A. Aguilera and B. Gomez-gonzalez, Genome instability: a mechanistic view of its causes and consequences, Nature Reviews Genetics, vol.16, issue.3, pp.204-217, 2008.
DOI : 10.1038/nrg2268

M. I. Aladjem, Replication in context: dynamic regulation of DNA replication patterns in metazoans, Nature Reviews Genetics, vol.34, issue.8, pp.588-600, 2007.
DOI : 10.1038/nrg2143

A. A. Alcasabas, A. J. Osborn, J. Bachant, F. Hu, P. J. Werler et al., Mrc1 transduces signals of DNA replication stress to activate Rad53, Nature Cell Biology, vol.3, issue.11, pp.958-965, 2001.
DOI : 10.1038/ncb1101-958

D. E. Barnes and T. Lindahl, Repair and Genetic Consequences of Endogenous DNA Base Damage in Mammalian Cells, Annual Review of Genetics, vol.38, issue.1, pp.445-476, 2004.
DOI : 10.1146/annurev.genet.38.072902.092448

D. Blankenberg, V. Kuster, G. Coraor, N. Ananda, G. Lazarus et al., Galaxy: A Web-Based Genome Analysis Tool for Experimentalists, Curr Protoc Mol Biol Chapter, vol.19, issue.19, pp.10-11, 2009.
DOI : 10.1002/0471142727.mb1910s89

D. Branzei and M. Foiani, The DNA damage response during DNA replication, Current Opinion in Cell Biology, vol.17, issue.6, pp.568-575, 2005.
DOI : 10.1016/j.ceb.2005.09.003

D. Branzei and M. Foiani, The Rad53 signal transduction pathway: Replication fork stabilization, DNA repair, and adaptation, Experimental Cell Research, vol.312, issue.14, pp.2654-2659, 2006.
DOI : 10.1016/j.yexcr.2006.06.012

T. S. Byun, M. Pacek, M. Yee, J. C. Walter, C. et al., Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint, Genes & Development, vol.19, issue.9, pp.1040-1052, 2005.
DOI : 10.1101/gad.1301205

C. Cayrou, P. Coulombe, A. Vigneron, S. Stanojcic, O. Ganier et al., Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features, Genome Research, vol.21, issue.9, 2011.
DOI : 10.1101/gr.121830.111

URL : https://hal.archives-ouvertes.fr/lirmm-00631491

D. J. Clarke, Establishment of dependence relationships between genome replication and mitosis, Journal of Cellular Biochemistry, vol.285, issue.14, pp.95-103, 2003.
DOI : 10.1002/jcb.10324

J. A. Cobb, L. Bjergbaek, K. Shimada, C. Frei, and S. M. Gasser, DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1, The EMBO Journal, vol.22, issue.16, pp.4325-4336, 2003.
DOI : 10.1093/emboj/cdg391

S. Courbet, S. Gay, N. Arnoult, G. Wronka, M. Anglana et al., Replication fork movement sets chromatin loop size and origin choice in mammalian cells, Nature, vol.279, issue.7212, pp.557-560, 2008.
DOI : 10.1038/nature07233

L. Crabbé, A. Thomas, V. Pantesco, J. De-vos, P. Pasero et al., Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response, Nature Structural & Molecular Biology, vol.89, issue.11, pp.1391-1397, 2010.
DOI : 10.1101/gad.232902

D. 'amours, D. , J. , and S. P. , The yeast Xrs2 complex functions in S phase checkpoint regulation, Genes & Development, vol.15, issue.17, pp.2238-2249, 2001.
DOI : 10.1101/gad.208701

M. A. De-la-torre-ruiz, C. M. Green, and N. F. Lowndes, RAD9 and RAD24 define two additive, interacting branches of the DNA damage checkpoint pathway in budding yeast normally required for Rad53 modification and activation, The EMBO Journal, vol.17, issue.9, pp.2687-2698, 1998.
DOI : 10.1093/emboj/17.9.2687

P. R. Dohrmann, G. Oshiro, M. Tecklenburg, and R. A. Sclafani, RAD53 regulates DBF4 independently of checkpoint function in saccharomyces cerevisiae, Genetics, vol.151, pp.965-977, 1999.

