M. Brunet-simioni, D. Thonel, A. Hammann, A. Joly, A. Bossis et al., Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity, Oncogene, vol.594, issue.37, pp.3332-3376, 2009.
DOI : 10.1074/jbc.M803632200

T. Buschmann, S. Fuchs, C. Lee, Z. Pan, and Z. Ronai, SUMO-1 Modification of Mdm2 Prevents Its Self-Ubiquitination and Increases Mdm2 Ability to Ubiquitinate p53, Cell, vol.101, issue.7, pp.753-62, 2000.
DOI : 10.1016/S0092-8674(00)80887-9

A. Carbia-nagashima, J. Gerez, C. Perez-castro, M. Paez-pereda, S. Silberstein et al., RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF- 1alpha during hypoxia Cell, pp.309-332, 2007.

S. Carter, O. Bischof, A. Dejean, and K. Vousden, C-terminal modifications regulate MDM2 dissociation and nuclear export of p53, Nature Cell Biology, vol.9, issue.4, pp.428-463, 2007.
DOI : 10.1016/S1097-2765(00)80133-1

C. Castro, D. Giacomini, A. Nagashima, C. Onofri, M. Graciarena et al., Reduced Expression of the Cytokine Transducer gp130 Inhibits Hormone Secretion, Cell Growth, and Tumor Development of Pituitary Lactosomatotrophic GH3 Cells, Endocrinology, vol.144, issue.2, pp.693-700, 2003.
DOI : 10.1210/en.2002-220891

C. Chang, M. Naik, Y. Huang, J. Jeng, P. Liao et al., Structural and Functional Roles of Daxx SIM Phosphorylation in SUMO Paralog-Selective Binding and Apoptosis Modulation, Molecular Cell, vol.42, issue.1, pp.62-74, 2011.
DOI : 10.1016/j.molcel.2011.02.022

A. Chauchereau, L. Amazit, M. Quesne, A. Guiochon-mantel, and E. Milgrom, Sumoylation of the Progesterone Receptor and of the Steroid Receptor Coactivator SRC-1, Journal of Biological Chemistry, vol.278, issue.14, pp.12335-12378, 2003.
DOI : 10.1074/jbc.M207148200

J. Cheng, T. Bawa, P. Lee, L. Gong, and E. Yeh, Role of Desumoylation in the Development of Prostate Cancer, Neoplasia, vol.8, issue.8, pp.667-676, 2006.
DOI : 10.1593/neo.06445

J. Cheng, X. Kang, S. Zhang, and E. Yeh, SUMO-Specific Protease 1 Is Essential for Stabilization of HIF1?? during Hypoxia, Cell, vol.131, issue.3, pp.584-595, 2007.
DOI : 10.1016/j.cell.2007.08.045

J. Cheng, D. Wang, Z. Wang, and E. Yeh, SENP1 Enhances Androgen Receptor-Dependent Transcription through Desumoylation of Histone Deacetylase 1, Molecular and Cellular Biology, vol.24, issue.13, pp.6021-6028, 2004.
DOI : 10.1128/MCB.24.13.6021-6028.2004

S. Chiu, N. Asai, F. Costantini, and W. Hsu, SUMO-Specific Protease 2 Is Essential for Modulating p53-Mdm2 in Development of Trophoblast Stem Cell Niches and Lineages, PLoS Biology, vol.155, issue.12, p.310, 2008.
DOI : 10.1371/journal.pbio.0060310.sg003

K. Comerford, M. Leonard, J. Karhausen, R. Carey, S. Colgan et al., Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia, Proceedings of the National Academy of Sciences, vol.100, issue.3, pp.986-91, 2003.
DOI : 10.1073/pnas.0337412100

Y. Cui, M. Zhang, R. Pestell, E. Curran, W. Welshons et al., Phosphorylation of estrogen receptor alpha blocks its acetylation and regulates estrogen sensitivity, Cancer Res, vol.1564, issue.24, pp.9199-208, 2004.

C. Culver, A. Melvin, S. Mudie, and S. Rocha, HIF-1?? depletion results in SP1-mediated cell cycle disruption and alters the cellular response to chemotherapeutic drugs, Cell Cycle, vol.13, issue.8, pp.1249-60, 2011.
DOI : 10.1128/MCB.00409-10

S. Dadke, S. Cotteret, S. Yip, Z. Jaffer, F. Haj et al., Regulation of protein tyrosine phosphatase 1B by sumoylation, Nature Cell Biology, vol.88, issue.1, pp.80-85, 2007.
DOI : 10.1038/ncb1522

J. Chernoff, Regulation of protein tyrosine phosphatase 1B by sumoylation, Nat Cell Biol, vol.9, issue.1, pp.80-85, 2007.

G. David, M. Neptune, and R. Depinho, SUMO-1 Modification of Histone Deacetylase 1 (HDAC1) Modulates Its Biological Activities, Journal of Biological Chemistry, vol.277, issue.26, pp.23658-63, 2002.
DOI : 10.1074/jbc.M203690200

M. Demarque, K. Nacerddine, H. Neyret-kahn, A. Andrieux, E. Danenberg et al., Sumoylation by Ubc9 Regulates the Stem Cell Compartment and Structure and Function of the Intestinal Epithelium in Mice, Gastroenterology, vol.140, issue.1, pp.286-96, 2011.
DOI : 10.1053/j.gastro.2010.10.002

URL : https://hal.archives-ouvertes.fr/pasteur-00572277

C. Denison, A. Rudner, S. Gerber, C. Bakalarski, D. Moazed et al., A Proteomic Strategy for Gaining Insights into Protein Sumoylation in Yeast, Molecular & Cellular Proteomics, vol.4, issue.3, pp.246-54, 2005.
DOI : 10.1074/mcp.M400154-MCP200

A. Denuc, A. Bosch-comas, R. Gonzàlez-duarte, and G. Marfany, The UBA-UIM Domains of the USP25 Regulate the Enzyme Ubiquitination State and Modulate Substrate Recognition, PLoS ONE, vol.9, issue.5, 2009.
DOI : 10.1371/journal.pone.0005571.s003

