S. Afshar, Characterization of an engineered human purine nucleoside phosphorylase fused to an anti-her2/neu single chain Fv for use in ADEPT, Journal of Experimental & Clinical Cancer Research, vol.28, issue.1, p.147, 2009.
DOI : 10.1186/1756-9966-28-147

B. Alberts, Molecular biology of the cell Available at, 2002.

P. Amstutz, In vitro display technologies: novel developments and applications, Current Opinion in Biotechnology, vol.12, issue.4, pp.400-405, 2001.
DOI : 10.1016/S0958-1669(00)00234-2

K. H. Antman and D. M. Livingston, Intracellular neutralization of SV40 tumor antigens following microinjection of specific antibody, Cell, vol.19, issue.3, pp.627-635, 1980.
DOI : 10.1016/S0092-8674(80)80039-0

H. M. Azzazy and W. E. Highsmith, Phage display technology: clinical applications and recent innovations, Clinical Biochemistry, vol.35, issue.6, pp.425-445, 2002.
DOI : 10.1016/S0009-9120(02)00343-0

F. Baert, Influence of Immunogenicity on the Long-Term Efficacy of Infliximab in Crohn's Disease, New England Journal of Medicine, vol.348, issue.7, pp.601-608, 2003.
DOI : 10.1056/NEJMoa020888

R. A. Beckman, L. M. Weiner, and H. M. Davis, Antibody constructs in cancer therapy, Cancer, vol.15, issue.2, pp.170-179, 2007.
DOI : 10.1002/cncr.22402

S. Biocca, M. S. Neuberger, and A. Cattaneo, Expression and targeting of intracellular antibodies in mammalian cells. the The European, Molecular Biology Organization Journal, vol.9, issue.1, pp.101-108, 1990.

R. E. Bird, Single-chain antigen-binding proteins, Science, vol.242, issue.4877, pp.423-426, 1988.
DOI : 10.1126/science.3140379

E. T. Boder and K. D. Wittrup, Yeast surface display for screening combinatorial polypeptide libraries, Nature Biotechnology, vol.4, issue.6, pp.553-557, 1997.
DOI : 10.1016/0378-1119(88)90185-0

T. Böldicke, Novel highly efficient intrabody mediates complete inhibition of cell surface expression of the human vascular endothelial growth factor receptor-2 (VEGFR-2/KDR), Journal of Immunological Methods, vol.300, issue.1-2, pp.146-159, 2005.
DOI : 10.1016/j.jim.2005.03.007

G. L. Boulianne, Production of functional chimaeric mouse/human antibody, Nature, vol.103, issue.5995, pp.643-646, 1984.
DOI : 10.1038/312643a0

J. L. Casey, P. A. Keep, K. A. Chester, L. Robson, R. E. Hawkins et al., Purification of bacterially expressed single chain Fv antibodies for clinical applications using metal chelate chromatography, Journal of Immunological Methods, vol.179, issue.1, pp.105-116, 1995.
DOI : 10.1016/0022-1759(94)00278-5

P. Chames, Therapeutic antibodies: successes, limitations and hopes for the future, British Journal of Pharmacology, vol.163, issue.2, pp.220-233, 2009.
DOI : 10.1111/j.1476-5381.2009.00190.x

D. Chen, Construction of humanized carcinoembryonic antigen specific single chain variable fragment and mitomycin conjugate, World Journal of Gastroenterology, vol.13, issue.43, pp.5765-5770, 2007.
DOI : 10.3748/wjg.v13.i43.5765

O. Cochet, Intracellular expression of an antibody fragment-neutralizing p21 ras promotes tumor regression, Cancer Research, vol.58, issue.6, pp.1170-1176, 1998.

D. Colcher, Single-Chain Antibodies in Pancreatic Cancer, Annals of the New York Academy of Sciences, vol.28, issue.1 CELL AND MOLE, pp.263-280, 1999.
DOI : 10.1016/S0022-1759(96)00195-0

B. Cooper, Requirement of e6ap and the features of human papillomavirus e6 necessary to support degradation of p53, Virology, vol.306, issue.1, pp.87-99, 2003.
DOI : 10.1016/S0042-6822(02)00012-0

J. Courtête, Suppression of cervical carcinoma cell growth by intracytoplasmic codelivery of anti-oncoprotein E6 antibody and small interfering RNA, Molecular Cancer Therapeutics, vol.6, issue.6, pp.1728-1735, 2007.
DOI : 10.1158/1535-7163.MCT-06-0808

J. Davies and L. Riechmann, antigen selection of camelized, human VH domains with improved protein stability, "Protein Engineering, Design and Selection", vol.9, issue.6, pp.531-537, 1996.
DOI : 10.1093/protein/9.6.531

B. T. Davis, A. J. Grillo-lo, C. A. White, P. Mclaughlin, M. S. Czuczman et al., Rituximab Anti-CD20 Monoclonal Antibody Therapy in Non-Hodgkin ' s Lymphoma : Safety and Efficacy of, Clinical Research, vol.18, issue.17, pp.3135-3143, 2000.