S. Farkash-amar and I. Simon, Genome-wide analysis of the replication program in mammals, Chromosome Research, vol.420, issue.1, pp.115-125, 2010.
DOI : 10.1007/s10577-009-9091-5

M. Foiani, A. Pellicioli, M. Lopes, C. Lucca, M. Ferrari et al., DNA damage checkpoints and DNA replication controls in Saccharomyces cerevisiae, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.451, issue.1-2, pp.187-196, 2000.
DOI : 10.1016/S0027-5107(00)00049-X

A. Gambus, R. C. Jones, A. Sanchez-diaz, M. Kanemaki, F. Van-deursen et al., GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks, Nature Cell Biology, vol.14, issue.4, pp.358-366, 2006.
DOI : 10.1038/ncb1382

X. Q. Ge, D. A. Jackson, and J. J. Blow, Dormant origins licensed by excess Mcm2 7 are required for human cells to survive replicative stress, Genes & Development, vol.21, issue.24, pp.3331-3341, 2007.
DOI : 10.1101/gad.457807

M. Giannattasio, C. Follonier, H. Tourrière, F. Puddu, F. Lazzaro et al., Exo1 Competes with Repair Synthesis, Converts NER Intermediates to Long ssDNA Gaps, and Promotes Checkpoint Activation, Exo1 Competes with Repair Synthesis, Converts NER Intermediates to Long ssDNA Gaps, and Promotes Checkpoint Activation, pp.50-62, 2010.
DOI : 10.1016/j.molcel.2010.09.004

URL : https://hal.archives-ouvertes.fr/hal-00527808

N. Gilbert, S. Boyle, H. Fiegler, K. Woodfine, N. P. Carter et al., Chromatin Architecture of the Human Genome, Cell, vol.118, issue.5, pp.555-566, 2004.
DOI : 10.1016/j.cell.2004.08.011

T. D. Halazonetis, V. G. Gorgoulis, and J. Bartek, An Oncogene-Induced DNA Damage Model for Cancer Development, Science, vol.319, issue.5868, pp.1352-1355, 2008.
DOI : 10.1126/science.1140735

L. Hansen, L. Marino-ramirez, and D. Landsman, Many sequence-specific chromatin modifying protein-binding motifs show strong positional preferences for potential regulatory regions in the Saccharomyces cerevisiae genome, Nucleic Acids Research, vol.38, issue.6, 1195.
DOI : 10.1093/nar/gkp1195

C. F. Hardy, O. Dryga, S. Seematter, P. M. Pahl, and R. A. Sclafani, mcm5/cdc46-bob1 bypasses the requirement for the S phase activator Cdc7p, Proceedings of the National Academy of Sciences, vol.94, issue.7, pp.3151-3155, 1997.
DOI : 10.1073/pnas.94.7.3151

J. H. Hoeijmakers, Genome maintenance mechanisms for preventing cancer, Nature, vol.411, issue.6835, pp.366-374, 2001.
DOI : 10.1038/35077232

P. Huertas, F. Cortes-ledesma, A. A. Sartori, A. Aguilera, J. et al., CDK targets Sae2 to control DNA-end resection and homologous recombination, Nature, vol.24, issue.7213, 2008.
DOI : 10.1038/nature07215

A. Ibarra, E. Schwob, and J. Mendez, Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication, Proceedings of the National Academy of Sciences, vol.105, issue.26, pp.8956-8961, 2008.
DOI : 10.1073/pnas.0803978105

P. Jares and J. J. Blow, Xenopus cdc7 function is dependent on licensing but not on XORC, XCdc6, or CDK activity and is required for XCdc45 loading, Genes Dev, vol.14, pp.1528-1540, 2000.

