d’anthropologie, 1997) actuellement numérisées par le Conservatoire Botanique National de Corse et génoise, à travers les contrats et les plans relatifs aux concessions allouées aux entreprises chargées d’exploiter les forêts par la Commune (Rota, et al., 2001);
- **(iii)** De nouveaux outils, prometteurs en perspective, avec la possible mise en œuvre des techniques du LIDAR, système de détection laser aéroporté qui permettrait de remonter à la préhistoire (Dupouey, et al., 2004);
- **(iv)** Au-delà, les études fondées sur les méthodes de la paléocécologie pour cerner les dynamiques de végétation, quelques sites ont été traités, mais peu en raison des difficultés à en trouver ;

6.5 **Perspectives à moyen terme**

Il est indispensable de mettre en place à la fois un suivi expérimental de la gestion proposée et d’affiner les connaissances en la matière. A ces titres, la sittelle, par ses exigences en matière d’habitat peut apparaître comme une espèce parapluie, dont la présence est indicatrice d’une bonne gestion durable profitable à l’ensemble de la biodiversité de l’écosystème « forêts de Pin laricio ».
6.5.1 **Mettre en place un réseau de placettes typologiques permanentes**

Les effets des traitements appliqués par les forestiers ne pouvant se mesurer que sur un long terme, il est pertinent d’envisager dès à présent la mise en place d’un réseau de placettes de suivi dendrométrique permanent en forêt de production sur le modèle des travaux de l’Association futaha irrégulière. Pour un suivi à l’échelle de la parcelle, unité de gestion, une densité d’une placette par hectare serait souhaitable à long terme. L’association futaha irrégulière (AFI) a déjà conduit de nombreux travaux en ce sens dont il suffirait de s’inspirer (Association futaha irrégulière, 2009). A défaut, dans un premier temps, il peut être envisagé un échantillon d’une placette aux dix hectares renseignant déjà à l’échelle de la forêt. En sus des observations dendrométriques, l’utilisation d’un indicateur de suivi de la biodiversité ordinaire de type Indice de Biodiversité Potentielle, IBP, (Emberger, et al., 2013) est très souhaitable. Ce dernier traite notamment des facteurs structure verticale de la végétation, bois morts, très gros bois vivants et arbres porteurs de micro-habitats, susceptibles d’intéresser la présence de la sittelle.

6.5.2 **Redynamiser le réseau de réserves biologiques forestières.**

A défaut de pouvoir observer le comportement de forêts naturelles, observer le fonctionnement écologique de forêts peu exploitées qui, à terme, retrouveront un fonctionnement naturel est fondamental. Un réseau de réserves biologiques existe mais qui n’a souvent que peu fait l’objet d’études scientifiques. Sa taille et la répartition des réserves ainsi que leur statut et le suivi qu’il est nécessaire d’en faire sont aussi à revoir. Concernant la sittelle, une forêt comme la forêt de Forca, proche de Corte, potentiellement intéressante parce que peu exploitée par le passé, pourrait faire ainsi l’objet d’un classement en réserve et d’une convention de suivi avec les scientifiques (Parc naturel régional, association naturaliste ou Université de Corte, voire autres). Elle compléterait celle du Tavignano peu suivie scientifiquement.

```
<table>
<thead>
<tr>
<th>RÉSERVE BIOLOGIQUE</th>
<th>SITE N2000</th>
<th>ANNÉE DE CREATION</th>
<th>Surface (ha)</th>
<th>Type de peuplement IFN</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUNETENIELLU</td>
<td>FR24000017</td>
<td>30/07/1979</td>
<td>3,73</td>
<td>CN</td>
</tr>
<tr>
<td>SABINETTO</td>
<td>FR24000058</td>
<td>13/06/1984</td>
<td>9,63</td>
<td>MP1</td>
</tr>
<tr>
<td>TAVIGNANO</td>
<td>FR24000060</td>
<td>03/12/1984</td>
<td>219,21</td>
<td>WP</td>
</tr>
<tr>
<td>TAVIGNANO</td>
<td>FR24000060</td>
<td>03/12/1984</td>
<td>626,59</td>
<td>CN</td>
</tr>
<tr>
<td>TAVIGNANO</td>
<td>FR24000060</td>
<td>03/12/1984</td>
<td>19,20</td>
<td>WP9</td>
</tr>
<tr>
<td>PATRIARCHES</td>
<td>FR2300117</td>
<td>20/07/1992</td>
<td>4,41</td>
<td>CN</td>
</tr>
<tr>
<td>VALDUNIELLU</td>
<td>FR2300137</td>
<td>11/01/1995</td>
<td>14,71</td>
<td>MP2</td>
</tr>
<tr>
<td>VALDUNIELLU</td>
<td>FR2300137</td>
<td>11/01/1995</td>
<td>9,27</td>
<td>CN</td>
</tr>
<tr>
<td>VALDUNIELLU</td>
<td>FR2300137</td>
<td>11/01/1995</td>
<td>59,28</td>
<td>WP9</td>
</tr>
<tr>
<td>VALDUNIELLU</td>
<td>FR2300137</td>
<td>11/01/1995</td>
<td>27,29</td>
<td>MP1</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>993,32</td>
<td></td>
</tr>
</tbody>
</table>
```

Tableau 6.16 Etat 2012 des réserves biologiques gérées par l’ONF et composition des peuplements de Pin laricio

Sources : (Inventaire forestier national, 2003), (Office national des forêts, 2012)

6.5.3 Gérer durablement les zones de protection spéciales

Le réseau Natura 2000 dispose en Corse de zones de protection spéciale (ZPS) en forêts de Pin laricio. A partir des données de l’IFN on peut en établir une première estimation de la surface concernée, 6 438 hectares (CN, CN9, CNJ) soit 25% environ de la superficie des forêts à Pin laricio majoritaire, répartis selon le tableau 6.17 et la figure 6.12.

<table>
<thead>
<tr>
<th>Site</th>
<th>Désignation/ type de peuplement IFN</th>
<th>CN</th>
<th>CN9</th>
<th>CNJ</th>
<th>CP9</th>
<th>CPJ</th>
<th>CR</th>
<th>CRJ</th>
<th>FR2</th>
<th>MP1</th>
<th>MP2</th>
<th>MP9</th>
<th>WP</th>
<th>WP9</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR9410084</td>
<td>Vallée de la Restonica</td>
<td>595</td>
<td>86</td>
<td>140</td>
<td></td>
<td>2637</td>
</tr>
<tr>
<td>FR9410107</td>
<td>Haute vallée d’ASCO, forêt de</td>
<td>867</td>
<td>81</td>
<td>27</td>
<td>30</td>
<td>39</td>
<td>20</td>
<td>50</td>
<td>1061</td>
<td>412</td>
<td>1061</td>
<td></td>
<td></td>
<td></td>
<td>2586</td>
</tr>
<tr>
<td></td>
<td>TARTAGINE, aiguilles de POPOLASCA</td>
<td></td>
</tr>
<tr>
<td>FR9410109</td>
<td>Aiguilles de Bavella</td>
<td>63</td>
<td>77</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>55</td>
<td>107</td>
<td>26</td>
<td>491</td>
<td>861</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FR9410113</td>
<td>Forêts territoriales de Corse</td>
<td>3868</td>
<td>14</td>
<td>172</td>
<td>3</td>
<td>33</td>
<td>114</td>
<td>167</td>
<td>172</td>
<td>1130</td>
<td>257</td>
<td>5931</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FR9412002</td>
<td>Haute Vallée de la Scala di Santa</td>
<td>142</td>
<td></td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>Regina</td>
<td></td>
</tr>
<tr>
<td>FR9412003</td>
<td>Cirque de Bonifatu</td>
<td>124</td>
<td></td>
<td>195</td>
</tr>
<tr>
<td>FR9412004</td>
<td>Haute Vallée du Fango</td>
<td>43</td>
<td></td>
<td>315</td>
</tr>
<tr>
<td>FR9412005</td>
<td>Haute vallée du Fiume Grosso</td>
<td>29</td>
<td></td>
<td>279</td>
</tr>
<tr>
<td>FR9412006</td>
<td>Haute Vallée du Verghello</td>
<td>419</td>
<td></td>
<td>894</td>
</tr>
<tr>
<td>FR9412008</td>
<td>Chênaies et pinèdes de Corse</td>
<td>11</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>6152</td>
<td>259</td>
<td>27</td>
<td>386</td>
<td>14</td>
<td>39</td>
<td>33</td>
<td>114</td>
<td>10</td>
<td>239</td>
<td>339</td>
<td>107</td>
<td>3531</td>
<td>2687</td>
</tr>
<tr>
<td></td>
<td>13935</td>
</tr>
</tbody>
</table>

Tableau 6.17 Composition des zones de protection spéciale en types de peuplement IFN de Pin laricio

Sources : (Inventaire forestier national, 2003), (MEDDE, 2010)

Le dispositif ayant trait aux ZPS vise la mise en œuvre de la « directive oiseaux » texte réglementaire européen datant de 1979 et revu en 2009 sous la dénomination 2009/147/CE (Commission européenne, 2013), ce qui consiste notamment selon les termes de l’article 4 de la directive :

1. Les espèces mentionnées à l’annexe I font l’objet de mesures de conservation spéciale concernant leur habitat, afin d’assurer leur survie et leur reproduction dans leur aire de distribution.

À cet égard, il est tenu compte :

a) des espèces menacées de disparition;

b) des espèces vulnérables à certaines modifications de leurs habitats;

c) des espèces considérées comme rares parce que leurs populations sont faibles ou que leur répartition locale est restreinte;

d) d’autres espèces nécessitant une attention particulière en raison de la spécificité de leur habitat.

Il sera tenu compte, pour procéder aux évaluations, des tendances et des variations des populations.

Les États membres classent notamment en zones de protection spéciale les territoires les plus appropriés en nombre et en superficie à la conservation de ces espèces dans la zone géographique maritime et terrestre d’application de la présente directive.

(Commission européenne, 2013),

Les fiches actions peuvent être mises en œuvre par les gestionnaires ou les propriétaires de forêts, à travers notamment des contrats dits « Natura 2000 » qui peuvent consister à financer des mesures compensatoires en contrepartie du respect de certaines exigences de protection.

Figure 6.12 Carte de localisation des forêts de Pin laricio en ZPS et forêt territoriale de Rospa-Sorba
Sources : (Inventaire forestier national, 2003), (MEDDE, 2010)

Mémoire EPHE-SVT- TORRE 107/114
6.5.4 Expérimenter les techniques de gestion en vraie grandeur.

Un dispositif scientifique plus précis et destiné à mesurer directement les impacts de diverses techniques sylvicoles pourrait aussi être envisagé sur une forêt comme la forêt territoriale de Rospa-Sorba qui bénéficie d’un label Natura 2000 à la fois en tant que zone spéciale de conservation (FR94022002, forêt territoriale de Rospa-Sorba, partie sud-est), mais aussi partie de zone de protection spéciale (FR9410113, Forêts territoriales de Corse) (Muséum national d’histoire naturelle, 2014). Cette forêt a le mérite d’être bien connue et de faire l’objet d’une exploitation dont on pourrait envisager de diversifier les techniques tout en contrôlant les effets. Dans la suite de ce qui a été présenté au § 6.5.3, la plateforme de gestion des écosystèmes forestiers procure des protocoles de suivi expérimentaux faisant la synthèse des mesures dendrométriques sur placettes permanentes (AFI), du protocole de suivi dendrométrique des réserves forestières (ENGREF, ONF, RNF, IFN), et d’indicateurs de biodiversité (IDF, INRA, IRSTEA) et un système de gestion de base de données aux gestionnaires (Ministère de l’écologie, du développement durable et de l’énergie, 2013).

Les mesures dendrométriques effectuées par l’ONF peuvent parfaitement alimenter un nouveau modèle de croissance que l’on pourrait intituler judicieusement « Sittelle »?

Figure 6.13 Placette de suivi dendrométrique des réserves forestières (Réserves naturelles de France, 2005)

Les mesures dendrométriques effectuées par l’ONF peuvent parfaitement alimenter un nouveau modèle de croissance que l’on pourrait intituler judicieusement « Sittelle »?
BIBLIOGRAPHIE

Mémoire EPHE-SVT- TORRE 110/114

Mémoire EPHE-SVT- TORRE 111/114

ANNEXE A-1 : ELEMENTS COMPLEMENTAIRES DE BIOLOGIE DE LA SITTELLE ... III
A-1.1 TYPOLGIE DES BOIS MORTS DEBOUT OCCUPES PAR LA SITTELLE ... III
A-1.2 TYPES DE FORETS FREQUENTES PAR LA SITTELLE ... III
A-1.3 INTERET DES GRAINES DE PIN LARICIO POUR L’ALIMENTATION DE LA SITTELLE .. IV
A-1.4 EVALUATION DE LA PRODUCTION DE GRAINES DU PEUPLEMENT DE PIN LARICIO IDEAL POUR LA SITTELLE V
ANNEXE A-2 : BREF HISTORIQUE DE L’EXPLOITATION DES FORETS CORSES DU HAUT MOYEN AGE A NOS JOURS VI
ANNEXE A-3 : DESCRIPTION DETAILLEE DES FORETS AYANT FAIT L’OBJET DE L’ETUDE ... VII
A-3.1 LE MASSIF FORESTIER D’AITONE - VALDUNIELLU ... VII
A-3.1.1 Forêt territoriale d’Aitone .. VII
A-3.1.2 Forêt territoriale de Valduniellu ... VIII
A-3.2 LE MASSIF FORESTIER DE ROSPA-SORBA .. VIII
A-3.2.1 Forêt territoriale de Rospa-Sorba .. IX
A-3.2.2 Forêt communale de Rospigliani ... IX
A-3.2.3 Forêt communale de Noceta ... X
A-3.2.4 Forêt communale de Vezzani (montagne) .. XI

ANNEXE A-4 : DISPOSITIF VILLARD COMPARAISON DES VARIABLES DENDROMETRIQUES DES PLACETTES ABSENCE DE NID /PRESENCE DE NID .. XII
ANNEXE A-5 : ANALYSE EN COMPOSANTES PRINCIPALES DES VARIABLES QUANTITATIVES SIGNIFICATIVEMENT DIFFERENTES RELATIVES AUX PLACETTES SANS NID ET AVEC NID DU DISPOSITIF VILLARD SUIVIE D’UNE ANALYSE DISCRIMINANTE XVII
ANNEXE A-6 : ANALYSE EN COMPOSANTES PRINCIPALES SUIVIE D’UNE CLASSIFICATION HIERARCHIQUE ASCENDANTE DES PLACETTES SANS NID DU DISPOSITIF VILLARD ... XIX
ANNEXE A-7 : ANALYSE EN COMPOSANTES PRINCIPALES SUIVIE D’UNE CLASSIFICATION HIERARCHIQUE ASCENDANTE DES PLACETTES AVEC NID DU DISPOSITIF VILLARD ... XXI
ANNEXE A-8 : MASSIF D’AITONE-VALDUNIELLU MODELE DE PROBABILITE DE PRESENCE DE NIDS DE SITTELLE PAR REGRESSION LOGISTIQUE .. XXIII
ANNEXE A-9 : DISPOSITIF VILLARD COMPARAISON DES VARIABLES DENDROMETRIQUES DES PLACETTES AVEC NID ENTRE FORETS D’AITONE ET DE VALDUNIELLU ... XXV
ANNEXE A-10 : TYPOLGIE IFN DES PEUPLEMENTS FORESTIERS PROCHES DES PLACETTES DU DISPOSITIF VILLARD XXXI
ANNEXE A-11 : TYPOLGIE ONF DES PEUPLEMENTS FORESTIERS PROCHES DES PLACETTES DU DISPOSITIF VILLARD XXXIV
ANNEXE A-12 : EXAMEN DE LA COMPOSITION EN TYPES DE PEUPLEMENTS ONF DES TERRITOIRES DE SITTELLE CALCULES SELON LA METHODE DE VORONOI (MASSIF AITONE-VALDUNIELLU) ... XXXVIII
ANNEXE A-13 : HISTORIQUE DES COUPES DE REGENERATION REALISEES AU COURS DES DERNIERS AMENAGEMENTS DES FORETS D’AITONE ET DE VALDUNIELLU ... XLI
ANNEXE A-14 : COMPARAISON DES MOYENNES DES VARIABLES DENDROMETRIQUES DES PLACETTES SANS NID ET AVEC NID DE LA FT DE ROSPA-SORBA ... XLIV
ANNEXE A-15 : ANALYSE EN COMPOSANTES PRINCIPALES DES VARIABLES DENDROMETRIQUES DES PLACETTES SANS NID ET AVEC NID DE LA FT DE ROSPA-SORBA SUIVIE D’UNE ANALYSE DISCRIMINANTE ... XLVIII
ANNEXE A-16 : COMPARAISON DES VARIABLES DENDROMETRIQUES DES PLACETTES AVEC SITTELLE ENTRE MASSIFS D’AITONE-VALDUNIELLU ET DE ROSPA-SORBA .. L
ANNEXE A-17 : FORET DE ROSPA-SORBA: MODELE DE PROBABILITE DE PRESENCE DE SITTELLE PAR REGRESSION LOGISTIQUE .. LIV
ANNEXE A-18 : MODELE DE REGRESSION LINEAIRE : VARIABLE A EXPLIQUER LOG DE LA SURFACE DU TERRITOIRE VORONOI-VARIABLE EXPLICATIVE NB DE TGB/HA (FORET DE ROSPA-SORBA) ... LV
ANNEXE A-19 : ANALYSE DE MOTIF DE POINTS-METHODE STATISTIQUE DU PLUS PROCHE VOISIN LVII
ANNEXE A-20 : ESTIMATION PAR INTERPOLATION DE VARIABLES REGIONALISEES-METHODE DU KRIGEAGE ORDINAIRE LVIII

Liste des annexes
A-20.1 DONNEES TRAITEES .. LX
A-20.2 TRAITEMENT PAR KRIGEAGE A L’AIDE DU MODULE GEOSTATISTICAL ANALYST ®ESRI .. LX
A-20.3 ETABLISSEMENT DE LA VALEUR STRUCTURE EN TOUS POINTS DES PEUPLEMENTS A PIN LARICIO …... LXVI
ANNEXE A-21 : PROPOSITION D’ADAPTATION DE LA MESURE 227-12 DU PDRH AU PDRC .. LXVIII
A-21.1 BAREME REGLEMENTE S’APPLIQUANT HT ... LXVIII
A-21.2 HABITATS FORESTIERS ELIGIBLES A LA MESURE F22712 ... LXIX
A-21.3 SOUS-ACTION 1 : ARBRES SENESCENTS DISSEMINES .. LXX
A-21.4 SOUS-ACTION : ILOTS NATURA 2000 ... LXXII
ANNEXE A-1 : ELEMENTS COMPLEMENTAIRES DE BIOLOGIE DE LA SITTELLE

A-1.1 Typologie des bois morts debout occupés par la Sittelle
Brichetti et Di Capi (1985, 1987) ont établi une typologie des troncs porteurs de loges de sittelles (les types A, B et D étant les plus fréquentés dans l’ordre décroissant), ainsi qu’une corrélation entre la hauteur de nid et celle du tronc par type de tronc figurée dans le schéma ci-dessous :

Figure A-1.1. Types de troncs utilisés par la Sittelle corse : A 58,3%- B 22,2%- C 8,3%- D 11,2%
Source : (Brichetti, et al., 1987)

La majorité des arbres fréquentés (type A) a une hauteur moyenne de 14,6 m et les nids sont à une hauteur moyenne de 10 m du sol.

A-1.2 Types de forêts fréquentées par la Sittelle
Afin de confirmer l’intérêt du Pin laricio pour la Sittelle corse, des recensements de l’espèce ont été effectués de 1996 à 2000 pendant la période de reproduction (avril-juin) sur un échantillon de forêts de différentes compositions (Thibault et al., 2002) : forêts à Pin laricio seul, forêts mélangées de Pin laricio et de Hêtre, forêts de Pin maritime, forêts de Sapin pectiné, forêts de Sapin pectiné et de Hêtre, forêts de Genévrier oxycèdre ou thurifère. Il en est ressorti de façon très significative des densités d’oiseau supérieures dans les formations à Pin laricio purs ou mélangées que dans les autres. La typologie des aménagements forestiers de l’ONF ayant été utilisée pour décrire les forêts parcourues, il est apparu aussi, de façon significative, que la Sittelle privilégiait les pineraies mâtures, confirmant en cela l’étude de Beck.

Parmi les explications recherchées, les ornithologues ont travaillé sur le choix de l’espèce d’arbre pour l’installation de son nid par l’oiseau. La comparaison de la résistance du bois mort à la pénétration pratiquée sur des bois morts entre le Pin laricio le Pin maritime n’a pas montré de différence entre les deux espèces végétales. En revanche, la comparaison de leurs graines a mis en évidence que celles du Pin maritime étaient de dimensions et de poids plus élevées que celles du Pin laricio. Mécaniquement, la coque de la graine de Pin maritime étant beaucoup plus épaisse que celle du Pin laricio, elle est aussi beaucoup plus dure à casser et donc moins accessible à l’oiseau qui doit attendre sa germination pour la consommer. La Sittelle corse, sédentaire, a satisfait ses besoins alimentaires hivernaux en allant chercher la ressource en graines de Pin laricio plus accessibles pour Elle que celles des autres espèces d’arbres rencontrées en Corse. On peut parler d’un certain commensalisme.

En parcourant de façon systématique les forêts à Pin maritime au printemps 2008 (Villard, 2008), il est apparu que la Sittelle n’en occupait qu’un nombre limité et en densité limitée (moins de 50 couples) confirmant en cela le caractère marginal de ce type de peuplement forestier en raison de la difficulté pour l’oiseau d’y trouver sa nourriture.
1.3 Intérêt des graines de Pin laricio pour l'alimentation de la Sittelle

La valeur énergétique des graines de Pin laricio GE (Gross energy) a été quantifiée par la mesure de leur Pouvoir Calorifique Inférieur ce qui a permis le calcul d’une énergie métabolisable des graines ME = à 0,75 GE et comparée à l’énergie quotidienne nécessaire à la Sittelle (Field Metabolic Rate) obtenue par équation allométrique fonction de la masse de l’oiseau :

\[
FMR(\text{KJ/jour}) = 10,4 \cdot (\text{masse (g)}^{0.68}) \text{ pour une Sittelle de 12,1 g, FMR= 56,7 kJ/jour}
\]

L’endosperme de la graine constitue 66% de la masse d’une graine et renferme 6,7% d’eau, son pouvoir calorifique est de 27,9kJ/g de matière sèche, l’énergie brute GE des graines est donc de 17,6kJ/g, ce qui donne une énergie mobilisable ME= 12,9 kJ/g de graines fraîches.

La quantité quotidienne de graines fraîches nécessaire à une sittelle SQ= FMR/ME= 4,4 g de graines par jour. Sachant que la masse moyenne d’une graine fraîche fertile a été déterminée à 16,1 mg, il vient qu’une sittelle doit consommer en moyenne 275 graines par jour, soit près de 50 000 graines pour un couple pendant les trois mois d’hiver.

Compte tenu des modèles de production de cônes par les peuplements forestiers de Pin laricio établis par ailleurs, la superficie utile à l’espèce est en moyenne sur Ascu de 0,7 ha en bonne année de production (2005) jusqu’à 4,7 ha en mauvaise année (2006).

Un calcul similaire pour la Mésange noire aboutit à la consommation de 13 400 graines pour un couple pendant la même période. Or, la Mésange noire est au moins quinze fois plus abondante que la Sittelle corse sur un même territoire, ce qui signifie une consommation d’environ 200 000 graines par les mésanges en rapport avec 50 000 par les sittelles, soit 4 fois plus.

La présence des mésanges ne modifie pas fondamentalement la superficie utile, sauf en cas de très faible production de cônes, comme l’indiquent les courbes :

\begin{center}
\begin{tabular}{l}
------------- Sittelles et Mésanges \\
------------- Sittelles seules \\
\end{tabular}
\end{center}

\textbf{Source:} (Moneglia, 2010)

A comparer à la superficie des territoires hivernaux connue chez la Sittelle (Thibault, et al., 2006)soit, 1 à 8 hectares.

\begin{center}
\textbf{Figure A-1.2. Surface minimale du territoire d’un couple de sittelles en fonction de la production de cônes.} \\
\textbf{Source :} (Moneglia, 2010)
\end{center}
Tableau A-1.1. Calcul du nombre de graines produites selon les densités de différents diamètres seuils favorisant la présence de la sittelle corse d’après (Villard, et al., 2007)(à une altitude de 1200 m).