D. Lorenzo and C. , A Fully Human Antitumor ImmunoRNase Selective for ErbB-2-Positive Carcinomas, Cancer Research, vol.64, issue.14, pp.4870-4874, 2004.
DOI : 10.1158/0008-5472.CAN-03-3717

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Maur and A. A. , Direct in Vivo Screening of Intrabody Libraries Constructed on a Highly Stable Single-chain Framework, Journal of Biological Chemistry, vol.277, issue.47, pp.45075-45085, 2002.
DOI : 10.1074/jbc.M205264200

D. Desplancq, Automated overexpression and isotopic labelling of biologically active oncoproteins in the cyanobacterium Anabaena sp. PCC 7120, Biotechnology and Applied Biochemistry, vol.51, issue.1, pp.51-53, 2008.
DOI : 10.1042/BA20070276

URL : https://hal.archives-ouvertes.fr/inserm-00350862

M. Donini, Engineering Stable Cytoplasmic Intrabodies with Designed Specificity, Journal of Molecular Biology, vol.330, issue.2, pp.323-332, 2003.
DOI : 10.1016/S0022-2836(03)00530-8

M. Du, Interaction of oncogenic papillomavirus E6 proteins with fibulin-1, Biochemical and Biophysical Research Communications, vol.296, issue.4, pp.962-969, 2002.
DOI : 10.1016/S0006-291X(02)02041-7

J. Foote and G. Winter, Antibody framework residues affecting the conformation of the hypervariable loops, Journal of Molecular Biology, vol.224, issue.2, pp.487-499, 1992.
DOI : 10.1016/0022-2836(92)91010-M

X. Fu, in human hepatocellular carcinoma and its clinical significance, World Journal of Gastroenterology, vol.8, issue.4, pp.638-643, 2002.
DOI : 10.3748/wjg.v8.i4.638

N. Ganguly and S. P. Parihar, Human papillomavirus E6 and E7 oncoproteins as risk factors for tumorigenesis, Journal of Biosciences, vol.2, issue.1, pp.113-123, 2009.
DOI : 10.1007/s12038-009-0013-7

J. Glanville, Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire, Proceedings of the National Academy of Sciences, vol.106, issue.48, pp.20216-20221, 2009.
DOI : 10.1073/pnas.0909775106

T. D. Gilmore, Introduction to NF-??B: players, pathways, perspectives, Oncogene, vol.52, issue.51, pp.6680-6684, 2006.
DOI : 10.1016/0092-8674(88)90035-9

C. Giovane, Targetting of the N???terminal domain of the human papillomavirus type 16 E6 oncoprotein with monomeric scFvs blocks the E6???mediated degradation of cellular p53, Journal of Molecular Recognition, vol.12, issue.2, pp.141-152, 1999.
DOI : 10.1002/(SICI)1099-1352(199903/04)12:2<141::AID-JMR453>3.3.CO;2-F

R. Glockshuber, A comparison of strategies to stabilize immunoglobulin Fv-fragments, Biochemistry, vol.29, issue.6, pp.1362-1367, 1990.
DOI : 10.1021/bi00458a002

S. D. Gorman, Reshaping a therapeutic CD4 antibody., Proceedings of the National Academy of Sciences, vol.88, issue.10, pp.4181-4185, 1991.
DOI : 10.1073/pnas.88.10.4181

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC51622

H. Griffin, Inhibition of Papillomavirus Protein Function in Cervical Cancer Cells by Intrabody Targeting, Journal of Molecular Biology, vol.355, issue.3, pp.360-378, 2006.
DOI : 10.1016/j.jmb.2005.10.077

H. Higashitsuji, Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas, Nature Medicine, vol.56, issue.1, pp.96-99, 2000.
DOI : 10.1073/pnas.96.12.6999

H. Higashitsuji, The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53, Cancer Cell, vol.8, issue.1, pp.75-87, 2005.
DOI : 10.1016/j.ccr.2005.06.006