J. M. Desterro, M. S. Rodriguez, and R. T. Hay, SUMO-1 Modification of I??B?? Inhibits NF-??B Activation, Molecular Cell, vol.2, issue.2, pp.233-239, 1998.
DOI : 10.1016/S1097-2765(00)80133-1

A. Deyrieux, G. Rosas-acosta, M. Ozbun, and V. Wilson, Sumoylation dynamics during keratinocyte differentiation, Journal of Cell Science, vol.120, issue.1, pp.125-161, 2007.
DOI : 10.1242/jcs.03317

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3470114

D. Bacco, A. Gill, and G. , SUMO-Specific Proteases and the Cell Cycle, Cell Cycle, vol.5, issue.20, pp.2310-2313, 2006.
DOI : 10.4161/cc.5.20.3367

D. Bacco, A. Ouyang, J. Lee, H. Catic, A. Ploegh et al., The SUMO-Specific Protease SENP5 Is Required for Cell Division, Molecular and Cellular Biology, vol.26, issue.12, pp.4489-98, 2006.
DOI : 10.1128/MCB.02301-05

R. Dohmen, R. Stappen, J. Mcgrath, H. Forrová, J. Kolarov et al., An essential yeast gene encoding a homolog of ubiquitin-activating enzyme, J Biol Chem, vol.270, issue.30, pp.18099-109, 1995.

D. Marcin, S. Guy, and S. , DeSUMOylating Enzymes?SENPs Life, pp.734-742, 2008.

M. Dutertre and C. Smith, Ligand-Independent Interactions of p160/Steroid Receptor Coactivators and CREB-Binding Protein (CBP) with Estrogen Receptor-??: Regulation by Phosphorylation Sites in the A/B Region Depends on Other Receptor Domains, Molecular Endocrinology, vol.17, issue.7, pp.1296-314, 2003.
DOI : 10.1210/me.2001-0316

E. Jeoung, L. , S. Hee, H. Jaesun, C. et al., Regulation of glycogen synthase kinase 3beta functions by modification of the small ubiquitinlike modifier, Open Biochem J, vol.2, pp.67-76, 2008.

E. Evdokimov, P. Sharma, S. J. Lockett, M. Lualdi, and M. R. Kuehn, Loss of SUMO1 in mice affects RanGAP1 localization and formation of PML nuclear bodies, but is not lethal as it can be compensated by SUMO2 or SUMO3, Journal of Cell Science, vol.121, issue.24, pp.4106-4119, 2008.
DOI : 10.1242/jcs.038570

K. Flick and P. Kaiser, Proteomic Revelation: SUMO Changes Partners When the Heat Is On, Science Signaling, vol.2, issue.81, p.45, 2009.
DOI : 10.1126/scisignal.281pe45

J. Gareau and C. Lima, The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition, Nature Reviews Molecular Cell Biology, vol.8, issue.12, pp.861-71, 2010.
DOI : 10.1038/nrm3011

R. Geiss-friedlander and F. Melchior, Concepts in sumoylation: a decade on, Nature Reviews Molecular Cell Biology, vol.1773, issue.12, pp.947-56, 2007.
DOI : 10.1038/nrm2293

D. Gius, A. Botero, S. Shah, and H. Curry, Intracellular oxidation/reduction status in the regulation of transcription factors NF-kappaB and AP-1, Toxicol Lett, vol.1106, pp.2-393, 1999.

L. Gong and E. Yeh, Characterization of a Family of Nucleolar SUMO-specific Proteases with Preference for SUMO-2 or SUMO-3, Journal of Biological Chemistry, vol.281, issue.23, pp.15869-15877, 2006.
DOI : 10.1074/jbc.M511658200

L. Gong, S. Millas, G. Maul, and E. Yeh, Differential Regulation of Sentrinized Proteins by a Novel Sentrin-specific Protease, Journal of Biological Chemistry, vol.275, issue.5, pp.3355-3359, 2000.
DOI : 10.1074/jbc.275.5.3355

S. Grégoire and X. Yang, Association with Class IIa Histone Deacetylases Upregulates the Sumoylation of MEF2 Transcription Factors, Molecular and Cellular Biology, vol.25, issue.6, pp.2273-87, 2005.
DOI : 10.1128/MCB.25.6.2273-2287.2005

E. Gresko, S. Ritterhoff, J. Sevilla-perez, A. Roscic, K. Fröbius et al., PML tumor suppressor is regulated by HIPK2-mediated phosphorylation in response to DNA damage, Oncogene, vol.63, issue.5, pp.698-708, 2009.
DOI : 10.1038/ncb869

M. Haindl, T. Harasim, D. Eick, and S. Muller, The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing, EMBO reports, vol.4, issue.3, pp.273-282, 2008.
DOI : 10.1016/S0014-5793(02)03310-0

J. Hang and M. Dasso, Association of the Human SUMO-1 Protease SENP2 with the Nuclear Pore, Journal of Biological Chemistry, vol.277, issue.22, pp.19961-19967, 2002.
DOI : 10.1074/jbc.M201799200

J. Hannich, A. Lewis, M. Kroetz, S. Li, H. Heide et al., Defining the SUMOmodified proteome by multiple approaches in Saccharomyces cerevisiae, J Biol Chem, vol.11280, issue.6, pp.4102-4112, 2005.

Z. Harder, R. Zunino, and H. Mcbride, Sumo1 Conjugates Mitochondrial Substrates and Participates in Mitochondrial Fission, Current Biology, vol.14, issue.4, pp.340-345, 2004.
DOI : 10.1016/j.cub.2004.02.004

N. Hattersley, L. Shen, E. Jaffray, and R. Hay, The SUMO protease SENP6 is a direct regulator of PML nuclear bodies, Molecular Biology of the Cell, vol.22, issue.1, pp.78-90, 2011.
DOI : 10.1091/mbc.E10-06-0504

R. Hay, SUMO, Molecular Cell, vol.18, issue.1, pp.1-12, 2005.
DOI : 10.1016/j.molcel.2005.03.012

URL : https://hal.archives-ouvertes.fr/hal-00570132

C. Hecker, M. Rabiller, K. Haglund, P. Bayer, and I. Dikic, Specification of SUMO1- and SUMO2-interacting Motifs, Journal of Biological Chemistry, vol.281, issue.23, pp.16117-16127, 2006.
DOI : 10.1074/jbc.M512757200

V. Hietakangas, J. Anckar, H. Blomster, M. Fujimoto, J. Palvimo et al., PDSM, a motif for phosphorylation-dependent SUMO modification, Proceedings of the National Academy of Sciences, vol.103, issue.1, pp.45-50, 2005.
DOI : 10.1073/pnas.0503698102

V. Hietakangas, J. Ahlskog, A. Jakobsson, M. Hellesuo, N. Sahlberg et al., Phosphorylation of Serine 303 Is a Prerequisite for the Stress-Inducible SUMO Modification of Heat Shock Factor 1, Molecular and Cellular Biology, vol.23, issue.8, pp.2953-68, 2003.
DOI : 10.1128/MCB.23.8.2953-2968.2003

C. Huang, Y. Han, Y. Wang, X. Sun, S. Yan et al., SENP3 is responsible for HIF-1 transactivation under mild oxidative stress via, 2009.