<table>
<thead>
<tr>
<th>Année</th>
<th>Diamètre*</th>
<th>NC/arbre**</th>
<th>NC/ha ***</th>
<th>NG/ha ****</th>
<th>NG/territoire (3ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>50+</td>
<td>65</td>
<td>164</td>
<td>10 677</td>
<td>309 645</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>309 645</td>
<td>928 936</td>
</tr>
<tr>
<td></td>
<td>60+</td>
<td>41</td>
<td>194</td>
<td>7 967</td>
<td>231 045</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>231 045</td>
<td>693 135</td>
</tr>
<tr>
<td></td>
<td>70+</td>
<td>16</td>
<td>230</td>
<td>3 678</td>
<td>106 658</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>106 658</td>
<td>319 975</td>
</tr>
<tr>
<td></td>
<td>80+</td>
<td>8</td>
<td>272</td>
<td>2 175</td>
<td>63 085</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63 085</td>
<td>189 255</td>
</tr>
<tr>
<td></td>
<td>90+</td>
<td>8</td>
<td>322</td>
<td>2 573</td>
<td>74 625</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>74 625</td>
<td>223 876</td>
</tr>
<tr>
<td>2006</td>
<td>50+</td>
<td>65</td>
<td>60</td>
<td>3 922</td>
<td>78 442</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78 442</td>
<td>235 327</td>
</tr>
<tr>
<td></td>
<td>60+</td>
<td>41</td>
<td>70</td>
<td>2 863</td>
<td>57 257</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57 257</td>
<td>171 771</td>
</tr>
<tr>
<td></td>
<td>70+</td>
<td>16</td>
<td>81</td>
<td>1 293</td>
<td>25 857</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25 857</td>
<td>77 570</td>
</tr>
<tr>
<td></td>
<td>80+</td>
<td>8</td>
<td>94</td>
<td>748</td>
<td>14 961</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14 961</td>
<td>44 882</td>
</tr>
<tr>
<td></td>
<td>90+</td>
<td>8</td>
<td>108</td>
<td>866</td>
<td>17 312</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17 312</td>
<td>51 937</td>
</tr>
</tbody>
</table>

NC nombre de cônes- NG nombre de graines

* Diamètre égal ou supérieur à ... (Nota bene : ce qui veut dire qu’il peut y avoir des troncs plus gros, mais dans les calculs la production de graines est estimée pour un peuplement avec tous les semenciers d’un même diamètre donné. Comme la production augmente avec le diamètre, les résultats sont donc une fourchette basse du nombre de cônes et de graines produits).

** Équations qui permettent d’estimer le nombre de cônes produits par arbre en fonction de son diamètre (en cm) et de l’altitude (en m) :

<table>
<thead>
<tr>
<th>Année</th>
<th>Équation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>en 2005 : NC = 3,42 + 0,02(D) + 0,002(ALT) - 0,0001(ALT²/100)</td>
</tr>
<tr>
<td></td>
<td>en 2006 : NC = 3,37 + 0,15(D) + 0,006(ALT) - 0,0005(ALT²/100)</td>
</tr>
</tbody>
</table>

*** En 2005 : 29 graines/cône ; en 2006 : 20 graines/cône

L’observation de la chronologie des cônes menée à Vizzavona a mis en évidence une ouverture et une fermeture répétée de ces derniers pendant la période hivernale en fonction des conditions d’hygrométrie et de température mesurées selon le schéma (Moneglia, 2003):

- Hygrométrie élevée + Température élevée → Fermeture des cônes très accentuée.
- Hygrométrie élevée + Température basse → Fermeture des cônes moins accentuée.
- Hygrométrie basse + Température élevée → Ouverture des cônes très accentuée.
- Hygrométrie basse + Température basse → Ouverture des cônes moins accentuée.

La Corse, toujours génoise, les Français censés appuyer Gênes dans leur lutte contre les révolutionnaires corses en profitèrent pour s’intéresser aux forêts de l’île. Des missions mandatées déclarèrent ainsi les pins d’Aitone « de toute beauté ». Pascal Paoli, pendant la courte période où il administra une partie de l’île (1755-1768), impulsa la création d’arsenaux dans le Cap corse. La Corse devenue française en 1768, les forêts publiques de Gênes bien que toujours mal délimitées devinrent royales et les réglementations de la période génoise (Statuti di Corsica) repris dans l’Ordonnance royale de 1772. En 1783, de grandes quantités de bois alimentèrent les arsenaux de Toulon pour contribuer à la Guerre d’Indépendance américaine. La République française puis Napoléon lui-même, qui fera en 1811, administrer les forêts corses par le Ministère de la Marine, recherchèrent toujours à fournir de la matière première aux arsenaux de Toulon chargés alors de construire la force navale française destinée à combattre les escadres anglaises en Méditerranée (Rota, et al., 2001). Cependant, la première livraison de bois à cet effet n’intervint qu’en 1813 (Pieracci, 2009).

Le second Empire et sa politique volontariste industrielle eurent des conséquences pour les forêts de la Corse puisque Blondel, nommé Ingénieur général des Eaux et Forêts en 1852, initia 14 projets de desserte routière visant à desservir tant les forêts publiques que les villages les plus proches. C’est ainsi, qu’entre 1853 et 1884 seront réalisées par l’Administration des Eaux et Forêts les routes forestières RF 1 à 13 (sauf 10) soit, 490,9 km en 32 ans avec un effort de 40 km par an entre 1853 et 1864 ! Cette desserte a fait passer les volumes d’exploitation en forêt publique de résineux (dont Pin laricio et Sapin pectiné) d’environ 3 300 m3/an entre 1770 et 1865 à 43 000 m3/an de 1873 à 1884 puis près de 60 000 m3/an autour de 1950 (exploitation notamment de bois pour les traverses de chemin de fer), les routes s’autofinançant en partie grâce aux récoltes effectuées (Bourcet, 1996).

Permis par les crédits du Fonds forestier national puis par l’allocation des crédits européens du Règlement CE-269/79 de l’Union Européenne, un second effort de desserte effectué par l’Office national des forêts a eu lieu entre 1973 et 1994 qui a entraîné avec des moyens modernes la création de 732 km de desserte forestière supplémentaire, soit 35 km/an, conduisant à la poursuite de la récolte résineuse en forêt publique à un rythme d’environ 30 000 m3 annuels (Bourcet, 1996). C’est encore ce rythme qui prévaut, alors que les forêts de l’État (domaniales) sont passées propriété de la Collectivité de Corse depuis 2002, mais relevant toujours du régime forestier et gérées par l’ONF.
ANNEXE A-3 : DESCRIPTION DETAILLEE DES FORETS AYANT FAIT L’OBJET DE L’ETUDE

A-3.1 Le massif forestier d’Aitone - Valduniellu

Il est composé des forêts territoriales d’Aitone et de Valduniellu :

![Carte de localisation des forêts d’Aitone et de Valduniellu](Image)

Source : IGN ©BD Carto 2010 et ©BD Alti 2010, ONF ©limites des forêts relevant du régime forestier 2012

A-3.1.1 Forêt territoriale d’Aitone

<table>
<thead>
<tr>
<th>Type de peuplements</th>
<th>Code type</th>
<th>Sous-type</th>
<th>Code sous-type</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeunes peuplements</td>
<td>SGP</td>
<td>Pin laricio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>Claire</td>
<td>C</td>
<td>J F (31-60) ; 75%</td>
</tr>
<tr>
<td>Vieille forêt > 120 ans</td>
<td>VF</td>
<td>Claire</td>
<td>D</td>
<td>«</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Forêt territoriale d’Aitone</th>
<th>Semis/gaules/perchis (0 - 30 ans)</th>
<th>SGP</th>
<th>Hêtre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatale</td>
<td>F</td>
<td>C</td>
<td>«</td>
</tr>
<tr>
<td>Vieille forêt > 60 ans</td>
<td>VF</td>
<td>C</td>
<td>«</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Forêt territoriale d’Aitone</th>
<th>Semis/gaules/perchis (30 - 90 ans)</th>
<th>SGP</th>
<th>Sapin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatale</td>
<td>F</td>
<td>D</td>
<td>«</td>
</tr>
<tr>
<td>Vieille forêt > 90 ans</td>
<td>VF</td>
<td>D</td>
<td>«</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Forêt territoriale d’Aitone</th>
<th>Animaux</th>
<th>AUL</th>
<th>Ansite odorant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landes</td>
<td>LAN</td>
<td>Landes et pelouses</td>
<td></td>
</tr>
<tr>
<td>Zones rocheuses</td>
<td>R</td>
<td>Rochers, clous</td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-3.2. Surfaces des peuplements forestiers et autres de la forêt territoriale d’Aitone.
Source : (Tiger, 2004)

Tableau A-3.1. Typologie des peuplements forestiers et autres de la forêt territoriale d’Aitone
Source : (Tiger, 2004)
A-3.1.2 Forêt territoriale de Valduniellu

Tableau A-3.3. Typologie des peuplements forestiers et autres de la forêt territoriale de Valduniellu
Source : (Pioli, 2010)

Tableau A-3.4. Surfaces des peuplements forestiers et autres de la forêt territoriale de Valduniellu.
Source : (Pioli, 2010)

A-3.2 Le massif forestier de Rospa-Sorba
Il est composé de la forêt territoriale de Rospa-Sorba, des forêts communales de Noceta, Rospigliani et Vezzani.

Figure A-3.2. Carte de localisation des forêts de Rospa-Sorba, Noceta, Rospigliani et Vezzani.
A-3.2.1 Forêt territoriale de Rospa-Sorba

<table>
<thead>
<tr>
<th>Type de structure</th>
<th>Code</th>
<th>Surface (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin laricio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boisement irrégulier montagnard</td>
<td>Bois</td>
<td>135,50</td>
</tr>
<tr>
<td>Futaie irrégulière</td>
<td>L-IR</td>
<td>46,10</td>
</tr>
<tr>
<td>Futaie irrégulière régularisée bois moyen</td>
<td>L-R-GB</td>
<td>112,00</td>
</tr>
<tr>
<td>Futaie irrégulière régularisée bois moyen / gros bois</td>
<td>L-R-BM/GB</td>
<td>109,20</td>
</tr>
<tr>
<td>Futaie irrégulière régularisée petit bois / bois moyen</td>
<td>L-R-BM/PB</td>
<td>56,00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>458,80</td>
</tr>
<tr>
<td>Semis</td>
<td>S</td>
<td>10,60</td>
</tr>
<tr>
<td>Semis - gaulis</td>
<td>S-G</td>
<td>5,00</td>
</tr>
<tr>
<td>Perchis – Haut perchis</td>
<td>P</td>
<td>2,20</td>
</tr>
<tr>
<td>Semis – Gaulis - Perchis</td>
<td>S-G-P</td>
<td>40,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57,80</td>
</tr>
<tr>
<td>Peuplements détruits : zones nettoyées</td>
<td>CR</td>
<td>9,50</td>
</tr>
<tr>
<td>Peuplements détruits : gaulis perchis</td>
<td>GP détruits</td>
<td>8,00</td>
</tr>
<tr>
<td>Peuplements détruits : futaias adultes</td>
<td>F - détruits</td>
<td>80,00</td>
</tr>
<tr>
<td>Peuplements détruits : plantation de pin laricio</td>
<td>Plantation</td>
<td>2,50</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100,00</td>
</tr>
<tr>
<td>Pin laricio / Sapin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Futaie irrégulière</td>
<td>LS-IR</td>
<td>10,20</td>
</tr>
<tr>
<td>Futaie irrégulière régularisée bois moyen</td>
<td>LS-R-GB</td>
<td>8,40</td>
</tr>
<tr>
<td>Futaie irrégulière régularisée bois moyen / gros bois</td>
<td>LS-R-BM/GB</td>
<td>7,10</td>
</tr>
<tr>
<td>Futaie irrégulière régularisée petit bois / bois moyen</td>
<td>LS-R-BM/PB</td>
<td>12,50</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>38,20</td>
</tr>
<tr>
<td>Aulnaie</td>
<td>Aul</td>
<td>0,70</td>
</tr>
<tr>
<td>Pelouses</td>
<td>P</td>
<td>20,50</td>
</tr>
<tr>
<td>Zones rocheuses</td>
<td>ZR</td>
<td>90,00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>766,00</td>
</tr>
</tbody>
</table>

Tableau A-3.5. Surfaces des peuplements forestiers et autres de la forêt territoriale de Rospa-Sorba. Source : (Vescovali, 2006)

A-3.2.2 Forêt communale de Rospigliani

![Tableau A-3.6. Surfaces des peuplements forestiers et autres en forêt communale de Rospigliani.](Image)

Peuplements (codes structure typologiques)

<table>
<thead>
<tr>
<th>Peuplements</th>
<th>Code</th>
<th>Surface (ha)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin laricio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gaulis-perchis</td>
<td>F-P.L-E</td>
<td>10,67</td>
<td>3</td>
</tr>
<tr>
<td>gaulis-perchis en plantation</td>
<td>F-P.L-E</td>
<td>5,98</td>
<td>2</td>
</tr>
<tr>
<td>gaulis-perchis en plantation avec merisiers</td>
<td>F-PLM-E</td>
<td>1,39</td>
<td>0,5</td>
</tr>
<tr>
<td>futaie régularisée petit bois (R_PB)</td>
<td>F-P.L-P</td>
<td>6,91</td>
<td>2</td>
</tr>
<tr>
<td>futaie régularisée petit bois/bois moyen (R_PB/GB)</td>
<td>F-P.L-M</td>
<td>8,87</td>
<td>3</td>
</tr>
<tr>
<td>futaie régularisée pois moyen (R_BM)</td>
<td>F-P.L-M</td>
<td>26,97</td>
<td>9</td>
</tr>
<tr>
<td>futaie régularisée bois moyen/gros bois (R_BM/GB)</td>
<td>F-P.L-M</td>
<td>3,20</td>
<td>1</td>
</tr>
<tr>
<td>futaie régularisée gros bois (R_GB)</td>
<td>F-P.L-G</td>
<td>85,36</td>
<td>28</td>
</tr>
<tr>
<td>futaie irrégulière (IR)</td>
<td>I-P.L-I</td>
<td>4,37</td>
<td>1</td>
</tr>
<tr>
<td>futaie</td>
<td>F-P.L</td>
<td>29,58</td>
<td>10</td>
</tr>
<tr>
<td>vieille futaie</td>
<td>F-P.L</td>
<td>5,79</td>
<td>2</td>
</tr>
<tr>
<td>Total peuplements à pin laricio dominant</td>
<td></td>
<td>189,09</td>
<td>62</td>
</tr>
<tr>
<td>Pin maritime</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gaulis-perchis</td>
<td>F-P.M-E</td>
<td>0,41</td>
<td>0,1</td>
</tr>
<tr>
<td>Mélange pin laricio/pin maritime</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gaulis-perchis</td>
<td>F-PLM-E</td>
<td>5,71</td>
<td>2</td>
</tr>
<tr>
<td>futaie régularisée petit bois (R_PB)</td>
<td>F-PLM-P</td>
<td>1,22</td>
<td>0,4</td>
</tr>
<tr>
<td>futaie régularisée petit bois/bois moyen (R_PB/GB)</td>
<td>F-PLM-M</td>
<td>0,94</td>
<td>0,3</td>
</tr>
<tr>
<td>futaie régularisée pois moyen (R_BM)</td>
<td>F-PLM-M</td>
<td>4,23</td>
<td>1</td>
</tr>
<tr>
<td>futaie irrégulière (IR)</td>
<td>F-PLM-I</td>
<td>5,82</td>
<td>2</td>
</tr>
<tr>
<td>Total peuplements mélangés pin laricio/pin maritime</td>
<td></td>
<td>17,92</td>
<td>6</td>
</tr>
<tr>
<td>Feuillus/résineux</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bouquet petit bois aulne cordé (R_PB)</td>
<td>F-AUL-P</td>
<td>0,29</td>
<td>0,1</td>
</tr>
<tr>
<td>futaie mixte pins/feuillus</td>
<td>F-FRM</td>
<td>12,10</td>
<td>4</td>
</tr>
<tr>
<td>futaie mixte pin maritime/chênes</td>
<td>F-PMM</td>
<td>2,85</td>
<td>1</td>
</tr>
<tr>
<td>vieille futaie chêne vert</td>
<td>F-CHV</td>
<td>1,11</td>
<td>0,4</td>
</tr>
<tr>
<td>Total peuplements avec des feuillus</td>
<td></td>
<td>16,35</td>
<td>5</td>
</tr>
<tr>
<td>Autre (non boisé)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maquis</td>
<td></td>
<td>48,65</td>
<td>16</td>
</tr>
<tr>
<td>maquis à chêne vert</td>
<td></td>
<td>26,08</td>
<td>8</td>
</tr>
<tr>
<td>vide boisable</td>
<td></td>
<td>1,74</td>
<td>1</td>
</tr>
<tr>
<td>rocher/éboulis</td>
<td></td>
<td>7,04</td>
<td>2</td>
</tr>
<tr>
<td>Total non boisé</td>
<td></td>
<td>83,51</td>
<td>27</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>307,28</td>
<td>99,9</td>
</tr>
</tbody>
</table>

Tableau A-3.8. Surfaces des peuplements forestiers et autres en forêt communale de Noceta.

Source : (Guy, 2012)
Peuplements

<table>
<thead>
<tr>
<th>Peuplements</th>
<th>Code</th>
<th>Surface (ha)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Futaie de pin laricio</td>
<td>PL</td>
<td>119.20</td>
<td>69.40</td>
</tr>
<tr>
<td>Non inventorié</td>
<td></td>
<td>94.32</td>
<td>79.13</td>
</tr>
<tr>
<td>Jeune peuplement (PER + PB)</td>
<td>Jeune peuplement de PL</td>
<td>3.52</td>
<td>2.95</td>
</tr>
<tr>
<td>Futaie de PL régularisée Bois Moyen</td>
<td>PL_R_BM</td>
<td>8.31</td>
<td>6397</td>
</tr>
<tr>
<td>Futaie de PL régularisée Gros Bois</td>
<td>PL_R_GB</td>
<td>10.16</td>
<td>8.52</td>
</tr>
<tr>
<td>Futaie de PL irrégularisé</td>
<td>PL_IR</td>
<td>2.89</td>
<td>2.42</td>
</tr>
<tr>
<td>Taillis de chêne vert avec réserve de pin laricio</td>
<td>CHV-PL</td>
<td>28.68</td>
<td>16.70</td>
</tr>
<tr>
<td>Non inventorié</td>
<td></td>
<td>6.20</td>
<td>21.62</td>
</tr>
<tr>
<td>Taillis de CHV (parfois en mélange avec l’Arbousier) + réserve de PL</td>
<td>CHV/ARB_T + PL_R_BM</td>
<td>10.23</td>
<td>35.67</td>
</tr>
<tr>
<td>régularisée Bois Moyen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taillis de CHV (parfois en mélange avec l’Arbousier) + réserve de PL</td>
<td>CHV/ARB_T + PL_R-GB</td>
<td>10.97</td>
<td>38.25</td>
</tr>
<tr>
<td>régularisée Gros Bois</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taillis de CHV (parfois en mélange avec l’Arbousier) + réserve de PL</td>
<td>CHV/ARB_T + PL_IR</td>
<td>1.28</td>
<td>4.46</td>
</tr>
<tr>
<td>irrégularisée</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Futaie de pin laricio en mélange avec des feuillus (frêne)</td>
<td>PL-F</td>
<td>4.92</td>
<td>2.87</td>
</tr>
<tr>
<td>Châtaigniers</td>
<td>CHA</td>
<td>0.39</td>
<td>0.23</td>
</tr>
<tr>
<td>Taillis de chêne vert</td>
<td>CHV</td>
<td>2.22</td>
<td>1.29</td>
</tr>
<tr>
<td>Eboulis ou zone rocheuse</td>
<td>ZR</td>
<td>14.73</td>
<td>8.57</td>
</tr>
<tr>
<td>Vide (stade)</td>
<td>V</td>
<td>1.61</td>
<td>0.94</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>171.75</td>
<td>100</td>
</tr>
</tbody>
</table>

Source : (Fanget, 2012)
ANNEXE A-4 : DISPOSITIF VILLARD COMPARAISON DES VARIABLES DENDROMÉTRIQUES DES PLACETTES ABSENCE DE NID / PRÉSENCE DE NID

Variable PER nombre de perches (ABS/PRES)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>PER</th>
<th>Nid-ABS</th>
<th>PER</th>
<th>Nid-PRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>98</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>90</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>12</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>24</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>17,4</td>
<td>8,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>269,2</td>
<td>63,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>16,4</td>
<td>8,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-4.1. Indicateurs statistiques de la variable PER

Variable PB nombre de petits bois (ABS/PRES)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>PB</th>
<th>Nid-ABS</th>
<th>PB</th>
<th>Nid-PRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>98</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>42</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>13</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>9,0</td>
<td>4,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>68,0</td>
<td>11,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>8,2</td>
<td>3,4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-4.2. Indicateurs statistiques de la variable PB

Variable BM nombre de bois moyens (ABS/PRES)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>BM</th>
<th>Nid-ABS</th>
<th>BM</th>
<th>Nid-PRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>98</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>28</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>14</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>9,0</td>
<td>5,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>49,2</td>
<td>20,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>7,0</td>
<td>4,5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-4.3. Indicateurs statistiques de la variable BM

Variable GB nombre de gros bois (ABS/PRES)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>GB</th>
<th>Nid-ABS</th>
<th>GB</th>
<th>Nid-PRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>98</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>17</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>3,6</td>
<td>4,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>12,9</td>
<td>11,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>3,6</td>
<td>3,4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-4.4. Indicateurs statistiques de la variable GB

Figure A-4.1. Boîte à moustaches de la variable PER

Figure A-4.2. Boîte à moustaches de la variable PB

Figure A-4.3. Boîte à moustaches de la variable BM

Figure A-4.4. Boîte à moustaches de la variable GB
Variable TGB nombre de très gros bois (ABS/PRES)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>TGB</th>
<th>Nid-ABS</th>
<th>TGB</th>
<th>Nid-PRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>98</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>11</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>2,3</td>
<td>5,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>6,2</td>
<td>7,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>2,5</td>
<td>2,8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-4.5. Indicateurs statistiques de la variable TGB

Variable NT nombre total de tiges (ABS/PRES)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>NT</th>
<th>Nid-ABS</th>
<th>NT</th>
<th>Nid-PRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>98</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>117</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>24</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>37</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>52</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>41,3</td>
<td>28,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>527,3</td>
<td>130,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>23,0</td>
<td>11,4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-4.6. Indicateurs statistiques de la variable NT

Variable N_HA nombre total de tiges par hectare (ABS/PRES)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>N_HA</th>
<th>Nid-ABS</th>
<th>N_HA</th>
<th>Nid-PRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>98</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>41</td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>955</td>
<td>572</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>198</td>
<td>171</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>306</td>
<td>216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>423</td>
<td>278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>337,1</td>
<td>232,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>35150,6</td>
<td>8695,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>187,5</td>
<td>93,3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-4.7. Indicateurs statistiques de la variable N_HA

Variable Dmax diamètre du plus haut Pin laricio de la placette (cm) (ABS/PRES)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>Dmax</th>
<th>Nid-ABS</th>
<th>Dmax</th>
<th>Nid-PRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>93</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>10,0</td>
<td>60,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>110,0</td>
<td>110,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>50,0</td>
<td>80,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>70,0</td>
<td>90,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>80,0</td>
<td>100,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>62,0</td>
<td>86,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>687,3</td>
<td>177,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>26,2</td>
<td>13,3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-4.8. Indicateurs statistiques de la variable Dmax
Variable Dmoy diamètre moyen des pins laricio (cm)
(ABS/PRES)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>Dmoy</th>
<th>Nid-ABS</th>
<th>Dmoy</th>
<th>Nid-PRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>93</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>10,0</td>
<td>15,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>110,0</td>
<td>82,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>20,2</td>
<td>32,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>32,3</td>
<td>43,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>45,0</td>
<td>55,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>33,2</td>
<td>45,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>314,3</td>
<td>237,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>17,7</td>
<td>15,4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-4.9. Indicateurs statistiques de la variable Dmoy