A. Jazayeri, J. Falck, C. Lukas, J. Bartek, G. C. Smith et al., ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks, Nature Cell Biology, vol.19, issue.1, pp.37-45, 2006.
DOI : 10.1038/sj.emboj.7600269

W. Jiang, D. Mcdonald, T. J. Hope, and T. Hunter, Mammalian Cdc7-Dbf4 protein kinase complex is essential for initiation of DNA replication, The EMBO Journal, vol.18, issue.20, pp.5703-5713, 1999.
DOI : 10.1093/emboj/18.20.5703

M. Kanemaki and K. Labib, Distinct roles for Sld3 and GINS during establishment and progression of eukaryotic DNA replication forks, The EMBO Journal, vol.20, issue.8, pp.1753-1763, 2006.
DOI : 10.1038/sj.emboj.7601063

Y. Katou, Y. Kanoh, M. Bando, H. Noguchi, H. Tanaka et al., S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex, Nature, vol.424, issue.6952, pp.1078-1083, 2003.
DOI : 10.1038/nature01900

A. Koc, L. J. Wheeler, C. K. Mathews, M. , and G. F. , Hydroxyurea Arrests DNA Replication by a Mechanism That Preserves Basal dNTP Pools, Journal of Biological Chemistry, vol.279, issue.1, pp.223-230, 2004.
DOI : 10.1074/jbc.M303952200

R. D. Kolodner, C. D. Putnam, M. , and K. , Maintenance of Genome Stability in Saccharomyces cerevisiae, Science, vol.297, issue.5581, pp.552-557, 2002.
DOI : 10.1126/science.1075277

T. A. Kunkel, Considering the cancer consequences of altered DNA polymerase function, Cancer Cell, vol.3, issue.2, pp.105-110, 2003.
DOI : 10.1016/S1535-6108(03)00027-8

K. Labib, How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells?, Genes & Development, vol.24, issue.12, pp.1208-1219, 2010.
DOI : 10.1101/gad.1933010

R. Lebofsky, R. Heilig, M. Sonnleitner, J. Weissenbach, and A. Bensimon, DNA Replication Origin Interference Increases the Spacing between Initiation Events in Human Cells, Molecular Biology of the Cell, vol.17, issue.12, pp.5337-5345, 2006.
DOI : 10.1091/mbc.E06-04-0298

M. Lei, Y. Kawasaki, M. R. Young, M. Kihara, A. Sugino et al., Mcm2 is a target of regulation by Cdc7-Dbf4 during the initiation of DNA??synthesis, Genes & Development, vol.11, issue.24, pp.3365-3374, 1997.
DOI : 10.1101/gad.11.24.3365

M. Lopes, C. Cotta-ramusino, A. Pellicioli, G. Liberi, P. Plevani et al., The DNA replication checkpoint response stabilizes stalled replication forks, Nature, vol.7, issue.6846, pp.557-561, 2001.
DOI : 10.1038/35087613

C. Lucca, F. Vanoli, C. Cotta-ramusino, A. Pellicioli, G. Liberi et al., Checkpoint-mediated control of replisome???fork association and signalling in response to replication pausing, Oncogene, vol.23, issue.6, pp.1206-1213, 2004.
DOI : 10.1038/sj.onc.1207199

C. Lundin, M. North, K. Erixon, K. Walters, D. Jenssen et al., Methyl methanesulfonate (MMS) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks, Nucleic Acids Research, vol.33, issue.12, pp.3799-3811, 2005.
DOI : 10.1093/nar/gki681

N. Mailand and J. F. Diffley, CDKs Promote DNA Replication Origin Licensing in Human Cells by Protecting Cdc6 from APC/C-Dependent Proteolysis, Cell, vol.122, issue.6, pp.915-926, 2005.
DOI : 10.1016/j.cell.2005.08.013