L. Huang, J. Gu, M. Schau, and H. Bunn, Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway, Proc Natl Acad Sci U S A, vol.795, issue.14, pp.7987-92, 1998.

T. Huang, S. Wuerzberger-davis, Z. Wu, and S. Miyamoto, Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress, Cell, vol.26115, issue.5, pp.565-76, 2003.

J. Hurley, S. Lee, and G. Prag, Ubiquitin-binding domains, Biochemical Journal, vol.399, issue.3, pp.361-72, 2006.
DOI : 10.1042/BJ20061138

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1615911

Y. Itahana, E. Yeh, and Y. Zhang, Nucleocytoplasmic Shuttling Modulates Activity and Ubiquitination-Dependent Turnover of SUMO-Specific Protease 2, Molecular and Cellular Biology, vol.26, issue.12, pp.4675-4689, 2006.
DOI : 10.1128/MCB.01830-05

T. Järvinen, M. Pelto-huikko, K. Holli, and J. Isola, Estrogen Receptor ?? Is Coexpressed with ER?? and PR and Associated with Nodal Status, Grade, and Proliferation Rate in Breast Cancer, The American Journal of Pathology, vol.156, issue.1, pp.29-35, 2000.
DOI : 10.1016/S0002-9440(10)64702-5

E. Johnson, I. Schwienhorst, R. Dohmen, and G. Blobel, The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer, The EMBO Journal, vol.16, issue.18, pp.5509-5528, 1997.
DOI : 10.1093/emboj/16.18.5509

D. Jones, E. Crowe, T. Stevens, and E. Candido, Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins, Genome Biol, vol.3, issue.1, p.2, 2002.

M. Kagey, T. Melhuish, and D. Wotton, The Polycomb Protein Pc2 Is a SUMO E3, Cell, vol.113, issue.1, pp.127-164, 2003.
DOI : 10.1016/S0092-8674(03)00159-4

T. Kamitani, K. Kito, H. Nguyen, H. Wada, T. Fukuda-kamitani et al., Identification of Three Major Sentrinization Sites in PML, Journal of Biological Chemistry, vol.273, issue.41, pp.26675-26682, 1998.
DOI : 10.1074/jbc.273.41.26675

X. Kang, Y. Qi, Y. Zuo, Q. Wang, Y. Zou et al., SUMO-Specific Protease 2 Is Essential for Suppression of Polycomb Group Protein-Mediated Gene Silencing during Embryonic Development, Molecular Cell, vol.38, issue.2, pp.191-201, 2010.
DOI : 10.1016/j.molcel.2010.03.005

S. Khan, M. Rogers, K. Khurana, M. Meguid, and P. Numann, Estrogen Receptor Expression in Benign Breast Epithelium and Breast Cancer Risk, JNCI Journal of the National Cancer Institute, vol.90, issue.1, pp.37-42, 1998.
DOI : 10.1093/jnci/90.1.37

O. Kerscher, SUMO junction???what's your function? New insights through SUMO-interacting motifs, EMBO reports, vol.423, issue.6, pp.550-555, 2007.
DOI : 10.1038/sj.embor.7400980

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2002525

K. I. Kim, S. Baek, Y. Jeon, S. Nishimori, T. Suzuki et al., A New SUMO-1-specific Protease, SUSP1, That Is Highly Expressed in Reproductive Organs, Journal of Biological Chemistry, vol.275, issue.19, pp.14102-14106, 2000.
DOI : 10.1074/jbc.275.19.14102

M. Kim, E. Woo, Y. Chong, D. Homenko, and W. Kraus, Acetylation of Estrogen Receptor ?? by p300 at Lysines 266 and 268 Enhances the Deoxyribonucleic Acid Binding and Transactivation Activities of the Receptor, Molecular Endocrinology, vol.20, issue.7, pp.1479-93, 2006.
DOI : 10.1210/me.2005-0531

Y. Kim, K. Sung, S. Lee, Y. Kim, C. Choi et al., Desumoylation of homeodomain-interacting protein kinase 2 (HIPK2) through the cytoplasmic-nuclear shuttling of the SUMO-specific protease SENP1, FEBS Letters, vol.1695, issue.27, pp.6272-6278, 2005.
DOI : 10.1016/j.febslet.2005.10.010

O. Kirsh, J. Seeler, A. Pichler, A. Gast, S. Müller et al., The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase, The EMBO Journal, vol.21, issue.11, pp.2682-91, 2002.
DOI : 10.1093/emboj/21.11.2682

C. Klinge, Estrogen receptor interaction with co-activators and co-repressors???, Steroids, vol.65, issue.5, pp.227-51, 2000.
DOI : 10.1016/S0039-128X(99)00107-5

N. Kotaja, U. Karvonen, O. Jänne, and J. Palvimo, The Nuclear Receptor Interaction Domain of GRIP1 Is Modulated by Covalent Attachment of SUMO-1, Journal of Biological Chemistry, vol.277, issue.33, pp.30283-30291, 2002.
DOI : 10.1074/jbc.M204768200

P. Kushner, D. Agard, W. Feng, G. Lopez, A. Schiau et al., Oestrogen Receptor Function at Classical and Alternative Response Elements, Novartis Found Symp, vol.230, pp.20-26, 2000.
DOI : 10.1002/0470870818.ch3

H. Kuo, C. Chang, J. Jeng, H. Hu, D. Lin et al., SUMO modification negatively modulates the transcriptional activity of CREB-binding protein via the recruitment of Daxx, Proc. Natl Acad.Sci. USA, pp.16973-16978, 2005.
DOI : 10.1073/pnas.0504460102

M. Kuo, W. Den-besten, M. Thomas, and C. Sherr, Arf-induced turnover of the nucleolar nucleophosmin-associated SUMO-2/3 protease Senp3. Cell Cycle, pp.3378-87, 2008.