Variable HTmax Hauteur du plus haut Pin laricio de la placette (m) (ABS/PRES)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>HTmax</th>
<th>Nid-ABS</th>
<th>HTmax</th>
<th>Nid-PRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>93</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>6,0</td>
<td>25,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>50,0</td>
<td>50,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>23,0</td>
<td>32,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>29,0</td>
<td>36,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>36,0</td>
<td>39,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>28,0</td>
<td>35,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>98,3</td>
<td>27,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>9,9</td>
<td>5,2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-4.10. Indicateurs statistiques de la variable HTmax

Variable X_N proportion du nombre d’arbres des essences autres que PL (ABS/PRES)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>X_N</th>
<th>Nid-ABS</th>
<th>X_N</th>
<th>Nid-PRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>98</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00</td>
<td>0,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>1,00</td>
<td>0,92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>0,00</td>
<td>0,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>0,10</td>
<td>0,07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>0,60</td>
<td>0,41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>0,32</td>
<td>0,22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>0,13</td>
<td>0,07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>0,36</td>
<td>0,27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-4.11. Indicateurs statistiques de la variable X_N

Variable G_HA surface terrière totale par hectare (ABS/PRES)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>G_HA</th>
<th>Nid-ABS</th>
<th>G_HA</th>
<th>Nid-PRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>98</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0,641</td>
<td>9,105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>67,521</td>
<td>64,187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>12,520</td>
<td>23,164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>24,078</td>
<td>31,260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>34,418</td>
<td>40,493</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>24,281</td>
<td>32,413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>202,244</td>
<td>167,569</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>14,221</td>
<td>12,945</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-4.12. Indicateurs statistiques de la variable G_HA

Figure A-4.9. Boîte à moustaches de la variable Dmoy

Figure A-4.10. Boîte à moustaches de la variable HTmax

Figure A-4.11. Boîte à moustaches de la variable X_N

Figure A-4.12. Boîte à moustaches de la variable G_HA
Variable X_G proportion de la surface terrière des essences autres que le Pin laricio (ABS/PRES)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>X_G</th>
<th>Nid-ABS</th>
<th>X_G</th>
<th>Nid-PRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d'observations</td>
<td>98</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0,000</td>
<td>0,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>1,000</td>
<td>0,412</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>0,000</td>
<td>0,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>0,044</td>
<td>0,014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>0,305</td>
<td>0,120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>0,223</td>
<td>0,074</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>0,109</td>
<td>0,013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>0,331</td>
<td>0,112</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-4.13. Indicateurs statistiques de la variable X_G

Variable GESS surface terrière des arbres d’essences prioritaires (ABS/PRES)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>GESS</th>
<th>Nid-ABS</th>
<th>GESS</th>
<th>Nid-PRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d'observations</td>
<td>98</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0,016</td>
<td>0,817</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>8,270</td>
<td>7,862</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>1,376</td>
<td>2,621</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>2,831</td>
<td>3,762</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>4,165</td>
<td>4,960</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>2,879</td>
<td>3,889</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>3,158</td>
<td>2,680</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>1,777</td>
<td>1,637</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-4.14. Indicateurs statistiques de la variable GESS

Variable GESS1 surface terrière des arbres de la première essence prioritaire (ABS/PRES)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>GESS1</th>
<th>Nid-ABS</th>
<th>GESS1</th>
<th>Nid-PRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d'observations</td>
<td>98</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0,016</td>
<td>0,817</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>8,270</td>
<td>7,862</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>1,243</td>
<td>2,382</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>2,431</td>
<td>3,550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>3,901</td>
<td>4,608</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>2,619</td>
<td>3,703</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>2,934</td>
<td>2,638</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>1,713</td>
<td>1,624</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-4.15. Indicateurs statistiques de la variable GESS1

Variable GESS2 surface terrière des arbres de la seconde essence prioritaire (ABS/PRES)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>GESS2</th>
<th>Nid-ABS</th>
<th>GESS2</th>
<th>Nid-PRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d'observations</td>
<td>98</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0,000</td>
<td>0,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>1,437</td>
<td>1,775</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>0,000</td>
<td>0,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>0,000</td>
<td>0,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>0,230</td>
<td>0,061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>0,215</td>
<td>0,145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>0,155</td>
<td>0,113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>0,393</td>
<td>0,336</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-4.16. Indicateurs statistiques de la variable GESS2
Variable GDIV surface terrière des arbres d’essences diverses (ABS/PRES)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>GDIV</th>
<th>Nid-ABS</th>
<th>GDIV</th>
<th>Nid-PRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Maximum</td>
<td>1,477</td>
<td>0,668</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Médiane</td>
<td>0,079</td>
<td>0,061</td>
<td>0,009</td>
<td>0,066</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>0,059</td>
<td>0,017</td>
<td>0,095</td>
<td>0,066</td>
</tr>
<tr>
<td>Moyenne</td>
<td>0,095</td>
<td>0,066</td>
<td>0,095</td>
<td>0,066</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>0,242</td>
<td>0,132</td>
<td>0,059</td>
<td>0,017</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>0,242</td>
<td>0,132</td>
<td>0,059</td>
<td>0,017</td>
</tr>
</tbody>
</table>

Tableau A-4.17. Indicateurs statistiques de la variable GDIV

Variable GDIV1 surface terrière des arbres de la première essence diverse (ABS/PRES)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>GDIV1</th>
<th>Nid-ABS</th>
<th>GDIV1</th>
<th>Nid-PRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Maximum</td>
<td>1,477</td>
<td>0,668</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Médiane</td>
<td>0,077</td>
<td>0,051</td>
<td>0,092</td>
<td>0,064</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>0,058</td>
<td>0,017</td>
<td>0,095</td>
<td>0,066</td>
</tr>
<tr>
<td>Moyenne</td>
<td>0,092</td>
<td>0,064</td>
<td>0,095</td>
<td>0,066</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>0,240</td>
<td>0,130</td>
<td>0,059</td>
<td>0,017</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>0,240</td>
<td>0,130</td>
<td>0,059</td>
<td>0,017</td>
</tr>
</tbody>
</table>

Tableau A-4.18. Indicateurs statistiques de la variable GDIV1

Variable BoisMort nombre de bois morts debout (entiers+chandelles) (ABS/PRES)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>BoisMort</th>
<th>Nid-ABS</th>
<th>BoisMort</th>
<th>Nid-PRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maximum</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Médiane</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Moyenne</td>
<td>0,7</td>
<td>1,7</td>
<td>2,4</td>
<td>1,4</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>1,6</td>
<td>1,2</td>
<td>2,4</td>
<td>1,4</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>1,6</td>
<td>1,2</td>
<td>2,4</td>
<td>1,4</td>
</tr>
</tbody>
</table>

Tableau A-4.19. Indicateurs statistiques de la variable BoisMort

Variable Nb_chandelles nombre de chandelles (ABS/PRES)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>Nb_Ch</th>
<th>Nid-ABS</th>
<th>Nb_Ch</th>
<th>Nid-PRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maximum</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Médiane</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Moyenne</td>
<td>0,5</td>
<td>1,3</td>
<td>1,7</td>
<td>1,7</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>1,3</td>
<td>1,3</td>
<td>1,3</td>
<td>1,3</td>
</tr>
</tbody>
</table>

Tableau A-4.20. Indicateurs statistiques de la variable Nb_chandelles

Figure A-4.17. Boîte à moustaches de la variable GDIV

Figure A-4.18. Boîte à moustaches de la variable GDIV1

Figure A-4.19. Boîte à moustaches de la variable BoisMort

Figure A-4.20. Boîte à moustaches de la variable Nb_chandelles
ANNEXE A-5 : ANALYSE EN COMPOSANTES PRINCIPALES DES VARIABLES QUANTITATIVES
SIGNIFICATIVEMENT DIFFERENTES RELATIVES AUX PLACETTES SANS NID et AVEC NID DU
DISPOSITIF VILLARD SUIVIE D’UNE ANALYSE DISCRIMINANTE.

Elle permet de figurer en facteurs supplémentaires les variables quantitatives évoquées au § 2.3.3.1 : CAP (Capital), COMPO (Composition) et la variable FORET (Aitone ou Valduniellu). Ces variables sont figurées dans le nuage de répartition des placettes fonction des axes de l’ACP où elles sont le plus susceptibles de constituer une explication à cette répartition.

Figure A-5.1. Cercle de corrélations des variables sur le 1er plan de l’ACP.

Figure A-5.2. Distribution des placettes sans nid et avec nid dans le 1er plan de l’ACP. En facteur supplémentaire, la variable CAP (Capital).

Figure A-5.3. Cercle de corrélations des variables sur le plan F1-F3 de l’ACP.

Figure A-5.4. Distribution des placettes sans nid et avec nid dans plan F1-F3 de l’ACP. En facteur supplémentaire la variable COMPO (Composition).
L’ACP est suivie d’une analyse discriminante significative.

Figure A-5.5. Cercle de corrélations des variables sur le plan F2-F3 de l’ACP.

Figure A-5.6. Distribution des placettes sans nid et avec nid dans plan F2-F3 de l’ACP. En facteur supplémentaire la variable FORET (Forêt).

Figure A-5.7. Graphiques de l’analyse discriminante « présence/absence de sittelle » par variable, avec pour chacune d’elles le score de l’analyse en abscisse et la valeur de la variable centrée-réduite en ordonnée.
ANNEXE A-6 : ANALYSE EN COMPOSANTES PRINCIPALES SUIVIE D’UNE CLASSIFICATION HIERARCHIQUE ASCENDANTE DES PLACETTES SANS NID DU DISPOSITIF VILLARD.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PER</td>
<td>-0.479</td>
<td>0.603</td>
<td>-0.364</td>
<td>-0.057</td>
<td>-0.333</td>
</tr>
<tr>
<td>PB</td>
<td>-0.083</td>
<td>0.739</td>
<td>-0.351</td>
<td>0.190</td>
<td>-0.228</td>
</tr>
<tr>
<td>BM</td>
<td>0.441</td>
<td>0.539</td>
<td>-0.199</td>
<td>0.299</td>
<td>0.375</td>
</tr>
<tr>
<td>GB</td>
<td>0.779</td>
<td>0.030</td>
<td>-0.172</td>
<td>0.027</td>
<td>0.425</td>
</tr>
<tr>
<td>TGB</td>
<td>0.789</td>
<td>-0.166</td>
<td>0.165</td>
<td>0.018</td>
<td>-0.201</td>
</tr>
<tr>
<td>NT</td>
<td>-0.030</td>
<td>0.857</td>
<td>-0.461</td>
<td>0.126</td>
<td>-0.161</td>
</tr>
<tr>
<td>N_HA</td>
<td>-0.030</td>
<td>0.857</td>
<td>-0.461</td>
<td>0.126</td>
<td>-0.161</td>
</tr>
<tr>
<td>Dmax</td>
<td>0.814</td>
<td>-0.145</td>
<td>0.207</td>
<td>0.131</td>
<td>-0.351</td>
</tr>
<tr>
<td>Dmoy</td>
<td>0.674</td>
<td>-0.066</td>
<td>0.473</td>
<td>-0.093</td>
<td>-0.346</td>
</tr>
<tr>
<td>HTmax</td>
<td>0.832</td>
<td>-0.097</td>
<td>0.099</td>
<td>0.053</td>
<td>-0.322</td>
</tr>
<tr>
<td>X_N</td>
<td>-0.096</td>
<td>0.539</td>
<td>0.750</td>
<td>-0.004</td>
<td>-0.108</td>
</tr>
<tr>
<td>G_HA</td>
<td>0.940</td>
<td>0.218</td>
<td>-0.084</td>
<td>0.159</td>
<td>0.100</td>
</tr>
<tr>
<td>X_G</td>
<td>-0.351</td>
<td>0.462</td>
<td>0.623</td>
<td>0.027</td>
<td>0.190</td>
</tr>
<tr>
<td>GESS</td>
<td>0.950</td>
<td>0.202</td>
<td>-0.127</td>
<td>0.060</td>
<td>0.093</td>
</tr>
<tr>
<td>GESS1</td>
<td>0.926</td>
<td>0.032</td>
<td>-0.270</td>
<td>0.133</td>
<td>0.129</td>
</tr>
<tr>
<td>GESS2</td>
<td>0.226</td>
<td>0.650</td>
<td>0.492</td>
<td>-0.257</td>
<td>-0.146</td>
</tr>
<tr>
<td>GDIV</td>
<td>-0.227</td>
<td>0.114</td>
<td>0.392</td>
<td>0.856</td>
<td>0.049</td>
</tr>
<tr>
<td>GDIV1</td>
<td>-0.231</td>
<td>0.113</td>
<td>0.402</td>
<td>0.850</td>
<td>0.051</td>
</tr>
<tr>
<td>BoisMort</td>
<td>0.151</td>
<td>0.640</td>
<td>0.338</td>
<td>-0.424</td>
<td>0.270</td>
</tr>
<tr>
<td>Nb_Chandelles</td>
<td>0.161</td>
<td>0.682</td>
<td>0.314</td>
<td>-0.410</td>
<td>0.188</td>
</tr>
</tbody>
</table>

Tableau A-6.1. Corrélations entre les variables et les axes de l’ACP pour l’échantillon des placettes sans nid

Hierarchical clustering on the factor map

Figure A-6.1. Classification hiérarchique ascendante des placettes sans nid (distance euclidienne- méthode de Ward) après ACP
<table>
<thead>
<tr>
<th>Classe</th>
<th>PER</th>
<th>PB</th>
<th>BM</th>
<th>GB</th>
<th>TGB</th>
<th>NT</th>
<th>N_HA</th>
<th>Dmax</th>
<th>Dmoy</th>
<th>HTmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (190)</td>
<td>34</td>
<td>8</td>
<td>12</td>
<td>8</td>
<td>1</td>
<td>63</td>
<td>514</td>
<td>60,0</td>
<td>35,0</td>
<td>37</td>
</tr>
<tr>
<td>2 (69)</td>
<td>17</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>26</td>
<td>212</td>
<td>70,0</td>
<td>25,0</td>
<td>27</td>
</tr>
<tr>
<td>3 (26)</td>
<td>9</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>33</td>
<td>269</td>
<td>100,0</td>
<td>33,3</td>
<td>40</td>
</tr>
</tbody>
</table>

Tableau A-6.2. Répartition des placettes sans nid en 3 classes.

<table>
<thead>
<tr>
<th>Classe</th>
<th>X_N</th>
<th>G_HA</th>
<th>X_G</th>
<th>GESS</th>
<th>GESS1</th>
<th>GESS2</th>
<th>GDIV</th>
<th>GDIV1</th>
<th>BoisMort</th>
<th>Nb Chand.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (190)</td>
<td>0,46</td>
<td>11,73</td>
<td>0,13</td>
<td>1,25</td>
<td>1,25</td>
<td>0,00</td>
<td>0,19</td>
<td>0,19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 (69)</td>
<td>0,46</td>
<td>11,73</td>
<td>0,13</td>
<td>1,25</td>
<td>1,25</td>
<td>0,00</td>
<td>0,19</td>
<td>0,19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 (26)</td>
<td>0,00</td>
<td>33,60</td>
<td>0,00</td>
<td>4,12</td>
<td>4,12</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tableau A-6.3. Objets centraux (n° de placette) des 3 classes des placettes sans nid par leurs variables quantitatives.

<table>
<thead>
<tr>
<th>Classe</th>
<th>STR</th>
<th>CAP</th>
<th>COMPO</th>
<th>Forêt</th>
<th>Nombre de placettes de la classe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (190)</td>
<td>R_PB_BM</td>
<td>M</td>
<td>MNO</td>
<td>Aitone</td>
<td>22</td>
</tr>
<tr>
<td>2 (69)</td>
<td>R_PB</td>
<td>M</td>
<td>MNO</td>
<td>Valduniellu</td>
<td>34</td>
</tr>
<tr>
<td>3 (26)</td>
<td>R_PB_BM</td>
<td>M</td>
<td>MNO</td>
<td>Valduniellu</td>
<td>37</td>
</tr>
</tbody>
</table>

Tableau A-6.4. Rappel : objets centraux (n° de placette) des 3 classes des placettes sans nid par leurs variables qualitatives.
ANNEXE A-7 : ANALYSE EN COMPOSANTES PRINCIPALES SUIVIE D’UNE CLASSIFICATION HIERARCHIQUE ASCENDANTE DES PLACETTES AVEC NID DU DISPOSITIF VILLARD.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
</tr>
</thead>
<tbody>
<tr>
<td>PER</td>
<td>-0,400</td>
<td>0,668</td>
<td>0,046</td>
<td>-0,348</td>
<td>0,178</td>
<td>0,325</td>
</tr>
<tr>
<td>PB</td>
<td>-0,104</td>
<td>0,805</td>
<td>0,017</td>
<td>0,032</td>
<td>-0,055</td>
<td>0,115</td>
</tr>
<tr>
<td>BM</td>
<td>0,331</td>
<td>0,605</td>
<td>-0,185</td>
<td>0,174</td>
<td>-0,253</td>
<td>-0,208</td>
</tr>
<tr>
<td>GB</td>
<td>0,700</td>
<td>0,204</td>
<td>-0,133</td>
<td>0,220</td>
<td>-0,057</td>
<td>-0,438</td>
</tr>
<tr>
<td>TGB</td>
<td>0,708</td>
<td>-0,199</td>
<td>0,527</td>
<td>-0,152</td>
<td>0,104</td>
<td>0,064</td>
</tr>
<tr>
<td>NT</td>
<td>0,204</td>
<td>0,959</td>
<td>0,054</td>
<td>-0,136</td>
<td>0,017</td>
<td>0,064</td>
</tr>
<tr>
<td>N_HA</td>
<td>0,204</td>
<td>0,959</td>
<td>0,054</td>
<td>-0,136</td>
<td>0,017</td>
<td>0,064</td>
</tr>
<tr>
<td>Dmax</td>
<td>-0,006</td>
<td>-0,200</td>
<td>0,353</td>
<td>-0,415</td>
<td>0,393</td>
<td>0,454</td>
</tr>
<tr>
<td>Dmoy</td>
<td>0,085</td>
<td>-0,403</td>
<td>0,725</td>
<td>0,215</td>
<td>0,121</td>
<td>-0,164</td>
</tr>
<tr>
<td>HTmax</td>
<td>0,285</td>
<td>-0,072</td>
<td>0,291</td>
<td>0,181</td>
<td>0,187</td>
<td>0,424</td>
</tr>
<tr>
<td>X_N</td>
<td>-0,533</td>
<td>0,175</td>
<td>0,707</td>
<td>0,282</td>
<td>0,065</td>
<td>0,018</td>
</tr>
<tr>
<td>G_HA</td>
<td>0,905</td>
<td>0,107</td>
<td>0,364</td>
<td>-0,093</td>
<td>0,071</td>
<td>-0,087</td>
</tr>
<tr>
<td>X_G</td>
<td>-0,457</td>
<td>0,257</td>
<td>0,541</td>
<td>0,543</td>
<td>-0,120</td>
<td>-0,028</td>
</tr>
<tr>
<td>GESS</td>
<td>0,935</td>
<td>0,085</td>
<td>0,313</td>
<td>-0,052</td>
<td>0,057</td>
<td>-0,039</td>
</tr>
<tr>
<td>GESS1</td>
<td>0,928</td>
<td>0,032</td>
<td>0,207</td>
<td>-0,247</td>
<td>0,122</td>
<td>-0,099</td>
</tr>
<tr>
<td>GESS2</td>
<td>0,068</td>
<td>0,187</td>
<td>0,429</td>
<td>0,736</td>
<td>-0,268</td>
<td>0,215</td>
</tr>
<tr>
<td>GDIV</td>
<td>-0,611</td>
<td>0,169</td>
<td>0,453</td>
<td>-0,340</td>
<td>0,215</td>
<td>-0,437</td>
</tr>
<tr>
<td>GDIV1</td>
<td>-0,611</td>
<td>0,175</td>
<td>0,445</td>
<td>-0,334</td>
<td>0,211</td>
<td>-0,446</td>
</tr>
<tr>
<td>BoisMort</td>
<td>0,045</td>
<td>0,101</td>
<td>-0,370</td>
<td>0,411</td>
<td>0,776</td>
<td>-0,088</td>
</tr>
<tr>
<td>Nb_Chandelles</td>
<td>0,053</td>
<td>0,159</td>
<td>-0,312</td>
<td>0,462</td>
<td>0,761</td>
<td>-0,060</td>
</tr>
</tbody>
</table>

Tableau A-7.1. Corrélations entre les variables et les axes de l’ACP pour l’échantillon des placettes avec nid

Figure A-7.1. Classification hiérarchique ascendante des placettes avec nid (distance euclidienne- méthode de Ward) après ACP
Tableau A-7.2. Répartition des placettes avec nid en 3 classes.

<table>
<thead>
<tr>
<th>Classe</th>
<th>Objets</th>
<th>Somme des poids</th>
<th>Variance intra-classe</th>
<th>Distance minimale au barycentre</th>
<th>Distance moyenne au barycentre</th>
<th>Distance maximale au barycentre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (121)</td>
<td>25</td>
<td>25</td>
<td>17,159</td>
<td>1,907</td>
<td>6,517</td>
<td></td>
</tr>
<tr>
<td>2 (72)</td>
<td>32</td>
<td>32</td>
<td>7,985</td>
<td>1,447</td>
<td>5,171</td>
<td></td>
</tr>
<tr>
<td>3 (55)</td>
<td>41</td>
<td>41</td>
<td>13,831</td>
<td>1,255</td>
<td>7,602</td>
<td></td>
</tr>
</tbody>
</table>

Figure A-7.2. Répartition géographique des placettes avec nid du dispositif Villard selon leur classe.

Tableau A-7.3. Objets centraux (n° de placette) des 3 classes des placettes avec nid par leurs variables quantitatives.

<table>
<thead>
<tr>
<th>Classe</th>
<th>PER</th>
<th>PB</th>
<th>BM</th>
<th>GB</th>
<th>TGB</th>
<th>NT</th>
<th>N_HA</th>
<th>Dmax</th>
<th>Dmoy</th>
<th>HTmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (121)</td>
<td>19</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>40</td>
<td>327</td>
<td>80,0</td>
<td>54,5</td>
<td>37</td>
</tr>
<tr>
<td>2 (72)</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>8</td>
<td>22</td>
<td>180</td>
<td>80,0</td>
<td>54,5</td>
<td>35</td>
</tr>
<tr>
<td>3 (55)</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>28</td>
<td>229</td>
<td>90,0</td>
<td>33,2</td>
<td>34</td>
</tr>
</tbody>
</table>

Tableau A-7.4. Rappel : objets centraux (n° de placette) des 3 classes des placettes sans nid par leurs variables qualitatives.