J. Majka and P. M. Burgers, Yeast Rad17/Mec3/Ddc1: A sliding clamp for the DNA damage checkpoint, Proceedings of the National Academy of Sciences, vol.100, issue.5, pp.2249-2254, 2003.
DOI : 10.1073/pnas.0437148100

M. Malumbres and M. Barbacid, MILESTONES IN CELL DIVISION TO CYCLE OR NOT TO CYCLE: A CRITICAL DECISION IN CANCER, Nature Reviews Cancer, vol.1, issue.3, pp.222-231, 2001.
DOI : 10.1038/35106065

X. Michalet, R. Ekong, F. Fougerousse, S. Rousseaux, C. Schurra et al., Dynamic Molecular Combing: Stretching the Whole Human Genome for High-Resolution Studies, Science, vol.277, issue.5331, pp.1518-1523, 1997.
DOI : 10.1126/science.277.5331.1518

S. Mimura and H. Takisawa, Xenopus Cdc45-dependent loading of DNA polymerase alpha onto chromatin under the control of S-phase cdk, The EMBO Journal, vol.17, issue.19, pp.5699-5707, 1998.
DOI : 10.1093/emboj/17.19.5699

G. Moldovan, B. Pfander, and S. Jentsch, PCNA, the Maestro of the Replication Fork, Cell, vol.129, issue.4, pp.665-679, 2007.
DOI : 10.1016/j.cell.2007.05.003

D. O. Morgan, Principles of CDK regulation, Nature, vol.374, issue.6518, pp.131-134, 1995.
DOI : 10.1038/374131a0

S. Muramatsu, K. Hirai, Y. S. Tak, Y. Kamimura, and H. Araki, CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol ??, and GINS in budding yeast, Genes & Development, vol.24, issue.6, pp.602-612
DOI : 10.1101/gad.1883410

K. Myung, A. Datta, and R. D. Kolodner, Suppression of Spontaneous Chromosomal Rearrangements by S Phase Checkpoint Functions in Saccharomyces cerevisiae, Cell, vol.104, issue.3, pp.397-408, 2001.
DOI : 10.1016/S0092-8674(01)00227-6

D. Nakada, K. Matsumoto, and K. Sugimoto, ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism, Genes & Development, vol.17, issue.16, pp.1957-1962, 2003.
DOI : 10.1101/gad.1099003

Y. Namiki and L. Zou, ATRIP associates with replication protein A-coated ssDNA through multiple interactions, Proceedings of the National Academy of Sciences, vol.103, issue.3, pp.580-585, 2006.
DOI : 10.1073/pnas.0510223103

C. S. Newlon and J. F. Theis, The structure and function of yeast ARS elements, Current Opinion in Genetics & Development, vol.3, issue.5, pp.752-758, 1993.
DOI : 10.1016/S0959-437X(05)80094-2

N. Mcelhinny, S. A. Gordenin, D. A. Stith, C. M. Burgers, P. M. Kunkel et al., Division of Labor at the Eukaryotic Replication Fork, Molecular Cell, vol.30, issue.2, pp.137-144, 2008.
DOI : 10.1016/j.molcel.2008.02.022

J. W. Nicol, G. A. Helt, S. G. Blanchard, . Jr, A. Raja et al., The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets, Bioinformatics, vol.25, issue.20, pp.2730-2731, 2009.
DOI : 10.1093/bioinformatics/btp472

K. A. Nyberg, R. J. Michelson, C. W. Putnam, and T. A. Weinert, Toward Maintaining the Genome: DNA Damage and Replication Checkpoints, Annual Review of Genetics, vol.36, issue.1, pp.617-656, 2002.
DOI : 10.1146/annurev.genet.36.060402.113540

M. Pacek and J. C. Walter, A requirement for MCM7 and Cdc45 in chromosome unwinding during eukaryotic DNA replication, The EMBO Journal, vol.19, issue.18, pp.3667-3676, 2004.
DOI : 10.1128/MCB.20.9.3086-3096.2000