P. Holliger and P. J. Hudson, Engineered antibody fragments and the rise of single domains, Nature Biotechnology, vol.10, issue.9, pp.1126-1136, 2005.
DOI : 10.1182/blood-2005-03-1153

P. J. Hudson and A. A. Kortt, High avidity scFv multimers; diabodies and triabodies, Journal of Immunological Methods, vol.231, issue.1-2, pp.177-189, 1999.
DOI : 10.1016/S0022-1759(99)00157-X

P. J. Hudson and C. Souriau, Engineered antibodies, Nature Medicine, vol.168, issue.1, pp.129-134, 2003.
DOI : 10.1038/nm0302-295

J. S. Huston, Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli., Proceedings of the National Academy of Sciences, vol.85, issue.16, pp.855879-5883, 1988.
DOI : 10.1073/pnas.85.16.5879

K. Imai and A. Takaoka, Comparing antibody and small-molecule therapies for cancer, Nature Reviews Cancer, vol.23, issue.9, pp.714-741, 2006.
DOI : 10.1038/nrc1913

A. Jakobovits, From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice, Nature Biotechnology, vol.188, issue.10, pp.1134-1143, 2007.
DOI : 10.1038/nbt1337

P. T. Jones, Replacing the complementarity-determining regions in a human antibody with those from a mouse, Nature, vol.312, issue.6069, pp.522-525, 1986.
DOI : 10.1038/321522a0

K. Jooss and N. Chirmule, Immunity to adenovirus and adeno-associated viral vectors: implications for gene therapy, Gene Therapy, vol.10, issue.11, pp.955-963, 2003.
DOI : 10.1038/sj.gt.3302037

S. Jung and A. Plückthun, Improving in vivo folding and stability of a single-chain Fv antibody fragment by loop grafting, Protein Engineering Design and Selection, vol.10, issue.8, pp.959-966, 1997.
DOI : 10.1093/protein/10.8.959

D. Kaplan, Expression of a Recombinant Fab Antibody Fragment against Cruzipain, the Major Cysteine Proteinase ofTrypanosoma cruzi, Biochemical and Biophysical Research Communications, vol.253, issue.1, pp.53-58, 1998.
DOI : 10.1006/bbrc.1998.9654

R. G. Kennett, Monoclonal antibodies. Hybrid myelomas--a revolution in serology and immunogenetics, The American Journal of Human Genetics, issue.5, pp.31-539, 1979.

J. A. Kimball, The OKT3 antibody response study: a multicentre study of human anti-mouse antibody (HAMA) production following OKT3 use in solid organ tranplantation, Transplant Immunology, vol.3, issue.3, pp.212-221, 1995.
DOI : 10.1016/0966-3274(95)80027-1

T. Kiyono, Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein, Proceedings of the National Academy of Sciences, vol.94, issue.21, pp.11612-11616, 1997.
DOI : 10.1073/pnas.94.21.11612

G. Köhler and C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature, vol.3, issue.5517, pp.495-497, 1975.
DOI : 10.1038/256495a0

T. Korn, Recombinant bispecific antibodies for the targeting of adenoviruses to CEA-expressing tumour cells: a comparative analysis of bacterially expressed single-chain diabody and tandem scFv, The Journal of Gene Medicine, vol.6, issue.6, pp.642-651, 2004.
DOI : 10.1002/jgm.555

A. A. Kortt, Dimeric and trimeric antibodies: high avidity scFvs for cancer targeting, Biomolecular Engineering, vol.18, issue.3, pp.95-108, 2001.
DOI : 10.1016/S1389-0344(01)00090-9

S. A. Kostelny, M. S. Cole, and J. Y. Tso, Formation of a bispecific antibody by the use of leucine zippers, The Journal of Immunology, vol.148, issue.5, pp.1547-1553, 1992.

K. Kuus-reichel, Will immunogenicity limit the use, efficacy, and future development of therapeutic monoclonal antibodies? Clinical and Diagnostic Laboratory Immunology, pp.365-372, 1994.