<table>
<thead>
<tr>
<th>Classe</th>
<th>STR</th>
<th>CAP</th>
<th>COMPO</th>
<th>Forêt</th>
<th>Nombre de placettes de la classe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (121)</td>
<td>R_PB_BM</td>
<td>M</td>
<td>MNO</td>
<td>Aitone</td>
<td>25</td>
</tr>
<tr>
<td>2 (72)</td>
<td>R_GB_BM</td>
<td>M</td>
<td>MNO</td>
<td>Valduniellu</td>
<td>32</td>
</tr>
<tr>
<td>3 (55)</td>
<td>R_PB_BM</td>
<td>M</td>
<td>MNO</td>
<td>Valduniellu</td>
<td>41</td>
</tr>
</tbody>
</table>

Mémoire EPHE-SVT- TORRE F. XXII
ANNEXE A-8 : MASSIF D’AITONE-VALDUNIELLU MODELE DE PROBABILITE DE PRESENCE DE NIDS DE SITTELLE PAR REGRERSSION LOGISTIQUE

| Variable | Estimation β | Wald Borne inf. (95%) | Wald Borne sup. (95%) | z value | Pr>|z| | Significativité |
|--------------|--------------|-----------------------|-----------------------|---------|--------|----------------|
| Constante | 23,51619 | -197,99446 | NA | 0,007 | 0,99449| |
| PER | -0,09258 | -0,2267866 | 0,02818172 | -1,455 | 0,14571| |
| PB | -0,0167 | -0,2482077 | 0,20279263 | -0,146 | 0,88356| |
| BM | -0,36994 | -0,721739 | -0,06698822 | -2,254 | 0,02419*| |
| GB | -0,23337 | -0,8145687 | 0,30342197 | -0,839 | 0,4017 | |
| TGB | -0,18407 | -1,3599008 | 0,87568266 | -0,334 | 0,73848| |
| NT | NA | NA | NA | NA | NA | |
| N_HA | NA | NA | NA | NA | NA | |
| G | 1,14221 | -1,2135749 | 3,84811124 | 0,915 | 0,3601 | |
| G_HA | NA | NA | NA | NA | NA | |
| GESS | 8,21888 | -15,702758 | 35,84676451 | 0,634 | 0,52626| |
| GESS1 | -8,45739 | -35,992371 | 15,41505238 | -0,654 | 0,51322| |
| GESS2 | -14,3794 | -47,036199 | 13,86569657 | -0,945 | 0,34443| |
| GDIV | -54,645 | -231,986683 | 487,8026728 | -0,347 | 0,72883| |
| GDIV1 | 55,26598 | -489,1318 | 236,0212815 | 0,348 | 0,72807| |
| BoisMort | -4,3834 | -7,8891394 | -1,38719723 | -2,726 | 0,00642**| |
| Nb_Chandelles| 4,20368 | 1,1555846 | 7,7829991 | 2,56 | 0,01046*| |
| CAPITAL[T.D] | -8,29497 | NA | 118,5531778 | -0,004 | 0,99677| |
| CAPITAL[T.M] | 4,55659 | 1,6395419 | 8,06666046 | 2,86 | 0,00423**| |
| CAPITAL[T.R] | 8,94752 | 1,9747934 | 17,00577517 | 2,401 | 0,01635*| |
| STRUCTURE[T.R_BM] | -24,4101 | NA | 186,3064063 | -0,007 | 0,99428| |
| STRUCTURE[T.R_GB] | -17,29 | -2215,0565 | 118,2937587 | -0,002 | 0,99812| |
| STRUCTURE[T.R_GB_BM] | -30,72 | NA | 190,7905384 | -0,009 | 0,9928 | |
| STRUCTURE[T.R_PB] | -31,6244 | NA | 166,0311642 | -0,009 | 0,99259| |
| STRUCTURE[T.R_PB_BM] | -32,0141 | NA | 178,7024453 | -0,009 | 0,9925 | |
| COMPOSITION[T.MNO] | 0,16312 | -9,5296109 | 5,18315612 | 0,048 | 0,96178| |
| COMPOSITION[T.PLY] | -11,6808 | NA | 353,2994903 | -0,002 | 0,99857| |
| Alteration[T.1] | 12,06553 | 7,0530162 | 18,7182334 | 4,135 | 3,55E-05***| |
| Alteration[T.4] | 9,37902 | 6,2457942 | 14,06490745 | 4,848 | 1,256-06***| |

Tableau A-8.1 Coefficients de la régression logistique multiple avec intervalle de confiance à 95%
(NS : non significatif ; * : p<0,05 ; ** : p<0,01 ; *** : p<0,001)

<table>
<thead>
<tr>
<th>modèle</th>
<th>Variables</th>
<th>Nb. de variables</th>
<th>Deviance</th>
<th>AIC de Akaike</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>PRES_ABS ~ Altération</td>
<td>1</td>
<td>133.21</td>
<td>139.21</td>
</tr>
<tr>
<td>F2</td>
<td>PRES_ABS ~ Altération + NT</td>
<td>2</td>
<td>108.85</td>
<td>116.85</td>
</tr>
<tr>
<td>F3</td>
<td>PRES_ABS ~ Altération + NT + TGB</td>
<td>3</td>
<td>99.732</td>
<td>109.73</td>
</tr>
<tr>
<td>F4</td>
<td>PRES_ABS ~ Altération + NT + TGB + GESS2</td>
<td>4</td>
<td>94.926</td>
<td>106.93</td>
</tr>
<tr>
<td>F5</td>
<td>PRES_ABS ~ Altération + NT + TGB + GESS2 + GESS1</td>
<td>5</td>
<td>92.264</td>
<td>106.26</td>
</tr>
<tr>
<td>F6</td>
<td>PRES_ABS ~ Altération + NT + TGB + GESS2 : GESS1</td>
<td>5</td>
<td>271.71</td>
<td>107.65</td>
</tr>
</tbody>
</table>

Tableau A-8.2. Classement des modèles de probabilité calculés selon une procédure avant progressive (stepwise forward/ backward) et classés en fonction du critère AIC d’Akaike.

Mémoire EPHE-SVT- TORRE F. XXIII
Tableau A-8.3. Classement des modèles de probabilité calculés selon une procédure arrière progressive (stepwise backward/forward) et classés en fonction du critère AIC d’Akaike.

<table>
<thead>
<tr>
<th>Modèle</th>
<th>Variables</th>
<th>Nb. de variables</th>
<th>Deviance</th>
<th>AIC de Akaike</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>PRES_ABS ~ PER + PB + BM + GB + TGB + NT + N_HA + G + G_HA + GESS + GESS1 + GESS2 + GDIV + GDIV1 + BoisMort + Nb_Chandelles + CAPITAL + STRUCTURE + COMPOSITION + Altération</td>
<td>20</td>
<td>271,714</td>
<td>116,71</td>
</tr>
<tr>
<td>B2</td>
<td>PRES_ABS ~ PER + PB + BM + GB + TGB + NT + G + GESS + GESS1 + GESS2 + GDIV + GDIV1 + BoisMort + Nb_Chandelles + CAPITAL + STRUCTURE + COMPOSITION + Altération</td>
<td>19</td>
<td>271,714</td>
<td>116,71</td>
</tr>
<tr>
<td>B3</td>
<td>PRES_ABS ~ PER + PB + BM + GB + TGB + NT + G + GESS + GESS1 + GESS2 + GDIV + GDIV1 + BoisMort + Nb_Chandelles + CAPITAL + STRUCTURE + COMPOSITION + Altération</td>
<td>18</td>
<td>271,714</td>
<td>116,71</td>
</tr>
<tr>
<td>B4</td>
<td>PRES_ABS ~ PER + PB + BM + GB + GESS + GESS1 + GESS2 + GDIV + GDIV1 + BoisMort + Nb_Chandelles + CAPITAL + STRUCTURE + COMPOSITION + Altération</td>
<td>17</td>
<td>271,714</td>
<td>116,71</td>
</tr>
<tr>
<td>B5</td>
<td>PRES_ABS ~ PER + PB + BM + GB + TGB + G + GESS + GESS1 + GESS2 + GDIV + GDIV1 + BoisMort + Nb_Chandelles + CAPITAL + STRUCTURE + Altération</td>
<td>16</td>
<td>64,714</td>
<td>112,71</td>
</tr>
<tr>
<td>B6</td>
<td>PRES_ABS ~ PER + BM + GB + TGB + G + GESS + GESS1 + GESS2 + GDIV + GDIV1 + BoisMort + Nb_Chandelles + CAPITAL + STRUCTURE + Altération</td>
<td>15</td>
<td>64,735</td>
<td>110,73</td>
</tr>
<tr>
<td>B7</td>
<td>PRES_ABS ~ PER + BM + GB + TGB + G + GESS + GESS1 + GESS2 + GDIV + GDIV1 + BoisMort + Nb_Chandelles + CAPITAL + STRUCTURE + Altération</td>
<td>14</td>
<td>64,814</td>
<td>108,81</td>
</tr>
<tr>
<td>B8</td>
<td>PRES_ABS ~ PER + BM + GB + TGB + G + GESS + GESS1 + GESS2 + BoisMort + Nb_Chandelles + CAPITAL + STRUCTURE + Altération</td>
<td>13</td>
<td>64,815</td>
<td>106,81</td>
</tr>
<tr>
<td>B9</td>
<td>PRES_ABS ~ PER + BM + GB + GESS + GESS1 + GESS2 + BoisMort + Nb_Chandelles + CAPITAL + STRUCTURE + Altération</td>
<td>12</td>
<td>64,934</td>
<td>104,93</td>
</tr>
<tr>
<td>B10</td>
<td>PRES_ABS ~ PER + BM + GB + GESS1 + GESS2 + BoisMort + Nb_Chandelles + CAPITAL + STRUCTURE + Altération</td>
<td>11</td>
<td>65,351</td>
<td>103,35</td>
</tr>
<tr>
<td>B11</td>
<td>PRES_ABS ~ PER + BM + GB + GESS2 + BoisMort + Nb_Chandelles + CAPITAL + STRUCTURE + Altération</td>
<td>10</td>
<td>65,754</td>
<td>101,75</td>
</tr>
<tr>
<td>B12</td>
<td>PRES_ABS ~ PER + BM + G + GESS2 + BoisMort + Nb_Chandelles + CAPITAL + STRUCTURE + Altération</td>
<td>9</td>
<td>66,808</td>
<td>100,81</td>
</tr>
<tr>
<td>B13</td>
<td>PRES_ABS ~ PER + BM + G + BoisMort + Nb_Chandelles + CAPITAL + STRUCTURE + Altération</td>
<td>8</td>
<td>68,237</td>
<td>100,24</td>
</tr>
</tbody>
</table>

Figure A-8.1. Graph des résidus du modèle de régression logistique F6.

Figure A-8.2. Graph Quantile-Quantile : test de normalité des résidus du modèle de régression logistique F6.

Figure A-8.3. Graph de vérification de l’homoscédasticité.

Figure A-8.4. Graph des écarts distance de Cook.
ANNEXE A-9 : DISPOSITIF VILLARD COMPARAISON DES VARIABLES DENDROMÉTRIQUES DES PLACETTES AVEC NID ENTRE FORETS D’AITONE ET DE VALDUNIELLU

Variable PER nombre de perches (FORET)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>PER</th>
<th>Aïtone</th>
<th>PER</th>
<th>Valdu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>39</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>38</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>2,5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>5,0</td>
<td>9,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>10,0</td>
<td>14,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>7,0</td>
<td>10,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>53,8</td>
<td>67,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>7,3</td>
<td>8,2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-9.1. Indicateurs statistiques de la variable PER

Variable PB nombre de petits bois (FORET)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>PB</th>
<th>Aïtone</th>
<th>PB</th>
<th>Valdu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>39</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>2,0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>4,0</td>
<td>3,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>7,0</td>
<td>5,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>5,0</td>
<td>4,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>12,8</td>
<td>10,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>3,6</td>
<td>3,3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-9.2. Indicateurs statistiques de la variable PB

Variable BM nombre de bois moyens (FORET)

<table>
<thead>
<tr>
<th>Variance (n-1)</th>
<th>13,5</th>
<th>24,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistique</td>
<td>BM</td>
<td>Aïtone</td>
</tr>
<tr>
<td>Nb. d’observations</td>
<td>39</td>
<td>57</td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maximum</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>4,0</td>
<td>1,0</td>
</tr>
<tr>
<td>Médiane</td>
<td>6,0</td>
<td>3,0</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>9,0</td>
<td>8,0</td>
</tr>
<tr>
<td>Moyenne</td>
<td>6,6</td>
<td>5,0</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>13,5</td>
<td>24,4</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>3,7</td>
<td>4,9</td>
</tr>
</tbody>
</table>

Tableau A-9.3. Indicateurs statistiques de la variable BM
Variable GB nombre de gros bois (FORET)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>GB</th>
<th>Aïtone</th>
<th>GB</th>
<th>Valdu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d'observations</td>
<td>39</td>
<td></td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>16,0</td>
<td></td>
<td>12,5</td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>3,0</td>
<td></td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>4,0</td>
<td></td>
<td>3,5</td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>6,3</td>
<td></td>
<td>5,5</td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>5,1</td>
<td></td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>10,9</td>
<td></td>
<td>9,2</td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>3,3</td>
<td></td>
<td>3,0</td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-9.4. Indicateurs statistiques de la variable GB

Variable TGB nombre de très gros bois (FORET)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>TGB</th>
<th>Aïtone</th>
<th>TGB</th>
<th>Valdu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d'observations</td>
<td>39</td>
<td></td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>10,5</td>
<td></td>
<td>12,5</td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>3,0</td>
<td></td>
<td>2,50</td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>5,0</td>
<td></td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>7,3</td>
<td></td>
<td>6,5</td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>5,2</td>
<td></td>
<td>4,7</td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>7,4</td>
<td></td>
<td>8,1</td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>2,7</td>
<td></td>
<td>2,8</td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-9.5. Indicateurs statistiques de la variable TGB

Variable NT nombre total de tiges (FORET)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>NT</th>
<th>Aïtone</th>
<th>NT</th>
<th>Valdu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d'observations</td>
<td>39</td>
<td></td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>11</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>70</td>
<td></td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>21,0</td>
<td></td>
<td>21,0</td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>26,0</td>
<td></td>
<td>26,0</td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>35,0</td>
<td></td>
<td>34,0</td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>28,8</td>
<td></td>
<td>28,0</td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>147,1</td>
<td></td>
<td>123,5</td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>12,1</td>
<td></td>
<td>11,1</td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-9.6. Indicateurs statistiques de la variable NT

Figure A-9.4. Boîte à moustaches de la variable GB

Figure A-9.5. Boîte à moustaches de la variable TGB

Figure A-9.6. Boîte à moustaches de la variable NT
Variable N_HA nombre total de tiges par hectare

<table>
<thead>
<tr>
<th>Statistique</th>
<th>N_HA</th>
<th>Aïtone</th>
<th>N_HA</th>
<th>Valdu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d'observations</td>
<td>39</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>89,81</td>
<td>81,64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>571,50</td>
<td>522,52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>171,45</td>
<td>171,45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>212,27</td>
<td>212,27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>285,75</td>
<td>277,59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>235,09</td>
<td>228,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>9806,12</td>
<td>8230,84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>99,03</td>
<td>90,72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-9.7. Indicateurs statistiques de la variable N_HA

Variable Dmax diamètre du plus haut Pin laricio de la placette (cm) (FORET)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>Dmax</th>
<th>Aïtone</th>
<th>Dmax</th>
<th>Valdu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d'observations</td>
<td>39</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>70,0</td>
<td>60,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>110,0</td>
<td>110,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>75,0</td>
<td>80,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>80,0</td>
<td>90,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>90,0</td>
<td>100,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>83,3</td>
<td>88,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>112,3</td>
<td>217,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>10,6</td>
<td>14,7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-9.8. Indicateurs statistiques de la variable Dmax

Variable Dmoy diamètre moyen des pins laricio de la placette (cm) (FORET)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>Dmoy</th>
<th>Aïtone</th>
<th>Dmoy</th>
<th>Valdu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d'observations</td>
<td>39</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>20,7</td>
<td>15,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>73,3</td>
<td>82,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>38,1</td>
<td>30,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>48,8</td>
<td>36,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>56,1</td>
<td>55,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>47,0</td>
<td>43,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>151,2</td>
<td>301,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>13,0</td>
<td>17,4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-9.8. Indicateurs statistiques de la variable Dmoy

Figure A-9.7. Boîte à moustaches de la variable N_HA

Figure A-9.8. Boîte à moustaches de la variable Dmax

Figure A-9.8. Boîte à moustaches de la variable Dmoy

Mémoire EPHE-SVT- TORRE F. XXVII
Variable HTmax hauteur du plus haut Pin laricio de la placette (cm) (FORET)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>HTmax Aïtone</th>
<th>HTmax Valdu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>39</td>
<td>57</td>
</tr>
<tr>
<td>Minimum</td>
<td>27,0</td>
<td>25,0</td>
</tr>
<tr>
<td>Maximum</td>
<td>50,0</td>
<td>48,0</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>33,0</td>
<td>32,0</td>
</tr>
<tr>
<td>Médiane</td>
<td>37,0</td>
<td>35,0</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>41,5</td>
<td>37,0</td>
</tr>
<tr>
<td>Moyenne</td>
<td>37,4</td>
<td>34,4</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>32,8</td>
<td>19,2</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>5,7</td>
<td>4,4</td>
</tr>
</tbody>
</table>

Tableau A-9.9. Indicateurs statistiques de la variable HTmax

Variable G_HA surface terrière totale par hectare (FORET)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>G_HA Aïtone</th>
<th>G_HA Valdu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>39</td>
<td>57</td>
</tr>
<tr>
<td>Minimum</td>
<td>27,0</td>
<td>25,0</td>
</tr>
<tr>
<td>Maximum</td>
<td>50,0</td>
<td>48,0</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>33,0</td>
<td>32,0</td>
</tr>
<tr>
<td>Médiane</td>
<td>37,0</td>
<td>35,0</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>41,5</td>
<td>37,0</td>
</tr>
<tr>
<td>Moyenne</td>
<td>37,4</td>
<td>34,4</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>32,8</td>
<td>19,2</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>5,7</td>
<td>4,4</td>
</tr>
</tbody>
</table>

Tableau A-9.10. Indicateurs statistiques de la variable G_HA

Variable X_G proportion de la surface terrière des essences autres que le Pin laricio (FORET)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>X_G Aïtone</th>
<th>X_G Valdu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>39</td>
<td>57</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Maximum</td>
<td>0,39</td>
<td>0,41</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>0,01</td>
<td>0,00</td>
</tr>
<tr>
<td>Médiane</td>
<td>0,05</td>
<td>0,00</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>0,23</td>
<td>0,05</td>
</tr>
<tr>
<td>Moyenne</td>
<td>0,12</td>
<td>0,05</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>0,02</td>
<td>0,01</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>0,13</td>
<td>0,09</td>
</tr>
</tbody>
</table>

Tableau A-9.11. Indicateurs statistiques de la variable X_G

Figure A-9.9. Boîte à moustaches de la variable HTmax

Figure A-9.10. Boîte à moustaches de la variable G_HA

Figure A-9.11. Boîte à moustaches de la variable X_G
Variable GESS surface terrière des arbres des essences prioritaires (FORET)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>GESS</th>
<th>Aïtone</th>
<th>GESS</th>
<th>Valdu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d'observations</td>
<td>39</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>2,03</td>
<td>0,82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>7,33</td>
<td>7,78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>3,20</td>
<td>2,22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>3,89</td>
<td>3,55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>5,15</td>
<td>4,39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>4,08</td>
<td>3,63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>1,92</td>
<td>2,78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>1,39</td>
<td>1,67</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-9.12. Indicateurs statistiques de la variable GESS

Variable GESS1 surface terrière des arbres de la première essence prioritaire (FORET)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>GESS1</th>
<th>Aïtone</th>
<th>GESS1</th>
<th>Valdu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d'observations</td>
<td>39</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>1,35</td>
<td>0,82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>7,01</td>
<td>7,78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>2,42</td>
<td>2,22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>3,50</td>
<td>3,55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>4,58</td>
<td>4,39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>3,62</td>
<td>3,63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>1,86</td>
<td>2,78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>1,37</td>
<td>1,67</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-9.13. Indicateurs statistiques de la variable GESS1

Variable BoisMort nombre de bois morts debout (entiers+chandelles) (FORET)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>BoisMort</th>
<th>Aïtone</th>
<th>BoisMort</th>
<th>Valdu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d'observations</td>
<td>39</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>1,7</td>
<td>1,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>1,9</td>
<td>0,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>1,4</td>
<td>0,9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure A-9.12. Boîte à moustaches de la variable GESS

Figure A-9.13. Boîte à moustaches de la variable GESS1

Figure A-9.14. Boîte à moustaches de la variable BoisMort
Variable Nb_chandel|a nombre de chandel|elles (FORET)

<table>
<thead>
<tr>
<th>Statistique</th>
<th>Nb_chand</th>
<th>Aïtone</th>
<th>Nb_chand</th>
<th>Valdu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d'observations</td>
<td>39</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>1,4</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>2,1</td>
<td>1,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>1,4</td>
<td>1,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-9.15. Indicateurs statistiques de la variable Nb_chandel|elles

Figure A-9.15. Boîte à moustaches de la variable Nb_chandel|elles
ANNEXE A-10 : TYPOLOGIE IFN DES PEUPLEMENTS FORESTIERS PROCHES DES PLACETTES DU DISPOSITION VILLARD

Figure A-10.1. Répartition géographique des placettes du dispositif Villard en fonction des peuplements IFN (source ©IFN 2003).

Figure A-10.2. Répartition des placettes sans nid (98) selon l’IFN

Figure A-10.3. Répartition des placettes avec nid (96) selon l’IFN

Figure A-10.2. Répartition des placettes sans nid (98) selon l’IFN

Figure A-10.3. Répartition des placettes avec nid (96) selon l’IFN

Nombre de placettes sans nid de Sittelle en fonction du type de peuplement IFN

<table>
<thead>
<tr>
<th>Type de peuplement IFN</th>
<th>Nombre de placettes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>15</td>
</tr>
<tr>
<td>AH</td>
<td>15</td>
</tr>
<tr>
<td>FR2</td>
<td>5</td>
</tr>
<tr>
<td>WP</td>
<td>4</td>
</tr>
<tr>
<td>MP1</td>
<td>3</td>
</tr>
<tr>
<td>FR1</td>
<td>2</td>
</tr>
<tr>
<td>CNJ</td>
<td>1</td>
</tr>
<tr>
<td>CPJ</td>
<td>1</td>
</tr>
<tr>
<td>QF</td>
<td>1</td>
</tr>
<tr>
<td>ZP</td>
<td></td>
</tr>
</tbody>
</table>

Nombre de placettes avec nid de Sittelle en fonction du type de peuplement IFN

<table>
<thead>
<tr>
<th>Type de peuplement IFN</th>
<th>Nombre de placettes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>61</td>
</tr>
<tr>
<td>FR2</td>
<td>19</td>
</tr>
<tr>
<td>MP1</td>
<td>5</td>
</tr>
<tr>
<td>MP2</td>
<td>5</td>
</tr>
<tr>
<td>WP</td>
<td>3</td>
</tr>
<tr>
<td>FR1</td>
<td>2</td>
</tr>
<tr>
<td>CPJ</td>
<td>1</td>
</tr>
</tbody>
</table>