P. Pasero, B. P. Duncker, E. Schwob, and S. M. Gasser, A role for the Cdc7 kinase regulatory subunit Dbf4p in the formation of initiation-competent origins of replication, Genes & Development, vol.13, issue.16, pp.2159-2176, 1999.
DOI : 10.1101/gad.13.16.2159

A. Pellicioli and M. Foiani, Signal Transduction: How Rad53 Kinase Is Activated, Current Biology, vol.15, issue.18, pp.769-771, 2005.
DOI : 10.1016/j.cub.2005.08.057

URL : http://doi.org/10.1016/j.cub.2005.08.057

Z. F. Pursell, I. Isoz, E. Lundstrom, E. Johansson, and T. A. Kunkel, Yeast DNA Polymerase ?? Participates in Leading-Strand DNA Replication, Yeast DNA Polymerase {epsilon} Participates in Leading-Strand DNA Replication, pp.127-130, 2007.
DOI : 10.1126/science.1144067

M. K. Raghuraman, B. J. Brewer, and W. L. Fangman, Cell Cycle-Dependent Establishment of a Late Replication Program, Science, vol.276, issue.5313, pp.806-809, 1997.
DOI : 10.1126/science.276.5313.806

M. K. Raghuraman, E. A. Winzeler, D. Collingwood, S. Hunt, L. Wodicka et al., Replication Dynamics of the Yeast Genome, Science, vol.294, issue.5540, pp.115-121, 2001.
DOI : 10.1126/science.294.5540.115

N. Rhind, S. C. Yang, and J. Bechhoefer, Reconciling stochastic origin firing with defined replication timing, Chromosome Research, vol.78, issue.4, pp.35-43, 2009.
DOI : 10.1007/s10577-009-9093-3

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862975

R. M. Ricke and A. K. Bielinsky, Mcm10 Regulates the Stability and Chromatin Association of DNA Polymerase-??, Molecular Cell, vol.16, issue.2, pp.173-185, 2004.
DOI : 10.1016/j.molcel.2004.09.017

B. T. Roberts, C. Y. Ying, J. Gautier, and J. L. Maller, DNA replication in vertebrates requires a homolog of the Cdc7 protein kinase, Proceedings of the National Academy of Sciences, vol.96, issue.6, pp.2800-2804, 1999.
DOI : 10.1073/pnas.96.6.2800

C. Santocanale and J. F. Diffley, A Mec1-and Rad53-dependent checkpoint controls late-firing origins of DNA replication, Nature, vol.395, pp.615-618, 1998.

N. Sato, K. Arai, and H. Masai, Human and Xenopus cDNAs encoding budding yeast Cdc7-related kinases: invitro phosphorylation of MCM subunits by a putative human homologue of Cdc7, The EMBO Journal, vol.16, issue.14, pp.4340-4351, 1997.
DOI : 10.1093/emboj/16.14.4340

S. L. Sawyer, I. H. Cheng, W. Chai, T. , and B. K. , Mcm10 and Cdc45 Cooperate in Origin Activation in Saccharomyces cerevisiae, Journal of Molecular Biology, vol.340, issue.2, pp.195-202, 2004.
DOI : 10.1016/j.jmb.2004.04.066

Y. Sheu and B. Stillman, The Dbf4???Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4, Nature, vol.16, issue.7277, pp.113-117, 2010.
DOI : 10.1038/nature08647

K. Shimada, P. Pasero, and S. M. Gasser, ORC and the intra-S-phase checkpoint: a threshold regulates Rad53p activation in S phase, Genes & Development, vol.16, issue.24, pp.3236-3252, 2002.
DOI : 10.1101/gad.239802

K. Shirahige, Y. Hori, K. Shiraishi, M. Yamashita, K. Takahashi et al., Regulation of DNA-replication origins during cell-cycle progression, Nature, vol.395, pp.618-621, 1998.