V. Lallemand-breitenbach, J. M. Benhenda, S. Nasr, R. Lei, M. Peres et al., Arsenic degrades PML or PML???RAR?? through a SUMO-triggered RNF4/ubiquitin-mediated pathway, Nature Cell Biology, vol.112, issue.5, pp.547-55, 2008.
DOI : 10.1038/nmeth891

V. Laudet, Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor, Journal of Molecular Endocrinology, vol.19, issue.3, pp.207-226, 1997.
DOI : 10.1677/jme.0.0190207

P. Le-romancer-muriel, C. Coralie, and . Pascale, Cracking the Estrogen Receptor's Post translational Code of in Breast Tumors, Sentis Stéphanie, 2011.

L. Romancer, M. Treilleux, I. Leconte, N. Robin-lespinasse, Y. Sentis et al., Regulation of Estrogen Rapid Signaling through Arginine Methylation by PRMT1, Molecular Cell, vol.31, issue.2, pp.212-233, 2008.
DOI : 10.1016/j.molcel.2008.05.025

A. Ledl, D. Schmidt, and S. Müller, Viral oncoproteins E1A and E7 and cellular LxCxE proteins repress SUMO modification of the retinoblastoma tumor suppressor, Oncogene, vol.272, issue.23, pp.3810-3818, 2005.
DOI : 10.1038/sj.onc.1208539

J. Lee, S. Park, O. Kim, C. Lee, J. Woo et al., Differential SUMOylation of LXRalpha and LXRbeta mediates transrepression of STAT1 inflammatory signaling in IFN-gamma-stimulated brain astrocytes, Mol Cell, vol.2435, issue.6, pp.806-823, 2009.

J. Lee and S. Thorgeirsson, Genome-scale profiling of gene expression in hepatocellular carcinoma: Classification, survival prediction, and identification of therapeutic targets, Gastroenterology, vol.127, issue.5, pp.51-56, 2004.
DOI : 10.1053/j.gastro.2004.09.015

H. Lee and W. Bai, Regulation of Estrogen Receptor Nuclear Export by Ligand-Induced and p38-Mediated Receptor Phosphorylation, Molecular and Cellular Biology, vol.22, issue.16, pp.5835-5880, 2002.
DOI : 10.1128/MCB.22.16.5835-5845.2002

S. J. Li and M. Hochstrasser, A new protease required for cell-cycle progression in yeast, Nature, vol.398, pp.246-251, 1999.

X. Li, Y. Luo, L. Yu, Y. Lin, D. Luo et al., SENP1 mediates TNF-induced desumoylation and cytoplasmic translocation of HIPK1 to enhance ASK1-dependent apoptosis, Cell Death and Differentiation, vol.161, issue.4, 2008.
DOI : 10.1074/jbc.M512338200

C. Lima and D. Reverter, Structure of the Human SENP7 Catalytic Domain and Poly-SUMO Deconjugation Activities for SENP6 and SENP7, Journal of Biological Chemistry, vol.283, issue.46, pp.32045-32055, 2008.
DOI : 10.1074/jbc.M805655200

B. Liu and K. Shuai, Regulation of the sumoylation system in gene expression, Current Opinion in Cell Biology, vol.20, issue.3, 2008.
DOI : 10.1016/j.ceb.2008.03.014

Y. Ma, S. Fan, C. Hu, Q. Meng, S. Fuqua et al., BRCA1 Regulates Acetylation and Ubiquitination of Estrogen Receptor-??, Molecular Endocrinology, vol.24, issue.1, pp.76-90, 2010.
DOI : 10.1210/me.2009-0218

A. Mabb, S. Wuerzberger-davis, and S. Miyamoto, PIASy mediates NEMO sumoylation and NF-??B activation in response to genotoxic stress, Nature Cell Biology, vol.18, issue.9, pp.986-93, 2006.
DOI : 10.1128/MCB.24.11.4895-4908.2004

L. Manza, S. Codreanu, S. Stamer, D. Smith, K. Wells et al., Global Shifts in Protein Sumoylation in Response to Electrophile and Oxidative Stress, Chemical Research in Toxicology, vol.17, issue.12, pp.1706-1721, 2004.
DOI : 10.1021/tx049767l

N. Martin, K. Schwamborn, V. Schreiber, A. Werner, C. Guillier et al., PARP-1 transcriptional activity is regulated by sumoylation upon heat shock, The EMBO Journal, vol.18, issue.22, pp.3534-3582, 2009.
DOI : 10.1016/j.molcel.2008.01.013

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782092

I. Matic, B. Macek, M. Hilger, T. Walther, and M. Mann, and Is Conserved through Evolution, Journal of Proteome Research, vol.7, issue.9, pp.4050-4057, 2008.
DOI : 10.1021/pr800368m

A. Mcdoniels-silvers, C. Nimri, G. Stoner, R. Lubet, and M. You, Differential gene expression in human lung adenocarcinomas and squamous cell carcinomas, Clin Cancer Res, vol.8, issue.4, pp.1127-1165, 2002.