Mémoire EPHE-SVT- TORRE F. XXXI
<table>
<thead>
<tr>
<th>Type IFN</th>
<th>LIBELLE</th>
<th>AH</th>
<th>CN</th>
<th>CNI</th>
<th>CPJ</th>
<th>FR1</th>
<th>FR2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FUTAIE DE HETRE</td>
<td>FUTAIE DE PIN LARICIO D'AGE INDIFFERENCIE</td>
<td>JEUNE FUTAIE DE PIN LARICIO</td>
<td>FUTAIE FEMME AVEC PLUS DE 75% DE PIN DANS LE COUVERT A L'HECTARE NUL OU TRES FAIBLE, SANS CARACTERE DE PROTECTION</td>
<td>FUTAIE FEMME AVEC PLUS DE 75% DE PIN DANS LE COUVERT A L'HECTARE NUL OU TRES FAIBLE, SANS CARACTERE DE PROTECTION</td>
<td>FUTAIE MIXTE (FEUILLUS MAJ.)</td>
<td>FUTAIE MIXTE (CONIFERES MAJ.)</td>
</tr>
<tr>
<td>DEFINITION</td>
<td>FUTAIE FEMME AVEC PLUS DE 75% DE PIN LARICIO DANS LE COUVERT A L'HECTARE MOYEN OU ELEVE, SANS CARACTERE DE PROTECTION</td>
<td>FUTAIE FEMME AVEC PLUS DE 75% DE PIN LARICIO DANS LE COUVERT A L'HECTARE MOYEN OU ELEVE, SANS CARACTERE DE PROTECTION</td>
<td>FUTAIE FEMME AVEC PLUS DE 75% DE PIN LARICIO DANS LE COUVERT A L'HECTARE MOYEN OU ELEVE, SANS CARACTERE DE PROTECTION</td>
<td>FUTAIE FEMME AVEC PLUS DE 75% DE PIN LARICIO DANS LE COUVERT A L'HECTARE MOYEN OU ELEVE, SANS CARACTERE DE PROTECTION</td>
<td>FUTAIE FEMME AVEC PLUS DE 75% DE PIN LARICIO DANS LE COUVERT A L'HECTARE MOYEN OU ELEVE, SANS CARACTERE DE PROTECTION</td>
<td>FUTAIE FEMME AVEC PLUS DE 75% DE PIN LARICIO DANS LE COUVERT A L'HECTARE MOYEN OU ELEVE, SANS CARACTERE DE PROTECTION</td>
<td></td>
</tr>
</tbody>
</table>

| ABSENCE DE NID DE SITTELLE | 15 | 48 | 2 | 1 | 3 | 15 |
| PRESENCE DE NID DE SITTELLE | 0 | 61 | 0 | 1 | 2 | 19 |

<table>
<thead>
<tr>
<th>Type IFN</th>
<th>LIBELLE</th>
<th>MP1</th>
<th>MP2</th>
<th>QF</th>
<th>WP</th>
<th>ZP</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MELANGE DE FUTAIE DE PINS INDIFF. ET TAILLIS (FEUILLUS MAJ.)</td>
<td>MELANGE DE FUTAIE DE PINS INDIFF. ET TAILLIS (CONIF. MAJ.)</td>
<td>TAILLIS DE FEUILLUS INDIFFERENCES</td>
<td>BOISEMENT LACHE MONTAGNARD DE PINS INDIFFERENCES</td>
<td>GARRIGUE OU MAQUIS BOISE DE PINS INDIFFERENCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEFINITION</td>
<td>FORET FERMEE A DEUX ETAGES DANS LAQUELLE LE TAILLIS A UN COUVERT ABSOLU >= 25% (LA FUTAIE, OU LES PINS SONT PREP., AYANT ELLE-MEME AU MOINS 10% DE COUVERT ABSOLU SANS EXCEDER 65% DE CR, LES FEUILLUS AYANT AU MOINS 50% DE CR) SANS CARACTERE DE PROT.</td>
<td>FORET FERMEE A DEUX ETAGES DANS LAQUELLE LE TAILLIS A UN COUVERT ABSOLU >= 25% (LA FUTAIE, OU LES PINS SONT PREP., AYANT ELLE-MEME AU MOINS 10% DE COUVERT ABSOLU SANS EXCEDER 65% DE CR, LES FEUILLUS AYANT AU MOINS 50% DE CR) SANS CARACTERE DE PROT.</td>
<td>TAILLIS OU NI LE CHENE VERT, NI LE CHATAIGNIER, NI LE HETRE NI L'EUCALYPTUS N'ONT PLUS DE 75% DU COUVERT, SANS CARACTERE DE PROTECTION</td>
<td>FORET OUVRETE OU LES PINS SONT PREPONDERANTS DANS LE COUVERT, EN DEHORS DE LA ZONE PHYTOGEOGRAPHIQUE MEDITERRANEENN E, SANS CARACTERE DE PROTECTION</td>
<td>FORET OUVRETE OU LES PINS SONT PREPONDERANTS DANS LE COUVERT, EN DEHORS DE LA ZONE PHYTOGEOGRAPHIQUE MEDITERRANEENN E, SANS CARACTERE DE PROTECTION</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| ABSENCE DE NID DE SITTELLE | 4 | 3 | 1 | 5 | 1 | 98 |
| PRESENCE DE NID DE SITTELLE | 5 | 5 | 0 | 3 | 0 | 96 |

Tableau A-10.1. Tableau de contingence des placettes du dispositif Villard en fonction du type de peuplement IFN.
Figure A-10.4. Répartition des placettes avec nid par type de peuplement IFN et par forêt

Tableau A-10.1. Tableau des placettes avec nid par type de peuplement IFN et par forêt

<table>
<thead>
<tr>
<th>CODE_IFN</th>
<th>FOIET</th>
<th>CN</th>
<th>CPJ</th>
<th>FR1</th>
<th>FR2</th>
<th>MP1</th>
<th>MP2</th>
<th>WP</th>
<th>Total général</th>
</tr>
</thead>
<tbody>
<tr>
<td>AITONE (nb)</td>
<td>18</td>
<td>1</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>AITONE (%)</td>
<td>29,51</td>
<td>100,00</td>
<td>0</td>
<td>100,00</td>
<td>0</td>
<td>0</td>
<td>33,33</td>
<td>40,63</td>
<td></td>
</tr>
<tr>
<td>VALDUNIELLU (nb)</td>
<td>43</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>VALDUNIELLU (%)</td>
<td>70,49</td>
<td>0</td>
<td>100,00</td>
<td>0</td>
<td>100,00</td>
<td>100,00</td>
<td>66,67</td>
<td>59,37</td>
<td></td>
</tr>
<tr>
<td>Total général</td>
<td>61</td>
<td>1</td>
<td>2</td>
<td>19</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>96</td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-10.2. Tableau des types de peuplement IFN par forêt

<table>
<thead>
<tr>
<th>CODE_IFN</th>
<th>FOIET</th>
<th>CN</th>
<th>CPJ</th>
<th>FR1</th>
<th>FR2</th>
<th>MP1</th>
<th>MP2</th>
<th>WP</th>
<th>Total général</th>
</tr>
</thead>
<tbody>
<tr>
<td>AITONE (ha)</td>
<td>240,125</td>
<td>24,687</td>
<td>17,985</td>
<td>309,753</td>
<td>0</td>
<td>15,567</td>
<td>45,602</td>
<td>653,719</td>
<td></td>
</tr>
<tr>
<td>AITONE (%)</td>
<td>14,68</td>
<td>100,00</td>
<td>19,29</td>
<td>100,00</td>
<td>0</td>
<td>22,94</td>
<td>24,04</td>
<td>26,31</td>
<td></td>
</tr>
<tr>
<td>VALDUNIELLU (ha)</td>
<td>1396,145</td>
<td>0</td>
<td>75,242</td>
<td>0</td>
<td>162,804</td>
<td>52,300</td>
<td>144,126</td>
<td>1830,617</td>
<td></td>
</tr>
<tr>
<td>VALDUNIELLU (%)</td>
<td>85,32</td>
<td>0</td>
<td>80,71</td>
<td>0</td>
<td>100,00</td>
<td>77,06</td>
<td>75,96</td>
<td>73,69</td>
<td></td>
</tr>
<tr>
<td>Total général</td>
<td>1636,27</td>
<td>24,687</td>
<td>93,227</td>
<td>309,753</td>
<td>162,804</td>
<td>67,867</td>
<td>189,728</td>
<td>2484,336</td>
<td></td>
</tr>
</tbody>
</table>

Figure A-10.5. Répartition géographique des placettes avec nid en forêt de production d'Aitone en fonction du type de peuplement IFN.

Figure A-10.6. Répartition géographique des placettes avec nid en forêt de production de Valduniellu en fonction du type de peuplement IFN.
ANNEXE A-11 : TYPOLOGIE ONF DES PEUPLEMENTS FORESTIERS PROCHES DES PLACETTES DU DISPOSITIF VILLARD

<table>
<thead>
<tr>
<th>Définition</th>
<th>Type Valduniellu</th>
<th>Type retenu</th>
<th>Type Aitone</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semis gaulis perchis de Pin laricio</td>
<td>SGP</td>
<td>SGP</td>
<td>SGP</td>
<td>Semis gaulis perchis de Pin laricio</td>
</tr>
<tr>
<td>Semis gaulis perchis de Pin laricio avec réserves</td>
<td>SGP +R</td>
<td>SGP</td>
<td>SGP</td>
<td>Semis gaulis perchis de Pin laricio</td>
</tr>
<tr>
<td>Semis gaulis perchis de Pin laricio à sous étage de Bouleau verruqueux</td>
<td>SGP/BLX</td>
<td>SGP</td>
<td>SGP P.L+BV</td>
<td></td>
</tr>
<tr>
<td>Semis gaulis perchis de Pin laricio à sous étage de Bouleau verruqueux avec réserves</td>
<td>SGP/BLX +R</td>
<td>SGP</td>
<td>SGP P.L+BV</td>
<td></td>
</tr>
<tr>
<td>Jeune futaie de Pin laricio (30-60 ans)</td>
<td>JF</td>
<td>FD</td>
<td>P.L</td>
<td>Futaie dense de Pin laricio (30-120 ans)</td>
</tr>
<tr>
<td>Futaie de Pin laricio (60-120 ans)</td>
<td>F</td>
<td>FD</td>
<td>P.L</td>
<td>Futaie dense de Pin laricio (30-120 ans)</td>
</tr>
<tr>
<td>Futaie claire de Pin laricio (60-120 ans) avec réserves</td>
<td>F+R</td>
<td>FC</td>
<td>P.L</td>
<td>Futaie claire de Pin laricio (30-120 ans)</td>
</tr>
<tr>
<td>Futaie mûre de Pin laricio (120-180 ans)</td>
<td>FM</td>
<td>VFD</td>
<td>P.L</td>
<td>Vieille futaie dense de Pin laricio (>120 ans)</td>
</tr>
<tr>
<td>Vieille futaie claire de Pin laricio (>180 ans) avec semis-gaulis perchis de Pin laricio</td>
<td>VFC+SGP</td>
<td>VFC</td>
<td>P.L+ SGP P.L</td>
<td></td>
</tr>
<tr>
<td>Vieille futaie claire de Pin laricio (>180 ans)</td>
<td>VFC</td>
<td>VFC</td>
<td>P.L</td>
<td>Vieille futaie claire de Pin laricio (>120 ans)</td>
</tr>
<tr>
<td>Vieille futaie claire de Pin laricio (>180 ans) à sous étage de Bouleau verruqueux</td>
<td>VFC+BLX</td>
<td>VFC</td>
<td>P.L+BV</td>
<td></td>
</tr>
<tr>
<td>Vieille futaie claire de Hêtre (>120 ans)</td>
<td>VFC H (C)</td>
<td>VFC HET</td>
<td>VFC HET</td>
<td>Vieille futaie claire de Hêtre (>120ans)</td>
</tr>
<tr>
<td>Vieille futaie claire de Pin laricio (>120 ans)</td>
<td>VFC</td>
<td>VFC</td>
<td>P.L</td>
<td>Vieille futaie claire de Pin laricio (30-120 ans)</td>
</tr>
<tr>
<td>Vieille futaie claire de Pin laricio (>120 ans) et Sapin (30-90 ans) mélangées</td>
<td>VFC HET + FC P.L + FC S.P</td>
<td>VFC HET + FC P.L + FC S.P</td>
<td>Vieille futaie claire de Pin laricio (30-120 ans) et Sapin (30-90 ans) mélangées</td>
<td></td>
</tr>
<tr>
<td>Vieille futaie claire de Pin laricio (>120 ans) et futaie dense de Hêtre (30-80 ans) et futaies claires de Pin laricio (30-80 ans) et Sapin (30-90 ans) mélangées</td>
<td>VFC HET + FC P.L + FC S.P</td>
<td>VFC HET + FC P.L + FC S.P</td>
<td>Futaie dense de Hêtre (30-80 ans) et futaies claires de Pin laricio (30-80 ans) et Sapin (30-90 ans) mélangées</td>
<td></td>
</tr>
<tr>
<td>Vieille futaie claire de Pin laricio (30-120 ans) et futaie dense de Hêtre (30-80 ans)</td>
<td>VFC HET + FC P.L + FC S.P</td>
<td>VFC HET + FC P.L + FC S.P</td>
<td>Futaie dense de Hêtre (30-80 ans) et futaies claires de Pin laricio (30-80 ans) et Sapin (30-90 ans) mélangées</td>
<td></td>
</tr>
<tr>
<td>Vieille futaie claire de Pin laricio (30-120 ans) et futaie dense de Pin laricio (30-90 ans)</td>
<td>VFC HET + FC P.L + FC S.P</td>
<td>VFC HET + FC P.L + FC S.P</td>
<td>Futaie dense de Hêtre (30-80 ans) et futaies claires de Pin laricio (30-80 ans) et Sapin (30-90 ans) mélangées</td>
<td></td>
</tr>
<tr>
<td>Vieille futaie claire de Pin laricio (30-120 ans) et futaie dense de Hêtre (30-80 ans) et futaie claire de Sapin (30-90 ans)</td>
<td>VFC HET + FC P.L + FC S.P</td>
<td>VFC HET + FC P.L + FC S.P</td>
<td>Futaie dense de Hêtre (30-80 ans) et futaies claires de Pin laricio (30-80 ans) et Sapin (30-90 ans) mélangées</td>
<td></td>
</tr>
<tr>
<td>Vieille futaie claire de Pin laricio (30-120 ans) et futaie dense de Pin laricio (30-90 ans)</td>
<td>VFC HET + FC P.L + FC S.P</td>
<td>VFC HET + FC P.L + FC S.P</td>
<td>Futaie dense de Hêtre (30-80 ans) et futaies claires de Pin laricio (30-80 ans) et Sapin (30-90 ans) mélangées</td>
<td></td>
</tr>
<tr>
<td>Vieille futaie claire de Pin laricio (30-120 ans) et futaie dense de Sapin (30-90 ans)</td>
<td>VFC HET + FC P.L + FC S.P</td>
<td>VFC HET + FC P.L + FC S.P</td>
<td>Futaie dense de Hêtre (30-80 ans) et futaies claires de Pin laricio (30-80 ans) et Sapin (30-90 ans) mélangées</td>
<td></td>
</tr>
<tr>
<td>Taillis de feuillus divers, boulaie, aulnaie</td>
<td>T</td>
<td>T</td>
<td>AUL</td>
<td>Aulnaie</td>
</tr>
<tr>
<td>Landes à genêts ou à genévriers</td>
<td>LAND</td>
<td>LAN</td>
<td>LAN</td>
<td>Landes et pelouses</td>
</tr>
<tr>
<td>Zones rocheuses</td>
<td>R</td>
<td>ROC</td>
<td>ROC</td>
<td>Zones rocheuses</td>
</tr>
</tbody>
</table>

Tableau A-11.1. Table d’harmonisation des types de peuplements ONF des forêts de Valduniellu et Aitone
Tableau A-11.2. Table de correction des types aberrants et/ou incohérents

<table>
<thead>
<tr>
<th>Placettes</th>
<th>Ancien type</th>
<th>Nouveau type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>VFC P.L+SGP P.L</td>
<td>VFC P.L+BV</td>
</tr>
<tr>
<td>5</td>
<td>ROC</td>
<td>VFC P.L+BV</td>
</tr>
<tr>
<td>6</td>
<td>VFC P.L</td>
<td>VFC P.L+BV</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>VFC P.L+BV</td>
</tr>
<tr>
<td>8</td>
<td>SGP P.L</td>
<td>VFC P.L+BV</td>
</tr>
<tr>
<td>9</td>
<td>VFC P.L+SGP P.L</td>
<td>VFC P.L+BV</td>
</tr>
<tr>
<td>10</td>
<td>VFC P.L+SGP P.L</td>
<td>VFC P.L+BV</td>
</tr>
<tr>
<td>13</td>
<td>FD P.L</td>
<td>VFC P.L+BV</td>
</tr>
<tr>
<td>17</td>
<td>VFC P.L</td>
<td>VFC P.L+BV</td>
</tr>
<tr>
<td>24</td>
<td>VFD P.L</td>
<td>VFC P.L+SGP P.L</td>
</tr>
<tr>
<td>53</td>
<td>ROC</td>
<td>VFC P.L+SGP P.L</td>
</tr>
<tr>
<td>78</td>
<td>SGP P.L</td>
<td>VFC P.L+SGP P.L</td>
</tr>
<tr>
<td>82</td>
<td>T</td>
<td>VFC P.L+BV</td>
</tr>
<tr>
<td>88</td>
<td>ROC</td>
<td>VFC P.L+SGP P.L</td>
</tr>
<tr>
<td>92</td>
<td>VFC P.L+SGP P.L</td>
<td>VFC P.L+BV</td>
</tr>
<tr>
<td>93</td>
<td>VFC P.L</td>
<td>VFC P.L+BV</td>
</tr>
<tr>
<td>106</td>
<td>VFD P.L</td>
<td>VFC P.L+BV</td>
</tr>
<tr>
<td>108</td>
<td>ROC</td>
<td>FC P.L</td>
</tr>
<tr>
<td>121</td>
<td>FD P.L + FC S.P</td>
<td>FD P.L + FC HET</td>
</tr>
<tr>
<td>122</td>
<td>FD P.L + FC S.P</td>
<td>FD P.L + FC HET</td>
</tr>
<tr>
<td>139</td>
<td>SGP P.L</td>
<td>VFD P.L</td>
</tr>
<tr>
<td>140</td>
<td>SGP P.L</td>
<td>VFD P.L</td>
</tr>
<tr>
<td>141</td>
<td>SGP P.L</td>
<td>VFD P.L</td>
</tr>
<tr>
<td>143</td>
<td>FD P.L</td>
<td>FC HET + FC P.L + FC S.P</td>
</tr>
<tr>
<td>146</td>
<td>VFD P.L</td>
<td>FC P.L + FC HET</td>
</tr>
<tr>
<td>147</td>
<td>FC P.L + FC S.P</td>
<td>FC HET + FC P.L + FC S.P</td>
</tr>
<tr>
<td>148</td>
<td>VFC P.L</td>
<td>VFC P.L+FD HET</td>
</tr>
<tr>
<td>151</td>
<td>FC HET + FC P.L + FC S.P</td>
<td>FC P.L + FC S.P</td>
</tr>
<tr>
<td>155</td>
<td>VFC P.L</td>
<td>FC HET + FC P.L + FC S.P</td>
</tr>
<tr>
<td>157</td>
<td>VFD P.L</td>
<td>FC P.L + FC HET</td>
</tr>
<tr>
<td>158</td>
<td>VFC P.L</td>
<td>VFC P.L+FD HET</td>
</tr>
<tr>
<td>165</td>
<td>ROC</td>
<td>FC P.L + FC HET</td>
</tr>
<tr>
<td>167</td>
<td>FD P.L</td>
<td>FC HET + FC P.L + FC S.P</td>
</tr>
<tr>
<td>189</td>
<td>VFD P.L</td>
<td>FD P.L+FD HET</td>
</tr>
</tbody>
</table>

Tableau A-11.3. Tableau de répartition des placettes avec nid par type de peuplement ONF et par forêt.

<table>
<thead>
<tr>
<th>FORÊT/ PEUPLEMENT</th>
<th>TYPE DE PEUPLEMENT</th>
<th>Aitone</th>
<th>Valduniellu</th>
<th>Total général</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFD P.L</td>
<td></td>
<td>8</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>FD P.L</td>
<td></td>
<td>7</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>VFC P.L+BV</td>
<td></td>
<td>0</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>VFC P.L+SGP P.L</td>
<td></td>
<td>0</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>FC P.L + FC HET</td>
<td></td>
<td>7</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>FC HET + FC P.L + FC S.P</td>
<td></td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>FC P.L + FC S.P</td>
<td></td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>VFC P.L</td>
<td></td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>FD P.L + FD S.P</td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>FD P.L + FC HET</td>
<td></td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>VFC P.L + FD HET</td>
<td></td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>FD P.L + FD HET</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total général</td>
<td></td>
<td>39</td>
<td>57</td>
<td>96</td>
</tr>
</tbody>
</table>

Figure A-11.1. Exemple de correction à la photo aérienne.

Figure A-11.2. Diagramme de répartition des placettes avec nid par type de peuplement ONF et par forêt.
Tableau A-11.4. Tableau de répartition des types de peuplement ONF contenant des placettes avec nid par forêt.

<table>
<thead>
<tr>
<th>Type de peuplement</th>
<th>VF PL P</th>
<th>VFC P.L+SG P.L</th>
<th>FD P.L</th>
<th>VFC P.L+BV</th>
<th>FC P.L + FC HET</th>
<th>FC HET + FC P.L + FC S.P</th>
<th>FC P.L + S.P</th>
<th>VFC P.L</th>
<th>FD P.L + FD S.P</th>
<th>FD P.L + FC HET</th>
<th>FD P.L + FD HET</th>
<th>VFC P.L+FD HET</th>
<th>Total général</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aitone (surface ha)</td>
<td>251,44</td>
<td>0,00</td>
<td>142,30</td>
<td>0,00</td>
<td>46,38</td>
<td>47,30</td>
<td>46,74</td>
<td>0,00</td>
<td>44,05</td>
<td>54,81</td>
<td>34,08</td>
<td>10,30</td>
<td>677,40</td>
</tr>
<tr>
<td>Aitone (% surface forêt)</td>
<td>37,12%</td>
<td>0,00%</td>
<td>21,01%</td>
<td>0,00%</td>
<td>6,85%</td>
<td>6,98%</td>
<td>6,90%</td>
<td>0,00%</td>
<td>6,50%</td>
<td>8,09%</td>
<td>5,03%</td>
<td>1,52%</td>
<td>100,00%</td>
</tr>
<tr>
<td>Valduniellu (surface ha)</td>
<td>600,25</td>
<td>482,42</td>
<td>396,23</td>
<td>166,89</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>175,03</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>1820,83</td>
</tr>
<tr>
<td>Valduniellu (% surface forêt)</td>
<td>32,97%</td>
<td>26,49%</td>
<td>21,76%</td>
<td>9,17%</td>
<td>0,00%</td>
<td>0,00%</td>
<td>0,00%</td>
<td>9,61%</td>
<td>0,00%</td>
<td>0,00%</td>
<td>0,00%</td>
<td>0,00%</td>
<td>100,00%</td>
</tr>
<tr>
<td>Total général</td>
<td>851,69</td>
<td>482,42</td>
<td>538,54</td>
<td>166,89</td>
<td>46,38</td>
<td>47,30</td>
<td>46,74</td>
<td>175,03</td>
<td>44,05</td>
<td>54,81</td>
<td>22,29</td>
<td>10,30</td>
<td>2498,23</td>
</tr>
</tbody>
</table>

Tableau A-11.5. Tableau de regroupement des types de peuplement ONF en fonction de l’âge de la futaie de Pin laricio et de sa composition.

<table>
<thead>
<tr>
<th>FORET/Peuplement simplifié</th>
<th>VF PL P</th>
<th>VF PL M</th>
<th>F PL P</th>
<th>F PL M</th>
<th>Tous peuplements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aitone (placettes)</td>
<td>8</td>
<td>2</td>
<td>7</td>
<td>22</td>
<td>39</td>
</tr>
<tr>
<td>Valduniellu (placettes)</td>
<td>36</td>
<td>12</td>
<td>16</td>
<td>0</td>
<td>57</td>
</tr>
<tr>
<td>Total placettes</td>
<td>44</td>
<td>14</td>
<td>16</td>
<td>22</td>
<td>96</td>
</tr>
<tr>
<td>Aitone (surface ha)</td>
<td>251,44</td>
<td>10,30</td>
<td>142,30</td>
<td>273,36</td>
<td>677,40</td>
</tr>
<tr>
<td>Valduniellu (surface ha)</td>
<td>1 257,70</td>
<td>166,89</td>
<td>396,23</td>
<td>0,00</td>
<td>1 820,83</td>
</tr>
<tr>
<td>Total surface</td>
<td>1 509,14</td>
<td>177,19</td>
<td>538,54</td>
<td>273,36</td>
<td>2 498,23</td>
</tr>
<tr>
<td>Aitone (densité aux 10 ha)</td>
<td>0,32</td>
<td>1,94</td>
<td>0,49</td>
<td>0,80</td>
<td>0,58</td>
</tr>
<tr>
<td>Valduniellu (densité aux 10 ha)</td>
<td>0,29</td>
<td>0,72</td>
<td>0,23</td>
<td>0,00</td>
<td>0,31</td>
</tr>
<tr>
<td>Densité moyenne du massif</td>
<td>0,29</td>
<td>0,79</td>
<td>0,30</td>
<td>0,80</td>
<td>0,38</td>
</tr>
</tbody>
</table>

Tableau A-11.6. Tableau synthétique des densités de placettes avec nid par types de peuplement ONF simplifiés et par forêt.

Figure A-11.3. Répartition des placettes avec nid de Sittelle en fonction des peuplements favorables de Pin laricio du dispositif Villard groupés selon leur âge.

Figure A-11.4. Répartition des placettes avec nid de Sittelle en fonction des peuplements favorables de Pin laricio du dispositif Villard groupés selon leur composition.
ANNEXE A-12 : EXAMEN DE LA COMPOSITION EN TYPES DE PEUPLEMENTS ONF DES TERRITOIRES DE SITTELLE CALCULES SELON LA METHODE DE VORONOÏ (MASSIF AITONE-VALDUNIELLU)

Figure A-12.1. Carte des territoires de sittelles calculés selon la méthode de Voronoï dans la partie Aïtone du dispositif Villard.

Figure A-12.2. Carte des territoires de sittelles calculés selon la méthode de Voronoï dans la partie Valduniellu du dispositif Villard.