J. M. Sogo, M. Lopes, and M. Foiani, Fork Reversal and ssDNA Accumulation at Stalled Replication Forks Owing to Checkpoint Defects, Science, vol.297, issue.5581, pp.599-602, 2002.
DOI : 10.1126/science.1074023

F. D. Sweeney, F. Yang, A. Chi, J. Shabanowitz, D. F. Hunt et al., Saccharomyces cerevisiae Rad9 Acts as a Mec1 Adaptor to Allow Rad53 Activation, Current Biology, vol.15, issue.15, pp.1364-1375, 2005.
DOI : 10.1016/j.cub.2005.06.063

K. Tanaka, R. , and P. , Mrc1 channels the DNA replication arrest signal to checkpoint kinase Cds1, Nature Cell Biology, vol.3, issue.11, pp.966-972, 2001.
DOI : 10.1038/ncb1101-966

J. A. Tercero and J. F. Diffley, Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint, Nature, vol.2, issue.6846, pp.553-557, 2001.
DOI : 10.1038/35087607

J. A. Tercero, M. P. Longhese, and J. F. Diffley, A Central Role for DNA Replication Forks in Checkpoint Activation and Response, Molecular Cell, vol.11, issue.5, pp.1323-1336, 2003.
DOI : 10.1016/S1097-2765(03)00169-2

H. Tourrière, G. Versini, V. Cordón-preciado, C. Alabert, and P. Pasero, Mrc1 and Tof1 Promote Replication Fork Progression and Recovery Independently of Rad53, Molecular Cell, vol.19, issue.5, pp.699-706, 2005.
DOI : 10.1016/j.molcel.2005.07.028

S. Tuduri, H. Tourrière, and P. Pasero, Defining replication origin efficiency using DNA fiber assays, Chromosome Research, vol.445, issue.1, pp.91-102, 2009.
DOI : 10.1007/s10577-009-9098-y

URL : https://hal.archives-ouvertes.fr/hal-00463217

M. Vogelauer, L. Rubbi, I. Lucas, B. J. Brewer, and M. Grunstein, Histone Acetylation Regulates the Time of Replication Origin Firing, Molecular Cell, vol.10, issue.5, pp.1223-1233, 2002.
DOI : 10.1016/S1097-2765(02)00702-5

M. Weinreich and B. Stillman, Cdc7p-Dbf4p kinase binds to chromatin during S phase and is regulated by both the APC and the RAD53 checkpoint pathway, The EMBO Journal, vol.18, issue.19, pp.5334-5346, 1999.
DOI : 10.1093/emboj/18.19.5334

R. Wysocki, A. Javaheri, S. Allard, F. Sha, J. Cote et al., Role of Dot1-Dependent Histone H3 Methylation in G1 and S Phase DNA Damage Checkpoint Functions of Rad9, Molecular and Cellular Biology, vol.25, issue.19, pp.8430-8443, 2005.
DOI : 10.1128/MCB.25.19.8430-8443.2005

P. Zegerman and J. F. Diffley, Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast, Nature, vol.14, issue.7125, pp.281-285, 2006.
DOI : 10.1038/nature05432

P. Zegerman and J. F. Diffley, Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation, Nature, vol.8, issue.7314, pp.474-478, 2010.
DOI : 10.1038/nature09373

X. Zhao, A. Chabes, V. Domkin, L. Thelander, and R. And-rothstein, The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage, The EMBO Journal, vol.20, issue.13, pp.3544-3553, 2001.
DOI : 10.1093/emboj/20.13.3544

X. Zhao and R. And-rothstein, The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1, Proceedings of the National Academy of Sciences, vol.99, issue.6, pp.3746-3751, 2002.
DOI : 10.1073/pnas.062502299

B. B. Zhou and S. J. Elledge, The DNA damage response: putting checkpoints in perspective, Nature, vol.408, pp.433-439, 2000.

L. Zou and S. J. Elledge, Sensing DNA Damage Through ATRIP Recognition of RPA-ssDNA Complexes, Science, vol.300, issue.5625, pp.1542-1548, 2003.
DOI : 10.1126/science.1083430