S. Medunjanin, A. Hermani, D. Servi, B. Grisouard, J. Rincke et al., Glycogen Synthase Kinase-3 Interacts with and Phosphorylates Estrogen Receptor ?? and Is Involved in the Regulation of Receptor Activity, Journal of Biological Chemistry, vol.280, issue.38, pp.33006-33020, 2005.
DOI : 10.1074/jbc.M506758200

D. Meek and U. Knippschild, Posttranslational modification of MDM2, Mol Cancer Res, vol.1, issue.14, pp.1017-1043, 2003.

E. Meulmeester, M. Kunze, H. Hsiao, H. Urlaub, and F. Melchior, Mechanism and Consequences for Paralog-Specific Sumoylation of Ubiquitin-Specific Protease 25, Molecular Cell, vol.30, issue.5, pp.610-619, 2008.
DOI : 10.1016/j.molcel.2008.03.021

R. Michalides, A. Griekspoor, A. Balkenende, D. Verwoerd, L. Janssen et al., Tamoxifen resistance by a conformational arrest of the estrogen receptor ?? after PKA activation in breast cancer, Cancer Cell, vol.5, issue.6, pp.597-605, 2004.
DOI : 10.1016/j.ccr.2004.05.016

W. Miller and . Jr, The emerging role of retinoids and retinoic acid metabolism blocking agents in the treatment of cancer, Cancer, vol.37, issue.8, pp.1471-82, 1998.
DOI : 10.1002/(SICI)1097-0142(19981015)83:8<1471::AID-CNCR1>3.0.CO;2-6

A. Minty, X. Dumont, M. Kaghad, and D. Caput, Covalent Modification of p73?? by SUMO-1: TWO-HYBRID SCREENING WITH p73 IDENTIFIES NOVEL SUMO-1-INTERACTING PROTEINS AND A SUMO-1 INTERACTION MOTIF, Journal of Biological Chemistry, vol.275, issue.46, pp.36316-36339, 2000.
DOI : 10.1074/jbc.M004293200

M. Maria, . Keusekotten-kirstin-hofmann, G. J. Kay, R. Praefcke, and . Dohmen-jürgen, Sumoylation as a Signal for Polyubiquitylation and Proteasomal Degradation, 2010.

Y. Mo, Y. Yu, E. Theodosiou, P. Ee, and W. Beck, A role for Ubc9 in tumorigenesis, Oncogene, vol.5, issue.16, 2005.
DOI : 10.1038/sj.onc.1208210

S. Mooney, J. Grande, J. Salisbury, and R. Janknecht, Sumoylation of p68 and p72 RNA Helicases Affects Protein Stability and Transactivation Potential, Biochemistry, vol.49, issue.1, pp.1-10, 2010.
DOI : 10.1021/bi901263m

R. Morimoto, Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging Genes Dev, pp.1427-1465, 2008.

R. Morimoto, Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators, Genes & Development, vol.12, issue.24, pp.3788-96, 1998.
DOI : 10.1101/gad.12.24.3788

Y. Morita, C. Kanei-ishii, T. Nomura, and S. Ishii, TRAF7 Sequesters c-Myb to the Cytoplasm by Stimulating Its Sumoylation, Molecular Biology of the Cell, vol.16, issue.11, pp.5433-5477, 2005.
DOI : 10.1091/mbc.E05-08-0731

D. Mukhopadhyay, A. Arnaoutov, and M. Dasso, The SUMO protease SENP6 is essential for inner kinetochore assembly, The Journal of Cell Biology, vol.188, issue.5, pp.681-92, 2010.
DOI : 10.1083/jcb.200909008.dv

D. Mukhopadhyay, F. Ayaydin, N. Kolli, S. Tan, T. Anan et al., SUSP1 antagonizes formation of highly SUMO2/3-conjugated species, The Journal of Cell Biology, vol.261, issue.7, pp.939-988, 2006.
DOI : 10.1016/S0378-1119(00)00139-6

D. Mukhopadhyay and M. Dasso, The fate of metaphase kinetochores is weighed in the balance of SUMOylation during S phase. Cell Cycle, Aug, vol.159, issue.16, pp.3194-201, 2010.

S. Muller, M. Berger, . M. Lehembre, J. S. Seeler, and D. S. Haupt, c-Jun and p53 Activity Is Modulated by SUMO-1 Modification, Journal of Biological Chemistry, vol.275, issue.18, pp.13321-13329, 2000.
DOI : 10.1074/jbc.275.18.13321

S. Müller and A. Dejean, Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption, J Virol, vol.73, issue.6, pp.5137-5180, 1999.

S. Muller, M. J. Matunis, and A. Dejean, Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus, The EMBO Journal, vol.17, issue.1, pp.61-70, 1998.
DOI : 10.1093/emboj/17.1.61

K. Nacerddine, F. Lehembre, M. Bhaumik, J. Artus, M. Cohen-tannoudji et al., The SUMO Pathway Is Essential for Nuclear Integrity and Chromosome Segregation in Mice, Developmental Cell, vol.9, issue.6, pp.769-79, 2005.
DOI : 10.1016/j.devcel.2005.10.007

T. Nishida, H. Tanaka, and Y. H. , A novel mammalian Smt3-specific isopeptidase 1 (SMT3IP1) localized in the nucleolus at interphase, European Journal of Biochemistry, vol.398, issue.21, pp.6423-6427, 2000.
DOI : 10.1046/j.1432-1327.2000.01729.x

T. Nishida and H. Yasuda, PIAS1 and PIASx?? Function as SUMO-E3 Ligases toward Androgen Receptor and Repress Androgen Receptor-dependent Transcription, Journal of Biological Chemistry, vol.277, issue.44, pp.41311-41318, 2002.
DOI : 10.1074/jbc.M206741200

S. Oh, Z. Liu, M. Okada, S. Jang, X. Liu et al., Ebp1 sumoylation, regulated by TLS/FUS E3 ligase, is required for its anti-proliferative activity, Oncogene, vol.110, issue.7, pp.1017-1047, 2010.
DOI : 10.1038/sj.onc.1200854

M. Parisotto, H. Brodeur, P. Bhat, and S. Mader, M??tabolisme des r??tino??des et cancer, m??decine/sciences, vol.22, issue.12, pp.1101-1107, 2006.
DOI : 10.1051/medsci/200622121101

M. Park, Y. Seok, G. Jeong, and J. Lee, SUMO1 negatively regulates BRCA1-mediated transcription, via modulation of promoter occupancy, Nucleic Acids Research, vol.36, issue.1, pp.263-83, 2007.
DOI : 10.1093/nar/gkm969

J. Parkinson and R. Everett, Alphaherpesvirus Proteins Related to Herpes Simplex Virus Type 1 ICP0 Affect Cellular Structures and Proteins, Journal of Virology, vol.74, issue.21, pp.10006-10023, 2000.
DOI : 10.1128/JVI.74.21.10006-10017.2000