Figure A-12.3. Histogramme des surfaces (ha) des territoires de sittelles dans la partie Aïtone du dispositif Villard.

Figure A-12.4. Histogramme des surfaces (ha) des territoires de sittelles dans la partie Valduniellu du dispositif Villard.

Figure A-12.5. Distribution des territoires selon leur composition en surface par type de peuplement ONF sur le 1er plan de l’ACP territoires/types de peuplements ONF.

Figure A-12.6. Cercle de corrélation des types de peuplements des forêts d’Aïtone et Valduniellu sur le 1er plan de l’ACP territoires/types de peuplements ONF.

Mémoire EPHE-SVT- TORRE F. XXXVIII
Figure A-12.7. Graphiques de l’analyse discriminante « Aitone/Valduniellu » basée sur l’ACP des territoires Voronoi (surfaces) en fonction des types de peuplements ONF (surfaces), avec pour chacun d’eux le score de l’analyse en abscisse et la valeur de la variable surface de type de peuplement (centrée réduite) en ordonnée.

Figure A-12.8. Histogramme du test de permutation démontrant la significativité de la discrimination Aitone/Valduniellu.

Std.Obs Expectation Variance
8.184388e+00 1.057188e-02 4.461090e-06
Figure A-12.9. Choix des variables dans la régression linéaire multiple Log S_T~surface des peuplements selon la méthode regsubsets du package leaps avec l’indicateur BIC pour la forêt de Aitone.

Figure A-12.10. Choix des variables dans la régression linéaire multiple Log S_T~surface des peuplements selon la méthode regsubsets du package leaps avec l’indicateur BIC pour la forêt de Valduniellu.

Figure A-12.11. Vérification graphique du modèle de régression multiple de la forêt de Aitone :

\[
\text{LOG}_{\text{ST}} = (-28 + VFC.P.L + SGP.P.L + VFD.P.L + FD.P.L + FC.P.L + FC.HET + FC.S.P + VFC.P.L + SGP.P.L)
\]

Figure A-12.12. Vérification graphique du modèle de régression multiple de la forêt de Valduniellu :

\[
\text{LOG}_{\text{ST}} = (-62 + VFC.P.L + SGP.P.L + VFD.P.L + FD.P.L + FC.P.L + FC.HET + FC.S.P + VFC.P.L + SGP.P.L + VFD.P.L)
\]
<table>
<thead>
<tr>
<th>parquet</th>
<th>série</th>
<th>parcelle</th>
<th>Coupe</th>
<th>Surface Aménagement m²</th>
<th>Volume Aménagement m³</th>
<th>Année de martelage</th>
<th>Année d'achat</th>
<th>Permis d'exploiter</th>
<th>Décharge</th>
<th>Surface exploitée ha</th>
<th>Volume exploité m³</th>
<th>Type de coupe</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>1</td>
<td>Régénération</td>
<td>1,73</td>
<td>63,38</td>
<td>24/09/1997</td>
<td>1,74</td>
<td>194,81</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>2</td>
<td>Définitive</td>
<td>0,81</td>
<td>58,43</td>
<td>08/10/2004</td>
<td>1,74</td>
<td>34,63</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>3</td>
<td>Régénération</td>
<td>4,77</td>
<td>174,52</td>
<td>24/09/1997</td>
<td>4,95</td>
<td>554,19</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>4</td>
<td>Définitive</td>
<td>2,23</td>
<td>160,88</td>
<td>08/10/2004</td>
<td>4,95</td>
<td>98,53</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>5</td>
<td>Régénération</td>
<td>2,40</td>
<td>317,30</td>
<td>22/09/1994</td>
<td>1,80</td>
<td>396,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>6</td>
<td>Définitive</td>
<td>1,95</td>
<td>140,72</td>
<td>08/10/2004</td>
<td>1,80</td>
<td>35,83</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>7</td>
<td>Régénération</td>
<td>1,98</td>
<td>514,34</td>
<td>25/09/1998</td>
<td>1,41</td>
<td>435,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>8</td>
<td>Définitive</td>
<td>2,50</td>
<td>450,20</td>
<td>07/10/2004</td>
<td>1,41</td>
<td>734,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>9</td>
<td>Régénération</td>
<td>1,80</td>
<td>467,61</td>
<td>25/09/1998</td>
<td>0,44</td>
<td>124,25</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>10</td>
<td>Définitive</td>
<td>1,10</td>
<td>381,00</td>
<td>07/10/2004</td>
<td>0,70</td>
<td>252,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>11</td>
<td>Régénération</td>
<td>2,50</td>
<td>302,00</td>
<td>22/09/1994</td>
<td>1,94</td>
<td>779,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>12</td>
<td>Définitive</td>
<td>3,50</td>
<td>391,30</td>
<td>28/09/2000</td>
<td>1,94</td>
<td>631,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>13</td>
<td>Régénération</td>
<td>1,23</td>
<td>319,85</td>
<td>25/09/1998</td>
<td>2,48</td>
<td>770,42</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>14</td>
<td>Définitive</td>
<td>2,40</td>
<td>348,80</td>
<td>05/11/2004</td>
<td>2,48</td>
<td>516,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>15</td>
<td>Régénération</td>
<td>2,80</td>
<td>438,60</td>
<td>1991/06/2000</td>
<td>5,90</td>
<td>641,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>16</td>
<td>Définitive</td>
<td>2,80</td>
<td>372,20</td>
<td>22/09/1998</td>
<td>5,90</td>
<td>1366,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>17</td>
<td>Régénération</td>
<td>2,50</td>
<td>271,60</td>
<td>23/09/2000</td>
<td>4,75</td>
<td>872,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>18</td>
<td>Régénération</td>
<td>2,70</td>
<td>346,40</td>
<td>29/11/1995</td>
<td>2,42</td>
<td>223,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>19</td>
<td>Régénération</td>
<td>3,00</td>
<td>346,40</td>
<td>2004/12/2000</td>
<td>2,42</td>
<td>344,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>20</td>
<td>Définitive</td>
<td>1,90</td>
<td>391,30</td>
<td>02/06/1994</td>
<td>2,53</td>
<td>154,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>1</td>
<td>Régénération</td>
<td>1,70</td>
<td>381,00</td>
<td>1999/06/2000</td>
<td>7,17</td>
<td>200,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>2</td>
<td>Définitive</td>
<td>1,70</td>
<td>381,00</td>
<td>2000/07/2004</td>
<td>7,17</td>
<td>360,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>3</td>
<td>Régénération</td>
<td>5,50</td>
<td>175,70</td>
<td>05/10/1995</td>
<td>3,66</td>
<td>320,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>4</td>
<td>Régénération</td>
<td>2,80</td>
<td>590,60</td>
<td>03/09/1999</td>
<td>2,17</td>
<td>833,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>5</td>
<td>Régénération</td>
<td>2,80</td>
<td>590,60</td>
<td>22/09/1998</td>
<td>2,17</td>
<td>1286,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>6</td>
<td>Régénération</td>
<td>0,50</td>
<td>1125,60</td>
<td>05/10/1995</td>
<td>0,67</td>
<td>583,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>7</td>
<td>Régénération</td>
<td>7,00</td>
<td>1125,60</td>
<td>2003/12/2000</td>
<td>5,63</td>
<td>351,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>8</td>
<td>Régénération</td>
<td>7,00</td>
<td>1125,60</td>
<td>2003/07/2000</td>
<td>5,63</td>
<td>364,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>9</td>
<td>Régénération</td>
<td>2,50</td>
<td>369,00</td>
<td>25/09/1998</td>
<td>1,18</td>
<td>192,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>10</td>
<td>Régénération</td>
<td>1,70</td>
<td>82,00</td>
<td>07/10/2000</td>
<td>1,18</td>
<td>96,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>11</td>
<td>Régénération</td>
<td>1,10</td>
<td>744,70</td>
<td>1992/09/2002</td>
<td>2,34</td>
<td>746,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>12</td>
<td>Régénération</td>
<td>1,90</td>
<td>744,70</td>
<td>05/10/1995</td>
<td>2,34</td>
<td>205,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>13</td>
<td>Régénération</td>
<td>1,90</td>
<td>744,70</td>
<td>2004/10/2000</td>
<td>2,34</td>
<td>1130,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>14</td>
<td>Régénération</td>
<td>0,30</td>
<td>NA</td>
<td>2003/10/2003</td>
<td>0,30</td>
<td>108,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>15</td>
<td>Régénération</td>
<td>2,80</td>
<td>758,91</td>
<td>24/09/1997</td>
<td>2,36</td>
<td>448,47</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>16</td>
<td>Régénération</td>
<td>1,80</td>
<td>780,10</td>
<td>2003/12/2000</td>
<td>2,36</td>
<td>469,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>17</td>
<td>Régénération</td>
<td>1,30</td>
<td>744,10</td>
<td>22/09/1994</td>
<td>0,91</td>
<td>199,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>18</td>
<td>Régénération</td>
<td>1,30</td>
<td>744,10</td>
<td>2003/02/2003</td>
<td>0,91</td>
<td>479,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>19</td>
<td>Régénération</td>
<td>2,40</td>
<td>208,60</td>
<td>22/09/1998</td>
<td>1,26</td>
<td>402,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>20</td>
<td>Définitive</td>
<td>4,44</td>
<td>NA</td>
<td>2002/05/2002</td>
<td>0,8</td>
<td>24,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>21</td>
<td>Régénération</td>
<td>5,00</td>
<td>456,10</td>
<td>25/09/1998</td>
<td>4,31</td>
<td>654,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>22</td>
<td>Régénération</td>
<td>2,02</td>
<td>673,80</td>
<td>24/09/1997</td>
<td>1,55</td>
<td>294,53</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>23</td>
<td>Régénération</td>
<td>2,50</td>
<td>NA</td>
<td>2003/01/2003</td>
<td>1,55</td>
<td>594,00</td>
<td>SECO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>108,34</td>
<td>18 600,26</td>
<td></td>
<td>113,66</td>
<td>19 494,30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>parquet</td>
<td>série</td>
<td>parcelle</td>
<td>Coupe</td>
<td>Surface</td>
<td>Année de</td>
<td>Année d'achat</td>
<td>Permis</td>
<td>Décharge</td>
<td>Surface</td>
<td>Volume</td>
<td>Type de coupe</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td>---------</td>
<td>----------</td>
<td>--------------</td>
<td>--------</td>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aménagement</td>
<td>Aménagement</td>
<td>de</td>
<td>d'exploiter</td>
<td>d'exploiter</td>
<td>exploité</td>
<td>exploité</td>
<td>coupe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ha</td>
<td>ha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>1</td>
<td>17</td>
<td>Régénération</td>
<td>5,00</td>
<td>30/09/1993</td>
<td>05/01/1999</td>
<td>05/11/2001</td>
<td>18,91</td>
<td>659,00</td>
<td>ENSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>1</td>
<td>17</td>
<td>Régénération</td>
<td>6,00</td>
<td>1999</td>
<td>23/09/1999</td>
<td>05/10/1999</td>
<td>18,91</td>
<td>2540,00</td>
<td>DEFI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>1</td>
<td>23</td>
<td>Régénération</td>
<td>3,00</td>
<td>30/09/1993</td>
<td>1,49</td>
<td>657,00</td>
<td>ENSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>1</td>
<td>23p</td>
<td>Régénération</td>
<td>4,00</td>
<td>1999</td>
<td>23/09/1999</td>
<td>14/10/1999</td>
<td>1,49</td>
<td>869,00</td>
<td>DEFI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>1</td>
<td>27p</td>
<td>Régénération</td>
<td>2,40</td>
<td>1999</td>
<td>23/09/1999</td>
<td>05/10/1999</td>
<td>2,40</td>
<td>744,00</td>
<td>REGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>1</td>
<td>28</td>
<td>Régénération</td>
<td>3,40</td>
<td>25/09/1996</td>
<td>02/10/1996</td>
<td>16/05/1997</td>
<td>1,99</td>
<td>283,00</td>
<td>REGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td>1</td>
<td>37</td>
<td>Régénération</td>
<td>8,70</td>
<td>25/09/1996</td>
<td>04/02/1999</td>
<td>3,52</td>
<td>489,00</td>
<td>DEFI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td>1</td>
<td>37</td>
<td>Régénération</td>
<td>4,80</td>
<td>2000</td>
<td>28/09/2000</td>
<td>15/05/2001</td>
<td>3,52</td>
<td>798,00</td>
<td>DEFI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XIV</td>
<td>1</td>
<td>40</td>
<td>Régénération</td>
<td>2,00</td>
<td>22/09/1994</td>
<td>3,13</td>
<td>717,00</td>
<td>DEFI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XIX</td>
<td>1</td>
<td>43</td>
<td>Régénération</td>
<td>4,50</td>
<td>22/09/1994</td>
<td>5,54</td>
<td>463,00</td>
<td>ENSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XIX</td>
<td>1</td>
<td>43</td>
<td>Régénération</td>
<td>4,00</td>
<td>2001</td>
<td>04/10/2001</td>
<td>22/10/2002</td>
<td>5,54</td>
<td>734,00</td>
<td>DEFI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XX</td>
<td>1</td>
<td>44</td>
<td>Régénération</td>
<td>8,50</td>
<td>05/10/1995</td>
<td>13,85</td>
<td>2486,00</td>
<td>ENSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XX</td>
<td>1</td>
<td>44</td>
<td>Régénération</td>
<td>2,50</td>
<td>24/09/1997</td>
<td>17/03/1998</td>
<td>13,85</td>
<td>1350,00</td>
<td>DEFI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXI</td>
<td>1</td>
<td>45</td>
<td>Régénération</td>
<td>7,30</td>
<td>2000</td>
<td>28/09/2000</td>
<td>23/10/2000</td>
<td>6,96</td>
<td>555,00</td>
<td>ENSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXIII</td>
<td>1</td>
<td>36</td>
<td>Régénération</td>
<td>4,30</td>
<td>22/09/1998</td>
<td>28/01/2000</td>
<td>10,34</td>
<td>744,00</td>
<td>DEFI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXIV</td>
<td>1</td>
<td>47</td>
<td>Régénération</td>
<td>8,70</td>
<td>1993</td>
<td>30/09/1993</td>
<td>9,54</td>
<td>1028,00</td>
<td>ENSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXIV</td>
<td>1</td>
<td>47</td>
<td>Définitive</td>
<td>9,00</td>
<td>2004</td>
<td>07/10/2004</td>
<td>30/04/2006</td>
<td>9,54</td>
<td>1246,00</td>
<td>DEFI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXVI</td>
<td>1</td>
<td>53</td>
<td>Régénération</td>
<td>6,50</td>
<td>25/09/1996</td>
<td>02/10/1996</td>
<td>8,16</td>
<td>709,00</td>
<td>DEFI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXVII</td>
<td>1</td>
<td>48</td>
<td>Régénération</td>
<td>4,50</td>
<td>22/09/1994</td>
<td>4,25</td>
<td>466,00</td>
<td>DEFI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXVIII</td>
<td>1</td>
<td>54</td>
<td>Régénération</td>
<td>3,50</td>
<td>2001</td>
<td>23/10/2001</td>
<td>6,53</td>
<td>853,00</td>
<td>DEFI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXIX</td>
<td>1</td>
<td>50</td>
<td>Régénération</td>
<td>6,00</td>
<td>1992</td>
<td>24/09/1992</td>
<td>7,02</td>
<td>640,00</td>
<td>ENSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXIX</td>
<td>1</td>
<td>50</td>
<td>Régénération</td>
<td>2,00</td>
<td>24/09/1997</td>
<td>17/03/1998</td>
<td>7,02</td>
<td>990,00</td>
<td>DEFI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXX</td>
<td>1</td>
<td>50</td>
<td>Régénération</td>
<td>4,90</td>
<td>1992</td>
<td>24/09/1992</td>
<td>8,52</td>
<td>785,00</td>
<td>ENSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXX</td>
<td>1</td>
<td>50</td>
<td>Régénération</td>
<td>4,90</td>
<td>2000</td>
<td>28/09/2000</td>
<td>25/04/2002</td>
<td>8,52</td>
<td>540,00</td>
<td>DEFI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXXVII</td>
<td>1</td>
<td>56</td>
<td>Régénération</td>
<td>7,00</td>
<td>22/09/1994</td>
<td>7,04</td>
<td>1762,00</td>
<td>ENSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXXVII</td>
<td>1</td>
<td>56</td>
<td>Régénération</td>
<td>7,00</td>
<td>2000</td>
<td>28/09/2000</td>
<td>25/04/2002</td>
<td>7,04</td>
<td>847,00</td>
<td>DEFI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXXVIII</td>
<td>1</td>
<td>63</td>
<td>Régénération</td>
<td>4,50</td>
<td>1993</td>
<td>25/09/1994</td>
<td>6,17</td>
<td>945,00</td>
<td>ENSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXXVIII</td>
<td>1</td>
<td>63</td>
<td>Régénération</td>
<td>5,00</td>
<td>2000</td>
<td>04/10/2001</td>
<td>01/01/2002</td>
<td>6,27</td>
<td>1105,00</td>
<td>DEFI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXXIX</td>
<td>1</td>
<td>60</td>
<td>Régénération</td>
<td>6,00</td>
<td>1992</td>
<td>03/06/1992</td>
<td>6,99</td>
<td>1428,00</td>
<td>ENSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXXIX</td>
<td>1</td>
<td>61</td>
<td>Régénération</td>
<td>5,00</td>
<td>1999</td>
<td>23/09/1999</td>
<td>06/06/2001</td>
<td>6,99</td>
<td>353,00</td>
<td>DEFI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XLI</td>
<td>1</td>
<td>9</td>
<td>Régénération</td>
<td>8,00</td>
<td>1992</td>
<td>24/09/1992</td>
<td>11,08</td>
<td>620,00</td>
<td>ENSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>166,40</td>
<td>236,47</td>
<td>28 700,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure A-13.1. Localisation des nids de sittelles de la forêt d’Aitone susceptibles d’être détruits lors de la mise en œuvre de l’aménagement 2004-2019

Figure A-13.2. Localisation des nids de sittelles de la forêt de Valduniellu susceptibles d’être détruits lors de la mise en œuvre de l’aménagement 2007-2026
ANNEXE A-14 : COMPARAISON DES MOYENNES DES VARIABLES DENDROMÉTRIQUES DES PLACETTES SANS NID ET AVEC NID DE LA FT DE ROSPA-SORBA

Tableau A-14.1. Indicateurs statistiques de la variable L_PER_HA

<table>
<thead>
<tr>
<th>Statistique</th>
<th>L_PER_HA</th>
<th>L_PER_HA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SITTELLE-ABSENCE</td>
<td>SITTELLE-PRESENCE</td>
</tr>
<tr>
<td>Nb. d'observations</td>
<td>21</td>
<td>47</td>
</tr>
<tr>
<td>Nb. de valeurs manquantes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Maximum</td>
<td>165,240</td>
<td>201,050</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>15,200</td>
<td>8,915</td>
</tr>
<tr>
<td>Médiane</td>
<td>27,370</td>
<td>30,610</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>47,800</td>
<td>58,545</td>
</tr>
<tr>
<td>Moyenne</td>
<td>43,482</td>
<td>42,933</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>2084,747</td>
<td>2102,328</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>45,659</td>
<td>45,851</td>
</tr>
</tbody>
</table>

Tableau A-14.2. Indicateurs statistiques de la variable L_PB_HA

<table>
<thead>
<tr>
<th>Statistique</th>
<th>L_PB_HA</th>
<th>L_PB_HA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SITTELLE-ABSENCE</td>
<td>SITTELLE-PRESENCE</td>
</tr>
<tr>
<td>Nb. d'observations</td>
<td>21</td>
<td>47</td>
</tr>
<tr>
<td>Nb. de valeurs manquantes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Maximum</td>
<td>136,100</td>
<td>117,690</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>18,250</td>
<td>14,465</td>
</tr>
<tr>
<td>Médiane</td>
<td>30,860</td>
<td>27,220</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>56,770</td>
<td>42,175</td>
</tr>
<tr>
<td>Moyenne</td>
<td>40,469</td>
<td>32,437</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>1094,702</td>
<td>618,611</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>33,086</td>
<td>24,872</td>
</tr>
</tbody>
</table>

Tableau A-14.3. Indicateurs statistiques de la variable L_BM_HA

<table>
<thead>
<tr>
<th>Statistique</th>
<th>L_BM_HA</th>
<th>L_BM_HA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SITTELLE-ABSENCE</td>
<td>SITTELLE-PRESENCE</td>
</tr>
<tr>
<td>Nb. d'observations</td>
<td>21</td>
<td>47</td>
</tr>
<tr>
<td>Nb. de valeurs manquantes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,000</td>
<td>7,230</td>
</tr>
<tr>
<td>Maximum</td>
<td>185,180</td>
<td>221,120</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>50,820</td>
<td>44,630</td>
</tr>
<tr>
<td>Médiane</td>
<td>70,300</td>
<td>77,340</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>95,790</td>
<td>102,645</td>
</tr>
<tr>
<td>Moyenne</td>
<td>76,615</td>
<td>79,199</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>2237,012</td>
<td>2219,020</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>47,297</td>
<td>47,106</td>
</tr>
</tbody>
</table>

Figure A-14.1. Boîte à moustaches de la variable L_PER_HA

Figure A-14.2. Boîte à moustaches de la variable L_PB_HA

Figure A-14.3. Boîte à moustaches de la variable L_BM_HA
<table>
<thead>
<tr>
<th>Statistique</th>
<th>L_GB_HA</th>
<th>L_GB_HA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SITTELLE-ABSENCE</td>
<td>SITTELLE-PRESENCE</td>
</tr>
<tr>
<td>Nb. d’observations</td>
<td>21</td>
<td>47</td>
</tr>
<tr>
<td>Nb. de valeurs manquantes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,000</td>
<td>7,850</td>
</tr>
<tr>
<td>Maximum</td>
<td>72,620</td>
<td>99,270</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>15,620</td>
<td>26,865</td>
</tr>
<tr>
<td>Médiane</td>
<td>19,190</td>
<td>35,960</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>43,300</td>
<td>53,655</td>
</tr>
<tr>
<td>Moyenne</td>
<td>27,601</td>
<td>40,363</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>409,731</td>
<td>398,748</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>20,242</td>
<td>19,969</td>
</tr>
</tbody>
</table>

Tableau A-14.4. Indicateurs statistiques de la variable L_GB_HA

<table>
<thead>
<tr>
<th>Statistique</th>
<th>L_TGB_HA</th>
<th>L_TGB_HA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SITTELLE-ABSENCE</td>
<td>SITTELLE-PRESENCE</td>
</tr>
<tr>
<td>Nb. d’observations</td>
<td>21</td>
<td>47</td>
</tr>
<tr>
<td>Nb. de valeurs manquantes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Maximum</td>
<td>64,490</td>
<td>56,100</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>3,680</td>
<td>7,795</td>
</tr>
<tr>
<td>Médiane</td>
<td>4,030</td>
<td>17,930</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>14,150</td>
<td>31,965</td>
</tr>
<tr>
<td>Moyenne</td>
<td>11,058</td>
<td>20,869</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>209,965</td>
<td>209,048</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>14,490</td>
<td>14,459</td>
</tr>
</tbody>
</table>

Tableau A-14.5. Indicateurs statistiques de la variable L_TGB_HA

<table>
<thead>
<tr>
<th>Statistique</th>
<th>L_RGB_HA</th>
<th>L_RGB_HA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SITTELLE-ABSENCE</td>
<td>SITTELLE-PRESENCE</td>
</tr>
<tr>
<td>Nb. d’observations</td>
<td>21</td>
<td>47</td>
</tr>
<tr>
<td>Nb. de valeurs manquantes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,000</td>
<td>11,770</td>
</tr>
<tr>
<td>Maximum</td>
<td>87,260</td>
<td>106,620</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>19,520</td>
<td>49,510</td>
</tr>
<tr>
<td>Médiane</td>
<td>38,580</td>
<td>61,110</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>47,240</td>
<td>77,010</td>
</tr>
<tr>
<td>Moyenne</td>
<td>38,659</td>
<td>61,231</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>611,867</td>
<td>445,361</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>24,736</td>
<td>21,104</td>
</tr>
</tbody>
</table>

Tableau A-14.6. Indicateurs statistiques de la variable L_RGB_HA

Figure A-14.4. Boîte à moustaches de la variable L_GB_HA

Figure A-14.5. Boîte à moustaches de la variable L_TGB_HA

Figure A-14.6. Boîte à moustaches de la variable L_RGB_HA
Tableau A-14.7. Indicateurs statistiques de la variable L_TOT_HA

<table>
<thead>
<tr>
<th>Statistique</th>
<th>L_TOT_HA</th>
<th>L_TOT_HA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>21</td>
<td>47</td>
</tr>
<tr>
<td>Nb. de valeurs manquantes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Minimum</td>
<td>84,470</td>
<td>63,680</td>
</tr>
<tr>
<td>Maximum</td>
<td>342,870</td>
<td>467,200</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>164,030</td>
<td>155,765</td>
</tr>
<tr>
<td>Médiane</td>
<td>171,740</td>
<td>201,690</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>217,930</td>
<td>243,265</td>
</tr>
<tr>
<td>Moyenne</td>
<td>199,224</td>
<td>215,802</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>4324,005</td>
<td>8054,555</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>65,757</td>
<td>89,747</td>
</tr>
</tbody>
</table>

Tableau A-14.8. Indicateurs statistiques de la variable X_TOT_HA

<table>
<thead>
<tr>
<th>Statistique</th>
<th>X_TOT_HA</th>
<th>X_TOT_HA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>21</td>
<td>47</td>
</tr>
<tr>
<td>Nb. de valeurs manquantes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Maximum</td>
<td>187,510</td>
<td>67,510</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Médiane</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Moyenne</td>
<td>14,541</td>
<td>4,568</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>2106,099</td>
<td>182,140</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>45,892</td>
<td>13,496</td>
</tr>
</tbody>
</table>

Tableau A-14.9. Indicateurs statistiques de la variable N_TOT_HA

<table>
<thead>
<tr>
<th>Statistique</th>
<th>N_TOT_HA</th>
<th>N_TOT_HA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>21</td>
<td>47</td>
</tr>
<tr>
<td>Nb. de valeurs manquantes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Minimum</td>
<td>84,470</td>
<td>67,220</td>
</tr>
<tr>
<td>Maximum</td>
<td>353,790</td>
<td>488,590</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>164,290</td>
<td>155,765</td>
</tr>
<tr>
<td>Médiane</td>
<td>197,480</td>
<td>207,930</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>266,190</td>
<td>253,315</td>
</tr>
<tr>
<td>Moyenne</td>
<td>213,765</td>
<td>220,369</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>5406,611</td>
<td>8665,473</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>73,530</td>
<td>93,089</td>
</tr>
</tbody>
</table>

Figures

- **Figure A-14.7. Boîte à moustaches de la variable L_TOT_HA**
- **Figure A-14.8. Boîte à moustaches de la variable X_TOT_HA**
- **Figure A-14.9. Boîte à moustaches de la variable N_TOT_HA**
<table>
<thead>
<tr>
<th>Statistique</th>
<th>BmortD_HA</th>
<th>BmortD_HA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SITTELLE-</td>
<td>SITTELLE-</td>
</tr>
<tr>
<td></td>
<td>ABSENCE</td>
<td>PRESENCE</td>
</tr>
<tr>
<td>Nb. d’observations</td>
<td>21</td>
<td>47</td>
</tr>
<tr>
<td>Nb. de valeurs manquantes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Maximum</td>
<td>80,690</td>
<td>76,330</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Médiane</td>
<td>3,800</td>
<td>3,610</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>27,000</td>
<td>11,225</td>
</tr>
<tr>
<td>Moyenne</td>
<td>15,815</td>
<td>8,039</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>550,819</td>
<td>204,321</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>23,470</td>
<td>14,294</td>
</tr>
</tbody>
</table>

Tableau A-14.10. Indicateurs statistiques de la variable BmortD_HA

Figure A-14.10. Boîte à moustaches de la variable BmortD_HA
ANNEXE A-15 : ANALYSE EN COMPOSANTES PRINCIPALES DES VARIABLES DENDROMETRIQUES DES PLACETTES SANS NID ET AVEC NID DE LA FT DE ROSPA-SORBA SUIVIE D’UNE ANALYSE DISCRIMINANTE.

Figure A-15.1. Classification hiérarchique préalable à l’ACP.

Figure A-15.2. Cercle de corrélations des variables sur le 1er plan de l’ACP. La variable PRESENCE en facteur supplémentaire.

Figure A-15.3. Distribution des placettes sur le 1er plan de l’ACP.

Figure A-15.4. Superposition des vecteurs des variables et des placettes dans le 1er plan de l’ACP.
Figure A-15.5. Diagrammes de l’analyse discriminante « présence/absence de sittelle » par variable, avec pour chacune d’elle le score de l’analyse en abscisse et la valeur de la variable (centrée réduite) en ordonnée (0=ABS/1=PRES)

Figure A-15.6. Histogramme du test de permutation (randtest) démontrant la significativité de la discrimination.

Std.Obs Expectation Variance
1.592440\times10^1 1.505365\times10^{-2} 4.766891\times10^{-5}

Mémoire EPHE-SVT- TORRE F. XLIX
ANNEXE A-16 : COMPARAISON DES VARIABLES DENDROMÉTRIQUES DES PLACETTES AVEC SITTELLE ENTRE MASSIFS D’AITONE-VALDUNIELLU ET DE ROSPA-SORBA.

<table>
<thead>
<tr>
<th>Statistique</th>
<th>PER_HA</th>
<th>PER_HA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Massif-Aito-Valdu</td>
<td>Massif-Rospa-Sorba</td>
</tr>
<tr>
<td>Nb. d’observations</td>
<td>96</td>
<td>95</td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maximum</td>
<td>310</td>
<td>377</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>Médiane</td>
<td>61</td>
<td>0</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>106</td>
<td>78</td>
</tr>
<tr>
<td>Moyenne</td>
<td>73</td>
<td>52</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>4245</td>
<td>7893</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>65</td>
<td>88</td>
</tr>
</tbody>
</table>

Tableau A-16.1. Indicateurs statistiques de la variable PER_HA

<table>
<thead>
<tr>
<th>Statistique</th>
<th>PB_HA</th>
<th>PB_HA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Massif-Aito-Valdu</td>
<td>Massif-Rospa-Sorba</td>
</tr>
<tr>
<td>Nb. d’observations</td>
<td>96</td>
<td>95</td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maximum</td>
<td>122</td>
<td>221</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Médiane</td>
<td>33</td>
<td>46</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>57</td>
<td>98</td>
</tr>
<tr>
<td>Moyenne</td>
<td>35</td>
<td>57</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>785</td>
<td>3375</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>28</td>
<td>58</td>
</tr>
</tbody>
</table>

Tableau A-16.2. Indicateurs statistiques de la variable PB_HA

<table>
<thead>
<tr>
<th>Statistique</th>
<th>BM_HA</th>
<th>BM_HA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Massif-Aito-Valdu</td>
<td>Massif-Rospa-Sorba</td>
</tr>
<tr>
<td>Nb. d’observations</td>
<td>96</td>
<td>95</td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maximum</td>
<td>147</td>
<td>349</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>16</td>
<td>64</td>
</tr>
<tr>
<td>Médiane</td>
<td>41</td>
<td>98</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>67</td>
<td>164</td>
</tr>
<tr>
<td>Moyenne</td>
<td>46</td>
<td>113</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>1356</td>
<td>6030</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>37</td>
<td>78</td>
</tr>
</tbody>
</table>

Tableau A-16.3. Indicateurs statistiques de la variable BM_HA
Tableau A-16.4. Indicateurs statistiques de la variable GB_HA

<table>
<thead>
<tr>
<th>Statistique</th>
<th>GB_HA</th>
<th>GB_HA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>96</td>
<td>95</td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maximum</td>
<td>131</td>
<td>216</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>Médiane</td>
<td>33</td>
<td>80</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>50</td>
<td>113</td>
</tr>
<tr>
<td>Moyenne</td>
<td>36</td>
<td>73</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>672</td>
<td>2825</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>26</td>
<td>53</td>
</tr>
</tbody>
</table>

Figure A-16.4. Boîte à moustaches de la variable GB_HA

Tableau A-16.5. Indicateurs statistiques de la variable TGB_HA

<table>
<thead>
<tr>
<th>Statistique</th>
<th>TGB_HA</th>
<th>TGB_HA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>96</td>
<td>95</td>
</tr>
<tr>
<td>Minimum</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Maximum</td>
<td>102</td>
<td>181</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Médiane</td>
<td>37</td>
<td>58</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>57</td>
<td>86</td>
</tr>
<tr>
<td>Moyenne</td>
<td>40</td>
<td>52</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>520</td>
<td>2173</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>23</td>
<td>47</td>
</tr>
</tbody>
</table>

Figure A-16.5. Boîte à moustaches de la variable TGB_HA

Tableau A-16.6. Indicateurs statistiques de la variable NT_HA

<table>
<thead>
<tr>
<th>Statistique</th>
<th>NT_HA</th>
<th>NT_HA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d’observations</td>
<td>96</td>
<td>95</td>
</tr>
<tr>
<td>Minimum</td>
<td>82</td>
<td>0</td>
</tr>
<tr>
<td>Maximum</td>
<td>571</td>
<td>719</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>171</td>
<td>225</td>
</tr>
<tr>
<td>Médiane</td>
<td>212</td>
<td>346</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>278</td>
<td>454</td>
</tr>
<tr>
<td>Moyenne</td>
<td>231</td>
<td>347</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>8782</td>
<td>23615</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>93</td>
<td>154</td>
</tr>
</tbody>
</table>

Figure A-16.6. Boîte à moustaches de la variable NT_HA
Tableau A-16.7. Indicateurs statistiques de la variable BoisMortD_HA

<table>
<thead>
<tr>
<th>Statistique</th>
<th>BoisMortD_HA</th>
<th>BoisMortD_HA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Massif-Aito-Valdu</td>
<td>Massif-Rospa-Sorba</td>
</tr>
<tr>
<td>Nb. d'observations</td>
<td>96</td>
<td>95</td>
</tr>
<tr>
<td>Minimum</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maximum</td>
<td>49</td>
<td>329</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Médiane</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>Moyenne</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>86</td>
<td>1856</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>9</td>
<td>43</td>
</tr>
</tbody>
</table>

Statistique BoisMortD_HA

- **Massif-Aito-Valdu**
 - Nb. d'observations: 96
 - Minimum: 0
 - Maximum: 49
 - 1er Quartile: 8
 - Médiane: 8
 - 3ème Quartile: 16
 - Moyenne: 13
 - Variance (n-1): 86
 - Ecart-type (n-1): 9

- **Massif-Rospa-Sorba**
 - Nb. d'observations: 95
 - Minimum: 0
 - Maximum: 329
 - 1er Quartile: 0
 - Médiane: 0
 - 3ème Quartile: 7
 - Moyenne: 14
 - Variance (n-1): 1856
 - Ecart-type (n-1): 43

Figure A-16.7. Boîte à moustaches de la variable BoisMortD_HA

Tableau A-16.8. Indicateurs statistiques de la variable GDIV_HA

<table>
<thead>
<tr>
<th>Statistique</th>
<th>GDIV_HA</th>
<th>GDIV_HA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Massif-Aito-Valdu</td>
<td>Massif-Rospa-Sorba</td>
</tr>
<tr>
<td>Nb. d'observations</td>
<td>96</td>
<td>95</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Maximum</td>
<td>5.45</td>
<td>61.54</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>0.00</td>
<td>8.87</td>
</tr>
<tr>
<td>Médiane</td>
<td>0.00</td>
<td>27.30</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>0.54</td>
<td>40.84</td>
</tr>
<tr>
<td>Moyenne</td>
<td>0.55</td>
<td>25.38</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>1.18</td>
<td>343.02</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>1.09</td>
<td>18.52</td>
</tr>
</tbody>
</table>

Statistique GDIV_HA

- **Massif-Aito-Valdu**
 - Nb. d'observations: 96
 - Minimum: 0.000
 - Maximum: 5.45
 - 1er Quartile: 0.00
 - Médiane: 0.00
 - 3ème Quartile: 0.54
 - Moyenne: 0.55
 - Variance (n-1): 1.18
 - Ecart-type (n-1): 1.09

- **Massif-Rospa-Sorba**
 - Nb. d'observations: 95
 - Minimum: 0.000
 - Maximum: 61.54
 - 1er Quartile: 8.87
 - Médiane: 27.30
 - 3ème Quartile: 40.84
 - Moyenne: 25.38
 - Variance (n-1): 343.02
 - Ecart-type (n-1): 18.52

Figure A-16.8. Boîte à moustaches de la variable GDIV_HA

Tableau A-16.9. Indicateurs statistiques de la variable GESS_HA

<table>
<thead>
<tr>
<th>Statistique</th>
<th>GESS_HA</th>
<th>GESS_HA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Massif-Aito-Valdu</td>
<td>Massif-Rospa-Sorba</td>
</tr>
<tr>
<td>Nb. d'observations</td>
<td>96</td>
<td>95</td>
</tr>
<tr>
<td>Minimum</td>
<td>6.67</td>
<td>0.00</td>
</tr>
<tr>
<td>Maximum</td>
<td>63.47</td>
<td>78.62</td>
</tr>
<tr>
<td>1er Quartile</td>
<td>20.92</td>
<td>20.43</td>
</tr>
<tr>
<td>Médiane</td>
<td>30.51</td>
<td>35.08</td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>39.48</td>
<td>44.59</td>
</tr>
<tr>
<td>Moyenne</td>
<td>31.14</td>
<td>34.14</td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>163.64</td>
<td>279.27</td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>12.79</td>
<td>16.71</td>
</tr>
</tbody>
</table>

Statistique GESS_HA

- **Massif-Aito-Valdu**
 - Nb. d'observations: 96
 - Minimum: 6.67
 - Maximum: 63.47
 - 1er Quartile: 20.92
 - Médiane: 30.51
 - 3ème Quartile: 39.48
 - Moyenne: 31.14
 - Variance (n-1): 163.64
 - Ecart-type (n-1): 12.79

- **Massif-Rospa-Sorba**
 - Nb. d'observations: 95
 - Minimum: 0.00
 - Maximum: 78.62
 - 1er Quartile: 20.43
 - Médiane: 35.08
 - 3ème Quartile: 44.59
 - Moyenne: 34.14
 - Variance (n-1): 279.27
 - Ecart-type (n-1): 16.71

Figure A-16.9. Boîte à moustaches de la variable GESS_HA
Tableau A-16.10. Indicateurs statistiques de la variable GESS1_HA

<table>
<thead>
<tr>
<th>Statistique</th>
<th>GESS1_HA</th>
<th>Massif-Aito-Valdu</th>
<th>GESS1_HA</th>
<th>Massif-Rospa-Sorba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d'observations</td>
<td>96</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>6.67</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>63.47</td>
<td>78.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>19.09</td>
<td>20.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>28.78</td>
<td>34.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>37.28</td>
<td>44.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>29.59</td>
<td>33.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>158.79</td>
<td>278.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>12.60</td>
<td>16.70</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-16.11. Indicateurs statistiques de la variable GESS2_HA

<table>
<thead>
<tr>
<th>Statistique</th>
<th>GESS2_HA</th>
<th>Massif-Aito-Valdu</th>
<th>GESS2_HA</th>
<th>Massif-Rospa-Sorba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d'observations</td>
<td>96</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>14.49</td>
<td>13.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>0.58</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>1.21</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>7.63</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>2.76</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau A-16.12. Indicateurs statistiques de la variable G_HA

<table>
<thead>
<tr>
<th>Statistique</th>
<th>G_HA</th>
<th>Massif-Aito-Valdu</th>
<th>G_HA</th>
<th>Massif-Rospa-Sorba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. d'observations</td>
<td>96</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>9.10</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>63.47</td>
<td>117.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1er Quartile</td>
<td>22.94</td>
<td>40.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>30.84</td>
<td>59.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ème Quartile</td>
<td>39.48</td>
<td>84.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne</td>
<td>31.81</td>
<td>59.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance (n-1)</td>
<td>153.15</td>
<td>816.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecart-type (n-1)</td>
<td>12.37</td>
<td>28.58</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANNEXE A-17 : FORET DE ROSPA-SORBA: MODELE DE PROBABILITE DE PRESENCE DE SITTELLE PAR REGRESSION LOGISTIQUE

<table>
<thead>
<tr>
<th>modèle</th>
<th>Variables</th>
<th>Nb. de variables</th>
<th>Deviance</th>
<th>AIC de Akaike</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS1</td>
<td>PRES_ABS ~ L_PB_HA+L_BM_HA+L_GB_HA+L_TGB_HA+L_TOT_HA+X_TOT_HA+BmortD_HA</td>
<td>7</td>
<td>66,384</td>
<td>80,384</td>
</tr>
<tr>
<td>RS2</td>
<td>PRES_ABS ~ L_GB_HA+L_TGB_HA+BmortD_HA</td>
<td>3</td>
<td>67,09</td>
<td>75,09</td>
</tr>
<tr>
<td>RS3</td>
<td>PRES_ABS ~ L_GB_HA+ L_GB_HA</td>
<td>2</td>
<td>69,819</td>
<td>75,819</td>
</tr>
</tbody>
</table>

Tableau A-17.1. Caractéristiques des modèles de régression logistique retenus après procédures pas à pas.

| Paramètres du modèle RS3 | Estimation β | Wald Borne inf. (95%) | Wald Borne sup. (95%) | z value | $Pr(>|z|)$ | Significativité |
|--------------------------|--------------------|-----------------------|-----------------------|-----------|------------|----------------|
| Constante | $-1,45928$ | $-2,86769$ | $-0,05087$ | $-2,031$ | $0,0423$ | * |
| L_GB_HA | $0,03803$ | $0,00646$ | $0,06959$ | $2,361$ | $0,0182$ | * |
| L_TGB_HA | $0,06108$ | $0,01289$ | $0,10926$ | $2,484$ | $0,0130$ | * |

Tableau A-17.2. Coefficients du modèle logit RS3 avec intervalle de confiance à 95%.

(NS : non significatif ; . : p<0,1 ;* : p<0,05 ; ** : p<0,01 ; *** : p<0,001)

glm(PRESENCE ~ L_GB_HA + L_TGB_HA)

Figures A-17.1 à 4.
ANNEXE A-18 : MODELE DE REGRESSION LINEAIRE : VARIABLE A EXPLIQUER LOG DE LA SURFACE DU TERRITOIRE VORONOI- VARIABLE EXPLICATIVE NB DE TGB/HA (FORET DE ROSPA-SORBA)

Figure A-18.1. Distribution des surfaces des 48 territoires.

Figure A-18.2. Droite de régression Log_ST (10) en fonction du nombre moyen de TGB/ha.

Figure A-18.3. Graphe des résidus de la régression linéaire.

Figure A-18.4. Graphe Quantile-Quantile : test de normalité des résidus de la régression linéaire.

Figure A-18.5. Graphe de vérification de l’homoscédasticité.

Figure A-18.6. Graphe des écarts distance de Cook.
ANNEXE A-19 : ANALYSE DE MOTIF DE POINTS-METHODE STATISTIQUE DU PLUS PROCHE VOISIN

Considérons la distribution de la Sittelle le massif de Rospa-Sorba, soit 134 sites répartis sur le massif forestier (+1 extérieur).

Pour tester si la distribution de l’oiseau ressemble à un motif connu ou plutôt du hasard, on utilise l’indicateur statistique R (pour « randomness », disposition au hasard). C’est le quotient entre robs, la distance moyenne observée entre les plus proches voisins de la distribution évoquée et rexp, la distance moyenne entre les plus proches voisins d’une distribution connue (ex de Poisson).

$$R = \frac{\text{robs}}{\text{rexp}}$$

avec n nombre de points de la distribution et A aire de la région étudiée.

Si $R>1$ nous avons affaire avec une distribution dispersée ;
Si $R<1$ nous avons affaire à une distribution regroupée.
On peut tester la différence des moyennes de chaque distribution. On émet les hypothèses :
H0 la moyenne des distances des plus proches voisins de la distribution observée et celle des distances des plus proches voisins de la distribution attendue sont semblables
H1 la moyenne des distances de la distribution observée et celle des distances de la distribution attendue sont différentes

Application numérique :
r obs = 170,65
r exp = 188,77
R = 0,90
L’erreur type z = -2,13
p = 0,0033

On peut donc rejeter l’hypothèse H0 avec une probabilité de plus de 95% et conclure que la moyenne des distances des plus proches voisins de la distribution observée et celle des distances de la distribution attendue sont significativement différentes.

Figure A-19.2. Test de significativité de la distribution géographique de la sittelle à Rospa-Sorba.
Source : Aide Arcgis 9.2. © ESRI inc.

On peut dire avec 95% de chances de ne pas se tromper que la distribution de la sittelle dans le massif de Rospa-Sorba n’est pas aléatoire. Comme R< 1, la distribution est regroupée.
Le krigeage est la recherche de la meilleure estimation linéaire sans biais de la valeur d’une variable régionalisée en un point à partir des valeurs observées des N points voisins (Duplat, et al., 1981). Partant du principe d’autocorrélation qui consiste à poser que les objets proches se ressemblent plus que les objets éloignés, la méthode consiste à déterminer le poids dans la valeur du point que l’on cherche à estimer de la valeur de la variable dans chacun des points voisins. Le krigeage utilise pour ce faire le degré de similarité entre les valeurs de la variable en fonction de la distance entre ces points. L’hypothèse de stationnarité de la variable doit être posée, à savoir que sa moyenne et sa variance ne dépendent que de la distance entre les points. En conséquence, le krigeage peut utiliser le semi-varioagramme de la variable pour déterminer les poids de ses valeurs voisines dans sa valeur au point recherché. L’équation du semi-varioagramme de la variable Z pour les n(h) points xi et yi séparés par une distance h = \|xi-yi\| est (Gratton, 2002):

\[\gamma(h) = \frac{1}{2n(h)} \sum_{i=1}^{n(h)} (x_i - y_i)^2 \]

La semi-variance peut être caractérisée par une fonction continue de la distance entre les points :

Figure A-20.1 Exemple de semi-varioagramme. La ligne rejoignant les points est une fonction continue ajustée par la méthode des moindres carrés.

Les poids des valeurs de la variable Z sont calculés à l’aide de la valeur de \(\gamma(h) \) des points voisins du point dont on souhaite en connaître l’estimation.

La variable régionalisée observée sur une placette de dimension métrique alors qu’elle est généralisée à la dimension du massif de dimension kilométrique, présente une variance que l’on peut décomposer en deux parties : la première due à l’effet de pépite (par exemple le fait que le point tombe ou non dans un arbre) et la seconde relevant de variations régionales (sols par exemple).

Figure A-20.2. Semi-varioagramme: représentation à faible distance effets pépite (nugget) et seuil (sill) Source : Aide Arcgis 9.2.© ESRI inc
Le krigeage consiste à ajuster au plus près le modèle de semi-variogramme, en particulier à courte distance. Ce modèle sera utilisé en prédiction des valeurs de la variable dans les points recherchés.

Pour les variables dendrométriques considérées (N_PB, N_BM, N_RGB et N_TOT) permettant par combinaison d’accéder à la structure du peuplement telle que définie par l’ONF § 4.2.2.2. (b)) recherchées aux points de localisation des sittelles dans le massif de Rospa-Sorba, c’est la méthode de krigeage ordinaire qui a été utilisée (moyenne de la variable inconnue) avec un modèle d’équation circulaire. Le module Geostatistical analyst d’ArcGis 9.2 ©ESRI a été utilisé pour les calculs. L’exposé qui suit détaille les manipulations effectuées.

A-20.1 Données traitées

Il s’agit des relevés typologiques des agents de l’ONF effectués sur les zones de production des forêts de Rospa-Sorba, Noceta, Rospigliani et Vezzani. Elles ont été homogénéisées et restituées en un unique tableau comprenant 2094 placettes géoréférencées. Ce sont les valeurs observées des variables dendrométriques N_PB, N_BM, N_RGB et N_TOT qui ont été traitées selon la méthode du krigeage ordinaire.

Figure A-20.3. Carte de localisation des placettes typologiques réalisées par les agents de l’ONF dans le massif de Rospa-Sorba
A-20.2 Traitement par krigage à l’aide du module Geostatistical Analyst ©ESRI

L’exemple figuré concerne les valeurs de la variable $N_{RGB}= N_{GB} + N_{TGB}$.