A. Pichler, A. Gast, J. S. Seeler, A. Dejean, and F. Melchior, The Nucleoporin RanBP2 Has SUMO1 E3 Ligase Activity, Cell, vol.108, issue.1, pp.109-120, 2002.
DOI : 10.1016/S0092-8674(01)00633-X

A. Pichler, P. Knipscheer, E. Oberhofer, W. Van-dijk, R. Körner et al., SUMO modification of the ubiquitin-conjugating enzyme E2-25K, Nature Structural & Molecular Biology, vol.263, issue.3, pp.264-273, 2005.
DOI : 10.1107/S0108767390010224

P. Potts, The Yin and Yang of the MMS21???SMC5/6 SUMO ligase complex in homologous recombination, DNA Repair, vol.8, issue.4, pp.499-506, 2009.
DOI : 10.1016/j.dnarep.2009.01.009

H. Poukka, U. Karvonen, O. Janne, and J. Palvimo, Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1), Proceedings of the National Academy of Sciences, vol.97, issue.26, pp.14145-50, 2000.
DOI : 10.1073/pnas.97.26.14145

C. Poulard, K. Bouchekioua-bouzaghou, S. Sentis, L. Corbo, L. Romancer et al., Post-translational modifications modulate estrogen receptor alpha activity in breast tumors, Med Sci (Paris), vol.26, pp.6-7636, 2010.

J. Qu, G. Liu, K. Wu, P. Han, P. Wang et al., Nitric Oxide Destabilizes Pias3 and Regulates Sumoylation, PLoS ONE, vol.282, issue.10, p.1085, 2007.
DOI : 10.1371/journal.pone.0001085.s012

URL : http://doi.org/10.1371/journal.pone.0001085

R. Rajendra, D. Malegaonkar, P. Pungaliya, H. Marshall, Z. Rasheed et al., Topors Functions as an E3 Ubiquitin Ligase with Specific E2 Enzymes and Ubiquitinates p53, Journal of Biological Chemistry, vol.279, issue.35, pp.36440-36444, 2004.
DOI : 10.1074/jbc.C400300200

G. Reid, S. Denger, M. Kos, and F. Gannon, Human estrogen receptor-??: regulation by synthesis, modification and degradation, Cellular and Molecular Life Sciences (CMLS), vol.59, issue.5, pp.821-852, 2002.
DOI : 10.1007/s00018-002-8470-2

I. Rogatsky, J. Trowbridge, and M. Garabedian, Potentiation of Human Estrogen Receptor ?? Transcriptional Activation through Phosphorylation of Serines 104 and 106 by the Cyclin A-CDK2 Complex, Journal of Biological Chemistry, vol.274, issue.32, pp.22296-302, 1999.
DOI : 10.1074/jbc.274.32.22296

H. Saitoh and J. Hinchey, Functional Heterogeneity of Small Ubiquitin-related Protein Modifiers SUMO-1 versus SUMO-2/3, Journal of Biological Chemistry, vol.275, issue.9, pp.6252-6260, 2000.
DOI : 10.1074/jbc.275.9.6252

N. Saitoh, Y. Uchimura, T. Tachibana, S. Sugahara, H. Saitoh et al., In situ SUMOylation analysis reveals a modulatory role of RanBP2 in the nuclear rim and PML bodies, Experimental Cell Research, vol.312, issue.8, pp.3121418-3121448, 2006.
DOI : 10.1016/j.yexcr.2006.01.013

A. Sapetschnig, G. Rischitor, H. Braun, A. Doll, M. Schergaut et al., Transcription factor Sp3 is silenced through SUMO modification by PIAS1, The EMBO Journal, vol.95, issue.19, pp.5206-5221, 2002.
DOI : 10.1093/emboj/cdf510

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC129032

D. Schmidt and S. Müller, Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity, Proceedings of the National Academy of Sciences, vol.99, issue.5, pp.2872-2879, 2002.
DOI : 10.1073/pnas.052559499

A. Scognamiglio, A. Nebbioso, F. Manzo, S. Valente, A. Mai et al., HDAC-class II specific inhibition involves HDAC proteasome-dependent degradation mediated by RANBP2, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1783, issue.10, pp.2030-2038, 1783.
DOI : 10.1016/j.bbamcr.2008.07.007

URL : https://hal.archives-ouvertes.fr/inserm-00351018

C. Sedwick, Lessons on Life from SENP2, PLoS Biology, vol.6, issue.12, p.312, 2008.
DOI : 10.1371/journal.pbio.0060312.g001

J. Seeler and A. Dejean, Nuclear and unclear functions of SUMO, Nature Reviews Molecular Cell Biology, vol.4, issue.9, pp.690-699, 2003.
DOI : 10.1038/nrm1200

S. Sentis, L. Romancer, M. Bianchin, C. Rostan, M. Corbo et al., Sumoylation of the Estrogen Receptor ?? Hinge Region Regulates Its Transcriptional Activity, Molecular Endocrinology, vol.19, issue.11, pp.2671-84, 2005.
DOI : 10.1210/me.2005-0042

W. Seufert, B. Futcher, and S. Jentsch, Role of a ubiquitin-conjugating enzyme in degradation of S-and Mphase cyclins, Nature, vol.5373, issue.6509, pp.78-81, 2005.

Y. Shah and B. Rowan, The Src kinase pathway promotes tamoxifen agonist action in Ishikawa endometrial cells through phosphorylation-dependent stabilization of estrogen receptor (alpha) promoter interaction and elevated steroid receptor coactivator 1 activityMol, Endocrinol, vol.19, issue.3, pp.732-780, 2005.

A. Shalizi, B. Gaudillière, Z. Yuan, J. Stegmüller, T. Shirogane et al., A Calcium-Regulated MEF2 Sumoylation Switch Controls Postsynaptic Differentiation, Science, vol.311, issue.5763, pp.3111012-3111019, 2006.
DOI : 10.1126/science.1122513

W. Shao and M. Brown, Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy, Breast Cancer Research, vol.11, issue.Suppl 1, pp.39-52, 2004.
DOI : 10.1186/bcr742

L. Shen, M. Geoffroy, E. Jaffray, and R. Hay, Characterization of SENP7, a SUMO-2/3-specific isopeptidase, Biochemical Journal, vol.7, issue.2, pp.223-253, 2009.
DOI : 10.1093/nar/22.22.4673

URL : https://hal.archives-ouvertes.fr/hal-00479165

T. Shen, H. Lin, P. Scaglioni, T. Yung, and P. Pandolfi, The mechanisms of PML-nuclear body formation, Mol Cell, vol.324, issue.3, pp.331-340, 2006.