(a) Examen des données en statistique descriptive

Figure A-20.4. Distribution des fréquences de la valeur N_{RGB} DANS LE MASSIF DE Rospa-Sorba Source : Arcgis 9.2. © ESRI inc.

Figure A-20.5. Comparaison avec la Loi normale, droite quantile-quantile. Source : Arcgis 9.2. © ESRI inc.

Figure A-20.6. Examen du variogramme en 3 dimensions de façon à rechercher un motif de base, ici un polynôme de degré 2. Source : Arcgis 9.2. © ESRI inc.
(b) Calculs

Figure A-20.7. Affichage du motif polynomial de degré 2 qui sera retranché du modèle. Du bleu au bistre : valeurs croissantes de N_RGB. Source : Arcgis 9.2. © ESRI inc.

Figure A-20.8. Calcul du semi-variogramme et affichage. Source : Arcgis 9.2. © ESRI inc.
Figure A-20.9. Recherche de pépite et de l’effet de seuil. Source : Arcgis 9.2. © ESRI inc.

Figure A-20.10. Recherche d’une anisotropie. Source : Arcgis 9.2. © ESRI inc.
Figure A-20.11. Recherche du meilleur nombre de plus proches voisins. Source : Arcgis 9.2. © ESRI inc.

Figure A-20.12. Calcul du modèle retenu. Evaluation des variables statistiques (moyenne, écart-type, variance) permettant une comparaison entre modèles. Source : Arcgis 9.2. © ESRI inc.
Figure A-20.13. Caractéristiques du modèle calculé. Source : Arcgis 9.2. © ESRI inc.

Figure A-20.14. Comparaison de deux modèles. Source : Arcgis 9.2. © ESRI inc.
Figure A-20.15. Cartographie de la surface de la valeur estimée N_RGB sur la totalité des formations à Pin laricio du Massif de Rospa-Sorba. La valeur est rangée en 10 classes de 0 à 29.
A-20.3 Établissement de la valeur structure en tous points des peuplements à Pin laricio.

Grâce à la calculatrice raster (fonctions booléennes) du module Spatial Analyst ©ESRI, il est possible de combiner les grilles des valeurs des variables N_PB, N_BM, N_RGB et N_TOT obtenues par krigeage et transformation raster.

![Combinaison de couches raster avec Spatial Analyst ©ESRI.](image)

La codification des types de structure en numérique permet le calcul et l’établissement d’une carte des valeurs de la structure des peuplements à l’échelle régionale.

<table>
<thead>
<tr>
<th>TYPE DE STRUCTURE</th>
<th>CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR</td>
<td>1</td>
</tr>
<tr>
<td>R_GB</td>
<td>2</td>
</tr>
<tr>
<td>R_GB_BM</td>
<td>3</td>
</tr>
<tr>
<td>R_BM</td>
<td>4</td>
</tr>
<tr>
<td>R_PB_BM</td>
<td>5</td>
</tr>
<tr>
<td>R_PB</td>
<td>6</td>
</tr>
</tbody>
</table>

Tableau A-20.1. Codification des types de structure

Par croisement avec les points sittelle on établit la valeur estimée de la structure au point de localisation de la sittelle.

<table>
<thead>
<tr>
<th>TYPE DE STRUCTURE</th>
<th>NB de Points « sittelle »</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR</td>
<td>82</td>
<td>61.19%</td>
</tr>
<tr>
<td>R_GB</td>
<td>4</td>
<td>2.99%</td>
</tr>
<tr>
<td>R_GB_BM</td>
<td>6</td>
<td>4.48%</td>
</tr>
<tr>
<td>R_BM</td>
<td>1</td>
<td>0.75%</td>
</tr>
<tr>
<td>R_PB_BM</td>
<td>41</td>
<td>31.34%</td>
</tr>
<tr>
<td>R_PB</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>134</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Tableau A-20.2. Effectif des points « sittelle » en fonction des types de structure estimés
Figure A-20.17. Carte de localisation de la sittelle dans le massif de Rospa-Sorba sur fond de carte des types de structure de peuplements de Pin laricio.
En fonction des habitats ou espèces d’intérêt communautaires visés par l’action, il peut être intéressant soit de développer le bois sénescents sous la forme d’arbres d’isséminés dans le peuplement, soit sous la forme d’îlots d’un demi hectare minimum, à l’intérieur desquels aucune intervention sylvicole n’est autorisée et dont la mise en réseau peut être particulièrement profitable.

Dans un souci de cohérence, il est recommandé que les propriétaires forestiers bénéficiaires de cette action l’intègrent dans une démarche globale de gestion de leur forêt en conservant le plus possible d’arbres morts sur pied dans les peuplements, ceci en plus des arbres sélectionnés au titre de l’action.

Les surfaces se trouvant dans une situation d’absence de sylviculture, par obligation réglementaire (réserve intégrale) ou par défaut (parcelles non accessibles) ne sont pas éligibles. Les critères de non accessibilité des parcelles sont à préciser au niveau régional.

La durée de l’engagement de l’action est de 30 ans.

Le renouvellement du contrat est possible pour les arbres qui répondent encore aux critères d’éligibilité. Un seul contrat par parcelle cadastrale (ou forestière ?) sera autorisé par période de 30 ans.

A-21.1 Barème réglementé s’appliquant HT

<table>
<thead>
<tr>
<th>ESSENCE</th>
<th>STATION</th>
<th>Age indicatif (ans)</th>
<th>D(1,30m) en cm</th>
<th>V(m3)</th>
<th>P (€/m3)</th>
<th>R=P*V(€)</th>
<th>p (%)</th>
<th>Fs(€)</th>
<th>t(%)</th>
<th>M(€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN LARICIO</td>
<td>fertile</td>
<td>200</td>
<td>80</td>
<td>7,75</td>
<td>30</td>
<td>233</td>
<td>50%</td>
<td>8</td>
<td>1</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>moy fert</td>
<td>200</td>
<td>70</td>
<td>5,6</td>
<td>20</td>
<td>112</td>
<td>50%</td>
<td>8</td>
<td>1</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>faibl fert</td>
<td>200</td>
<td>50</td>
<td>3,46</td>
<td>20</td>
<td>70</td>
<td>50%</td>
<td>8</td>
<td>1</td>
<td>78</td>
</tr>
<tr>
<td>PIN MARITIME</td>
<td>fertile</td>
<td>80</td>
<td>70</td>
<td>4,4</td>
<td>20</td>
<td>88</td>
<td>75%</td>
<td>5</td>
<td>1,5</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>moy fert</td>
<td>80</td>
<td>60</td>
<td>2,78</td>
<td>15</td>
<td>42</td>
<td>75%</td>
<td>5</td>
<td>1,5</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>faibl fert</td>
<td>80</td>
<td>45</td>
<td>1,28</td>
<td>15</td>
<td>20</td>
<td>75%</td>
<td>5</td>
<td>1,5</td>
<td>25</td>
</tr>
<tr>
<td>SAPIN PECTINE</td>
<td>fertile</td>
<td>80</td>
<td>55</td>
<td>2,3</td>
<td>20</td>
<td>46</td>
<td>75%</td>
<td>5</td>
<td>1,5</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>moy fertile</td>
<td>80</td>
<td>45</td>
<td>1,4</td>
<td>15</td>
<td>21</td>
<td>75%</td>
<td>5</td>
<td>1,5</td>
<td>26</td>
</tr>
<tr>
<td>HETRE</td>
<td>très fert</td>
<td>60</td>
<td>55</td>
<td>3,78</td>
<td>20</td>
<td>76</td>
<td>75%</td>
<td>5</td>
<td>1,5</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>fertile</td>
<td>60</td>
<td>50</td>
<td>2,5</td>
<td>15</td>
<td>38</td>
<td>75%</td>
<td>5</td>
<td>1,5</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>moy fertile</td>
<td>70</td>
<td>50</td>
<td>1,88</td>
<td>15</td>
<td>29</td>
<td>75%</td>
<td>5</td>
<td>1,5</td>
<td>34</td>
</tr>
<tr>
<td>CHATAIGNIER</td>
<td>très fert</td>
<td>50</td>
<td>55</td>
<td>2,14</td>
<td>50</td>
<td>107</td>
<td>75%</td>
<td>5</td>
<td>2</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>fertile</td>
<td>50</td>
<td>45</td>
<td>1,4</td>
<td>30</td>
<td>42</td>
<td>75%</td>
<td>10</td>
<td>2</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>moy fertile</td>
<td>50</td>
<td>35</td>
<td>0,9</td>
<td>16</td>
<td>15</td>
<td>75%</td>
<td>10</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>CHENE PUBESCENT</td>
<td>fertile</td>
<td>180</td>
<td>60</td>
<td>2,19</td>
<td>20</td>
<td>44</td>
<td>75%</td>
<td>10</td>
<td>1,5</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>moy fertile</td>
<td>180</td>
<td>50</td>
<td>1,22</td>
<td>15</td>
<td>19</td>
<td>75%</td>
<td>5</td>
<td>1,5</td>
<td>24</td>
</tr>
<tr>
<td>CHENE VERT</td>
<td>fertile</td>
<td>180</td>
<td>60</td>
<td>2,19</td>
<td>20</td>
<td>44</td>
<td>75%</td>
<td>5</td>
<td>1,5</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>moy fertile</td>
<td>180</td>
<td>50</td>
<td>1,22</td>
<td>15</td>
<td>19</td>
<td>75%</td>
<td>5</td>
<td>1,5</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>faibl fert</td>
<td>180</td>
<td>40</td>
<td>0,49</td>
<td>15</td>
<td>8</td>
<td>75%</td>
<td>5</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>FEUILLUS PRECIEUX</td>
<td>très fert</td>
<td>60</td>
<td>50</td>
<td>1,65</td>
<td>80</td>
<td>132</td>
<td>75%</td>
<td>10</td>
<td>2</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>fertile</td>
<td>60</td>
<td>40</td>
<td>0,79</td>
<td>50</td>
<td>40</td>
<td>75%</td>
<td>10</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>CHENE LIEGE</td>
<td>fertile</td>
<td>180</td>
<td>60</td>
<td>0,62</td>
<td>50</td>
<td>31</td>
<td>75%</td>
<td>5</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>moy fertile</td>
<td>180</td>
<td>50</td>
<td>0,41</td>
<td>50</td>
<td>21</td>
<td>75%</td>
<td>5</td>
<td>1</td>
<td>26</td>
</tr>
</tbody>
</table>

Tableau A-21.1 Barème de calcul des mesures compensatoires de maintien d’arbres sénescents.
A-21.2 Habitats forestiers éligibles à la mesure F22712

92 Forêts méditerranéennes à feuilles caduques

9260 Forêts à Castanea sativa
 9260.4 Châtaigneraies corses (41.9)

92A0 Forêts galeries à Salix alba et Populus alba
 92A0.2 Peupleraies noires à Baldingère (44.141) ?
 92A0.4 Aulnaies à Aulne glutineux et à Aulne à feuille cordées de Corse (44.53)
 92A0.6 Peupleraies blanches (44.612) ?
 92A0.7 Aulnaies-frênaies à frêne oxyphylle (44.63) ?

ou

92A0.9 Chênaies-ormaies méditerranéennes (44.6) ?

92D0 Galeries et fourrés riverains méridionaux
 92D0.1 Galeries riveraines à Laurier-rose (44.811)
 92D0.2 Galeries riveraines à Gattilier (44.812)
 92D0.3 Galeries riveraines à Tamaris (44.813)

93 Forêts sclérophyllues méditerranéennes

9320 Forêts à Olea et Ceratonia (32.12 + 45.1)
 9320.3 Peuplements à Lentisque, Oléastre et Clématite à toupet du littoral corse (45.1)

9330 Forêts à Quercus suber
 9330.3 Suberaies corses (45.212)

9340 Forêts à Quercus ilex et Quercus rotundifolia
 9340.11 Yeuseraies corses à Gallet scabre (45.315 et 45.316)
 9340.12 Yeuseraies corses à Houx (45.316)

9380 Forêts à Ilex aquifolium
 9380.3 Chênaies vertes à houx de Corse (45.8)
 9380.4 Taxaies à Aspérule odorante et à Houx de Corse (45.316)

95 Forêts méditerranéennes de conifères

9530-2*Pinèdes (sub-) méditerranéennes de pins noirs endémiques : Pinus nigra subsp. laricio var. corsicana
 9530-2.1* Peuplements supra méditerranéens de Pin laricio de Corse à Bruyère arborescente (42.64)
 9530-2.2* Peuplements clair d’adret de Pin laricio de Corse à Anthyllide de Hermann (42.64)
 9530-2.3* Peuplements denses montagnards de Pin laricio de Corse à Luzule du Piémont (42.64)

9540 Pinèdes méditerranéennes de pins mésogéens endémiques : Pin maritime
 9540-1.5 Peuplements mésoméditerranéens de Pin maritime de Corse (42.82)
 9540-1.6 Peuplements supraméditerranéens de Pin maritime de Corse (42.82)

9560* Forêts en endémiques à Juniperus spp
 9560.6* Peuplements supraméditerranéens corses de genévrier thurifère (42.A27 et 32.136)
 9560.7* Peuplements montagnards corses de genévrier thurifère (42.A27 et 32.136)

9580* Bois méditerranéens à Taxus baccata
 9580.1* Peuplements corses d’If à Aspérule odorante (42.A72)
 9580.2* Peuplements d’If dans les forêts corses (42.A72)

(SOURCE Conservatoire botanique de Corse)
Espèces concernées : (en l’absence d’habitat d’intérêt communautaire)

1087 Rosalia Alpina Rosalie des Alpes
1088 Cerambyx cerdo Grand capricorne
1308 Barbastella barbastellus Barbastelle
1323 Myotis bechsteinii Vespertilion de Bechstein
1324b Myotis punicus Murin du Maghreb
1386 Buxbaumia viridis Buxbaumie verte
A074 Milvus milvus Milan royal
A400 Accipiter gentilis subs arrigonii Autour des palombes de Corse
A214 Otus scops Petit duc scops
A331 Sitta whiteheadii Sittelle corse

A-21.3 Sous-action 1 : arbres sénescents disséminés

La contractualisation de cette sous-action peut porter sur un ou plusieurs arbres disséminés dans le peuplement ou sur plusieurs arbres regroupés en bosquet (aucune distance minimale n’est imposée entre les arbres contractualisés). Les arbres contractualisés ne devront faire l’objet d’aucune intervention sylvicole pendant 30 ans.

(a) Critères arbres (cf tableau A-21.1)

(b) Indemnisation :
Il appartient au préfet de région de fixer un forfait régional par essence. La mise en œuvre de cette sous-action sera plafonnée à un montant également fixé régionalement qui sera inférieur ou égal à 2 000 €/ha.
La surface de référence est la surface du polygone défini par les arbres contractualisés les plus extérieurs.
Le préfet de région pourra soit adopter les forfaits nationaux de référence (voir ci-après), soit fixer des forfaits plus adaptés au contexte régional, en se basant sur la méthode de calcul présentée ci-après.

Méthode de calcul :
Le maintien d’arbres sur pied au-delà de leur terme d’exploitabilité engendre un coût d’immobilisation d’un capital comprenant d’une part les arbres, qui auraient sur le marché une valeur R (dont il ne faut pas oublier qu’en moyenne ce sont des bois de faible qualité économique), d’autre part le fonds qui les porte, de valeur F.
Le manque à gagner à la tige par essence est noté M (€). La formule de calcul de M se base sur l’hypothèse qu’un certain pourcentage p des arbres contractualisés aura perdu toute valeur marchande (comment estime-t-on ce pourcentage ?, c’est du forfaitaire selon le diamètre comme dans le barème ?) au bout de 30 ans (ces arbres sont donc indemnisés dans ce cas à 100 % de leur valeur actuelle estimée et l’immobilisation du fonds correspondant est également indemnisée) et sur le fait que pour le reste des arbres, le propriétaire réalise un sacrifice d’exploitation en repoussant de 30 ans la récolte d’arbres arrivés à maturité et que le fonds se trouve immobilisé pendant une durée de 30 ans (l’indemnisation dans ce cas prend en compte l’immobilisation du fonds et la valeur des arbres en début d’engagement modulée par un taux d’actualisation t).

$$M = pR + [(1 - p)R + F_s] \times \left(1 - \frac{1}{(1 + t)^30}\right)$$

où :

p est le pourcentage de perte (%)
R est la valeur forfaitaire du bois en début d’engagement (€)
F_s est la valeur forfaitaire du fonds pour la surface immobilisée par la tige (€)
t est le taux d’actualisation (%)

avec :

$R = P \times V$ où P est le prix unitaire moyen de la tige contractualisée, hors houppier (€/m3) et V le volume commercial de la tige contractualisée, hors houppier (m3)
$F_s = F \times S$ où F est la valeur du fonds (€/ha) et S la superficie couverte par la tige (ha)
(c) Points de contrôle minima associés :

Présence des bois marqués sur pied pendant 30 ans.

(d) Procédure :

Le contrat est signé sur une durée de 5 ans. L’engagement porte quant à lui sur une durée de 30 ans. Les contrôles de respect des engagements peuvent se faire jusqu’à la trentième année de l’engagement.
La sous-action « îlot Natura 2000 » vise à compléter la sous-action « arbres sénescent disséminés ». Elle vise à indemniser l’absence totale d’intervention sylvicole sur l’espace interstitiel entre des arbres qui présenteraient soit des signes de sénescence, soit un diamètre important. Ces arbres sont contractualisés selon les modalités de la sous-action 1 (à quelques adaptations près, voir ci-dessous) et la sous-action 2 permet de contractualiser en plus l’espace interstitiel comprenant le fonds et toutes les tiges non engagées par la sous-action 1.

Aucune intervention sylvicole ne sera autorisée à l’intérieur de l’îlot pendant 30 ans.

(a) Conditions particulières d’éligibilité :

Une surface éligible à la sous-action « îlot Natura 2000 » doit comporter au moins 10 tiges par hectare présentant :

- soit un diamètre à 1,30 m supérieur ou égal au diamètre moyen d’exploitabilité l’autour des palombes (et même la sittelle) niche dans des arbres dont le diamètre peut être inférieur au diamètre d’exploitabilité. De plus, autour du nid (dans la fameuse zone des 0.13ha) il peut y avoir des arbres jeunes dont la conservation est essentielle pour l’autour. Comment fait-on ? Il faut rajouter : soit présence d’un nid d’oiseau forestier, d’un gîte de chauve-souris,… soit des signes de sénescence tels que cavités, fissures ou branches mortes.

La surface de référence est le polygone défini par l’îlot, c’est-à-dire la surface sur laquelle aucune intervention sylvicole ne devra être pratiquée pendant 30 ans. Ce polygone n’est pas nécessairement délimité par les arbres éligibles.

La surface minimale d’un îlot est de 0,5 ha. Il n’est pas fixé de surface maximale, mais un bon maillage spatial sera à privilégier par les services instructeurs.

(b) Indemnisation :

L’immobilisation du fonds et l’absence d’intervention sylvicole pendant 30 ans est indemnisée à hauteur de 2 000 €/ha.

L’immobilisation des tiges sélectionnées sera indemnisée à la tige par un forfait régional calculé selon la même méthode que la sous action 1. L’indemnisation des tiges sélectionnées est plafonnée à un montant également fixé régionalement qui sera inférieur ou égal à 2 000 €/ha. L’îlot devant compter au moins 10 tiges éligibles par hectare, le forfait à la tige devra obligatoirement être inférieur ou égal à 200 €.

La surface de référence est le polygone défini par l’îlot.
| **Engagements non rémunérés** | Le demandeur indique les arbres à contractualiser et les limites de l’îlot sur plan pour l’instruction du dossier (le géoréférencement n’est pas obligatoire). Le service instructeur vérifie que le plafond d’indemnisation n’est pas dépassé. Dans les cas limites, le service instructeur pourra effectuer un contrôle au GPS.
Le bénéficiaire s’engage à marquer les arbres (arbres éligibles et arbres délimitant l’îlot) au moment de leur identification à la peinture ou à la griffe.
En cas d’accident lié à la chute de tout ou partie d’un arbre contractualisé, le bénéficiaire pourra prouver l’absence de faute par négligence si les mesures de précaution adaptées ont été prises. Le bénéficiaire doit donc s’engager à respecter une distance de sécurité entre les arbres sélectionnés et les accès ou lieux fréquentés et mettre en place une signalisation à l’entrée du massif si nécessaire. Les arbres sélectionnés devront être situés à plus de 30 m d’un chemin ouvert au public.
Sur le plan de localisation des arbres, le demandeur fait apparaître les accès et sites qualifiés de fréquentés et précise dans la demande d’aide, le cas échéant, les mesures de sécurité prises.
Il s’engage à ne pas autoriser sciemment la mise en place de nouveaux aménagements ou équipements susceptibles d’attirer du public (bancs, sentiers) à moins de 30 m des arbres contractualisés. Il s’engage également à informer les chasseurs et les gestionnaires de l’interdiction de l’agrainage et de la mise en place de pierres à sel à proximité des arbres sélectionnés. Cette interdiction devra être mentionnée lors du renouvellement des baux de chasse dans le cahier des charges de location de la chasse et/ou dans le plan de gestion cynégétique qui leur est annexé. |
| **Engagements rémunérés** | Les opérations éligibles consistent en l’absence de sylviculture sur l’ensemble de l’îlot pendant 30 ans.
L’engagement contractuel du propriétaire porte sur une durée de 30 ans. Il est admis sur cette durée que l’engagement n’est pas rompu si les arbres réservés subissent des aléas : volis, chablis ou attaques d’insectes. Dans ce cas c’est l’arbre ou ses parties maintenues au sol qui valent engagement. |

(c) Points de contrôle minima associés :

Présence des bois marqués sur pied pendant 30 ans et du marquage des limites de l’îlot sur les arbres périphériques.

(d) Procédure :

Le contrat est signé sur une durée de 5 ans. L’engagement porte quant à lui sur une durée de 30 ans. Les contrôles de respect des engagements peuvent se faire jusqu’à la trentième année de l’engagement.
CONTRIBUTION À UNE SYLVICULTURE DU PIN LARICIO (Pinus nigra subsp laricio, Maire) COMPATIBLE AVEC LA CONSERVATION DE LA SITTELLE CORSE (Sitta whiteheadi, Sharpe 1884).

TORRE Fabrice

Soutenu le 3 novembre 2014

RÉSUMÉ

Le présent mémoire, fruit d’une convention entre l’EPHE et l’ONF, est destiné à promouvoir la mise en œuvre de mesures de conservation en faisant le lien entre analyses de l’habitat de la sittelle à différentes échelles et pratiques forestières. S’inscrivant dans la suite des travaux des années précédentes, il propose, avec l’aide de différentes méthodes SIG et statistiques :

• (i) de revisiter certains travaux antérieurs avec les outils et paramètres des forestiers. Pour ce faire, le dispositif mis en place par Villard et al. en 2005 sur les forêts de production d’Aitone et de Valduniellu a été analysé avec la typologie des peuplements définie par l’ONF. Des conclusions intégrant les paramètres de gestion couramment usités par les agents aboutissent à un modèle prédictif de présence de la sittelle. Les différences de densité de la population de sittelle entre ces deux forêts ont aussi pu être reliées aux caractéristiques des massifs dans des termes usités par les chargés d’aménagement grâce à une analyse des variables régionalisées issues de l’Inventaire forestier national et une autre des caractéristiques des peuplements de Pin laricio tels que décrits par les documents d’aménagement de l’ONF.

• (ii) d’étudier les habitats des sittelles du Massif forestier de Rospa Sorba sur la base des inventaires dendrométriques et des inventaires d’oiseaux réalisés préalablement aux documents d’aménagement, et ceci à différentes échelles : (a) à proximité du nid en utilisant les placettes dendrométriques les plus proches, (b) à l’échelle du territoire de l’oiseau par la somme des variables typologiques des placettes, (c) à l’échelle du massif forestier, d’après la structure des peuplements, grâce à une analyse des variables régionalisées issues de l’inventaire typologique de l’ONF.

• (iii) d’examiner différents scénarios de gestion forestière afin de recommander, à partir des analyses ci-dessus, les mesures de gestion les plus appropriées pour la conservation de l’espèce et des méthodes de suivi scientifique permettant de s’assurer de leur pertinence.

MOTS-CLÉS : Sittelle, Pin laricio, Corse, Conservation, Sylviculture, Arbres morts, Gros bois, Traitement.