S. Ke and L. Bin, Regulation of gene-activation pathways by PIAS proteins in the immune system, Nature Reviews Immunology, vol.5, pp.593-605, 2005.

J. Song, L. Durrin, T. Wilkinson, T. Krontiris, and Y. Chen, Identification of a SUMO-binding motif that recognizes SUMO-modified proteins, Proceedings of the National Academy of Sciences, vol.101, issue.40, pp.14373-14381, 2005.
DOI : 10.1073/pnas.0403498101

J. Song, Z. Zhang, W. Hu, and Y. Chen, Small Ubiquitin-like Modifier (SUMO) Recognition of a SUMO Binding Motif: A REVERSAL OF THE BOUND ORIENTATION, Journal of Biological Chemistry, vol.280, issue.48, pp.40122-40131, 2005.
DOI : 10.1074/jbc.M507059200

P. Stehmeier and S. Muller, Phospho-regulated SUMO interaction stress via p300 de-SUMOylation, EMBO J, vol.28, pp.2748-2762, 2009.
DOI : 10.1016/j.molcel.2009.01.013

URL : http://doi.org/10.1016/j.molcel.2009.01.013

K. Subramanian, D. Jia, P. Kapoor-vazirani, D. Powell, R. Collins et al., Regulation of Estrogen Receptor ?? by the SET7 Lysine Methyltransferase, Molecular Cell, vol.30, issue.3, pp.336-347, 2008.
DOI : 10.1016/j.molcel.2008.03.022

S. Subramaniam, R. Mealer, K. Sixt, R. Barrow, A. Usiello et al., Rhes, a Physiologic Regulator of Sumoylation, Enhances Cross-sumoylation between the Basic Sumoylation Enzymes E1 and Ubc9, Journal of Biological Chemistry, vol.285, issue.27, pp.28520428-28520460, 2010.
DOI : 10.1074/jbc.C110.127191

S. Huaiyu, L. Joel, D. , and H. Tony, Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins, EMBO J, vol.119, issue.2618, pp.4102-4112, 2007.

K. Sung, Y. Go, J. Ahn, Y. Kim, Y. Kim et al., Differential interactions of the homeodomaininteracting protein kinase 2 (HIPK2) by phosphorylation-dependent sumoylation, FEBS Lett, vol.6579, issue.14, pp.3001-3009, 2005.

K. Tanaka, J. Nishide, K. Okazaki, H. Kato, O. Niwa et al., Characterization of a Fission Yeast SUMO-1 Homologue, Pmt3p, Required for Multiple Nuclear Events, Including the Control of Telomere Length and Chromosome Segregation, Molecular and Cellular Biology, vol.19, issue.12, pp.8660-72, 1999.
DOI : 10.1128/MCB.19.12.8660

M. Tatham, M. Geoffroy, L. Shen, A. Plechanovova, N. Hattersley et al., RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation, Nature Cell Biology, vol.112, issue.5, pp.538-584, 2008.
DOI : 10.1042/BJ20052030

R. Thomas, N. Sarwar, F. Phoenix, R. Coombes, and S. Ali, Phosphorylation at serines to chemotherapeutic drugs Cell Cycle, pp.1-4, 2008.

S. Tian, H. Poukka, J. Palvimo, and O. Jänne, Small ubiquitin-related modifier-1 (SUMO-1) modification of the glucocorticoid receptor, Biochemical Journal, vol.367, issue.3, pp.907-918, 2002.
DOI : 10.1042/bj20021085

H. Tsai, J. Katzenellenbogen, B. Katzenellenbogen, and M. Shupnik, Protein Kinase A Activation of Estrogen Receptor ?? Transcription Does Not Require Proteasome Activity and Protects the Receptor from Ligand-Mediated Degradation, Endocrinology, vol.145, issue.6, pp.2730-2738, 2004.
DOI : 10.1210/en.2003-1470

H. Ulrich, SUMO teams up with ubiquitin to manage hypoxia. Cell, pp.446-453, 2007.

H. Ulrich, The SUMO System: An Overview, Methods Mol Biol, vol.497, pp.3-16, 2009.
DOI : 10.1007/978-1-59745-566-4_1

J. Um and K. Chung, Functional modulation of parkin through physical interaction with SUMO-1, Journal of Neuroscience Research, vol.74, issue.7, pp.1543-54, 2006.
DOI : 10.1002/jnr.21041

J. Um, D. Min, H. Rhim, J. Kim, S. Paik et al., Parkin Ubiquitinates and Promotes the Degradation of RanBP2, Journal of Biological Chemistry, vol.281, issue.6, pp.3595-603, 2006.
DOI : 10.1074/jbc.M504994200

A. Verger, J. Perdomo, and M. Crossley, Modification with SUMO, EMBO reports, vol.22, issue.2, pp.137-179, 2003.
DOI : 10.1038/sj.embor.embor738

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1315836

C. Wang, M. Fu, R. Angeletti, L. Siconolfi-baez, A. Reutens et al., Direct Acetylation of the Estrogen Receptor alpha Hinge Region by p300 Regulates Transactivation and Hormone Sensitivity, Journal of Biological Chemistry, vol.276, issue.21, pp.18375-83, 2001.
DOI : 10.1074/jbc.M100800200

J. Wang, A. Li, Z. Wang, X. Feng, E. Olson et al., Myocardin Sumoylation Transactivates Cardiogenic Genes in Pluripotent 10T1/2 Fibroblasts, Molecular and Cellular Biology, vol.27, issue.2, pp.622-654, 2007.
DOI : 10.1128/MCB.01160-06

L. Wang and S. Banerjee, Differential PIAS3 expression in human malignancy, Oncology Reports, vol.11, issue.6, pp.1319-1343, 2004.
DOI : 10.3892/or.11.6.1319

S. Weger, E. Hammer, and M. Engstler, The DNA topoisomerase I binding protein topors as a novel cellular target for SUMO-1 modification: characterization of domains necessary for subcellular localization and sumolation, Experimental Cell Research, vol.290, issue.1, pp.13-27, 2003.
DOI : 10.1016/S0014-4827(03)00292-1

S. Weger, E. Hammer, and R. Heilbronn, Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo, FEBS Letters, vol.22, issue.22, pp.5007-5012, 2005.
DOI : 10.1016/j.febslet.2005.07.088

G. Weitsman, L. Li, G. Skliris, J. Davie, K. Ung et al., Estrogen receptor-alpha phosphorylated at Ser118 is present at the promoters of estrogen-regulated genes and is not altered due to HER-2 overexpression, Cancer Res, vol.1566, issue.20, pp.10162-70, 2006.

J. Wohlschlegel, E. Johnson, S. Reed, and J. Yates, Global Analysis of Protein Sumoylation in Saccharomyces cerevisiae, Journal of Biological Chemistry, vol.279, issue.44, pp.45662-45670, 2004.
DOI : 10.1074/jbc.M409203200

C. Woo, T. Shishido, C. Mcclain, J. Lim, J. Li et al., Extracellular Signal-Regulated Kinase 5 SUMOylation Antagonizes Shear Stress-Induced Antiinflammatory Response and Endothelial Nitric Oxide Synthase Expression in Endothelial Cells, Circulation Research, vol.102, issue.5, pp.538-583, 2008.
DOI : 10.1161/CIRCRESAHA.107.156877

Z. Xu and S. Au, Mapping residues of SUMO precursors essential in differential maturation by SUMOspecific protease, SENP1, Biochem J, vol.1386, issue.2, pp.325-355, 2005.

Z. Xu, H. Chan, W. Lam, K. Lam, L. Lam et al., SUMO Proteases: Redox Regulation and Biological Consequences, Antioxidants & Redox Signaling, vol.11, issue.6, pp.1453-84, 2009.
DOI : 10.1089/ars.2008.2182

Z. Xu, L. Lam, L. Lam, S. Chau, T. Ng et al., Molecular basis of the redox regulation of SUMO proteases: a protective mechanism of intermolecular disulfide linkage against irreversible sulfhydryl oxidation, The FASEB Journal, vol.22, issue.1, pp.127-164, 2008.
DOI : 10.1096/fj.06-7871com

T. Yamaguchi, P. Sharma, M. Athanasiou, A. Kumar, S. Yamada et al., Mutation of SENP1/SuPr-2 Reveals an Essential Role for Desumoylation in Mouse Development, Molecular and Cellular Biology, vol.25, issue.12, pp.5171-5182, 2005.
DOI : 10.1128/MCB.25.12.5171-5182.2005

S. Yang, A. Galanis, J. Witty, and A. Sharrocks, An extended consensus motif enhances the specificity of substrate modification by SUMO, The EMBO Journal, vol.579, issue.21, pp.5083-93, 2006.
DOI : 10.1038/sj.emboj.7601383

S. Yang, E. Jaffray, R. Hay, and A. Sharrocks, Dynamic Interplay of the SUMO and ERK Pathways in Regulating Elk-1 Transcriptional Activity, Molecular Cell, vol.12, issue.1, pp.63-74, 2003.
DOI : 10.1016/S1097-2765(03)00265-X

S. Yang and A. Sharrocks, SUMO Promotes HDAC-Mediated Transcriptional Repression, Molecular Cell, vol.13, issue.4, pp.611-618, 2004.
DOI : 10.1016/S1097-2765(04)00060-7

URL : http://doi.org/10.1016/s1097-2765(04)00060-7

X. Yang and E. Seto, HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention, Oncogene, vol.265, issue.37, pp.5310-5318, 2008.
DOI : 10.1016/S1535-6108(04)00114-X

E. Yeh, SUMOylation and De-SUMOylation: Wrestling with Life's Processes, Journal of Biological Chemistry, vol.284, issue.13, pp.8223-8230, 2009.
DOI : 10.1074/jbc.R800050200

F. P. Zhang, L. Mikkonen, J. Toppari, J. J. Palvimo, I. Thesleff et al., Sumo-1 Function Is Dispensable in Normal Mouse Development, Molecular and Cellular Biology, vol.28, issue.17, pp.5381-5390, 2008.
DOI : 10.1128/MCB.00651-08

. H. Zhang, . H. Saitoh, and M. J. Matunis, Enzymes of the SUMO Modification Pathway Localize to Filaments of the Nuclear Pore Complex, Molecular and Cellular Biology, vol.22, issue.18, pp.6498-6508, 2002.
DOI : 10.1128/MCB.22.18.6498-6508.2002

W. Zhou, J. J. Ryan, and H. Zhou, Global Analyses of Sumoylated Proteins in Saccharomyces cerevisiae: INDUCTION OF PROTEIN SUMOYLATION BY CELLULAR STRESSES, Journal of Biological Chemistry, vol.279, issue.31, pp.32262-32268, 2004.
DOI : 10.1074/jbc.M404173200

S. Zhu, J. Goeres, K. Sixt, M. Békés, X. Zhang et al., Protection from Isopeptidase-Mediated Deconjugation Regulates Paralog-Selective Sumoylation of RanGAP1, Molecular Cell, vol.33, issue.5, pp.570-80, 2009.
DOI : 10.1016/j.molcel.2009.02.008

Y. Zhu, Y. Zhang, P. Zhu, Y. Yang, J. Du et al., Role of molecular screening for common fusion genes in the diagnosis and classification of leukemia, Beijing Da Xue Xue Bao, vol.1837, issue.3, pp.236-245, 2005.

R. Zunino, E. Braschi, L. Xu, and H. Mcbride, Translocation of SenP5 from the Nucleoli to the Mitochondria Modulates DRP1-dependent Fission during Mitosis, Journal of Biological Chemistry, vol.284, issue.26, pp.17783-95, 2009.
DOI : 10.1074/jbc.M901902200

R. Zunino, A. Schauss, P. Rippstein, M. Andrade-navarro, and H. Mcbride, The SUMO protease SENP5 is required to maintain mitochondrial morphology and function, Journal of Cell Science, vol.120, issue.7, pp.1178-88, 2007.
DOI : 10.1242/jcs.03418