M. Lagrange, Binding of human papillomavirus 16 E6 to p53 and E6AP is impaired by monoclonal antibodies directed against the second zinc-binding domain of E6, Journal of General Virology, vol.86, issue.4, pp.1001-1007, 2005.
DOI : 10.1099/vir.0.80607-0

URL : https://hal.archives-ouvertes.fr/hal-00129908

X. Li, Single-chain antibody-mediated gene delivery into ErbB2-positive human breast cancer cells, Cancer Gene Therapy, vol.8, issue.8, pp.555-565, 2001.
DOI : 10.1038/sj.cgt.7700337

A. S. Lo, Q. Zhu, and W. A. Marasco, Intracellular Antibodies (Intrabodies) and Their Therapeutic Potential, Handbook of Experimental Pharmacology, issue.181, pp.343-373, 2008.
DOI : 10.1007/978-3-540-73259-4_15

P. Martineau, P. Jones, and G. Winter, Expression of an antibody fragment at high levels in the bacterial cytoplasm, Journal of Molecular Biology, vol.280, issue.1, pp.117-127, 1998.
DOI : 10.1006/jmbi.1998.1840

P. Martineau and J. M. Betton, In vitro folding and thermodynamic stability of an antibody fragment selected in Vivo for high expression levels in Escherichia coli cytoplasm, Journal of Molecular Biology, vol.292, issue.4, pp.921-929, 1999.
DOI : 10.1006/jmbi.1999.3105

M. Matsushita and H. Matsui, Protein transduction technology, Journal of Molecular Medicine, vol.6, issue.5, pp.324-328, 2005.
DOI : 10.1007/s00109-004-0633-1

. Mccafferty, Phage antibodies: filamentous phage displaying antibody variable domains, Nature, vol.348, issue.6301, pp.552-554, 1990.
DOI : 10.1038/348552a0

T. Melchionna and A. Cattaneo, A Protein Silencing Switch by Ligand-induced Proteasome-targeting Intrabodies, Journal of Molecular Biology, vol.374, issue.3, pp.641-654, 2007.
DOI : 10.1016/j.jmb.2007.09.053

S. L. Morrison, Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains., Proceedings of the National Academy of Sciences, vol.81, issue.21, pp.816851-6855, 1984.
DOI : 10.1073/pnas.81.21.6851

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC392030

D. Neri, High-affinity Antigen Binding by Chelating Recombinant Antibodies (CRAbs), Journal of Molecular Biology, vol.246, issue.3, pp.367-373, 1995.
DOI : 10.1006/jmbi.1994.0091

U. B. Nielsen, Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1591, issue.1-3, pp.109-118, 2002.
DOI : 10.1016/S0167-4889(02)00256-2

Y. Nominé, Structural and Functional Analysis of E6 Oncoprotein: Insights in the Molecular Pathways of Human Papillomavirus-Mediated Pathogenesis, Molecular Cell, vol.21, issue.5, pp.665-678, 2006.
DOI : 10.1016/j.molcel.2006.01.024

C. Queen, A humanized antibody that binds to the interleukin 2 receptor., Proceedings of the National Academy of Sciences of the United States of America, pp.10029-10033, 1989.
DOI : 10.1073/pnas.86.24.10029

DOI : 10.1097/00007890-199911150-00032

L. Riechmann, Reshaping human antibodies for therapy, Nature, vol.332, issue.6162, pp.323-327, 1988.
DOI : 10.1038/332323a0

D. Saerens, Identification of a Universal VHH Framework to Graft Non-canonical Antigen-binding Loops of Camel Single-domain Antibodies, Journal of Molecular Biology, vol.352, issue.3, pp.597-607, 2005.
DOI : 10.1016/j.jmb.2005.07.038

G. Schwalbach, Production of Fluorescent Single-Chain Antibody Fragments in Escherichia coli, Protein Expression and Purification, vol.18, issue.2, pp.121-132, 2000.
DOI : 10.1006/prep.1999.1185

URL : https://hal.archives-ouvertes.fr/hal-00151170

M. R. Shalaby, Development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells overexpressing the HER2 protooncogene, Journal of Experimental Medicine, vol.175, issue.1, pp.217-225, 1992.
DOI : 10.1084/jem.175.1.217

A. Sibler, Nucleocytoplasmic shuttling of antigen in mammalian cells conferred by a soluble versus insoluble single-chain antibody fragment equipped with import/export signals, Experimental Cell Research, vol.286, issue.2, pp.276-287, 2003.
DOI : 10.1016/S0014-4827(03)00093-4

URL : https://hal.archives-ouvertes.fr/hal-00192416

A. Sibler, Extended half-life upon binding of destabilized intrabodies allows specific detection of antigen in mammalian cells, FEBS Journal, vol.84, issue.11, pp.2722878-2891, 2005.
DOI : 10.1111/j.1742-4658.2005.04709.x

URL : https://hal.archives-ouvertes.fr/hal-00129985

F. W. Studier, Protein production by auto-induction in high-density shaking cultures, Protein Expression and Purification, vol.41, issue.1, pp.207-234, 2005.
DOI : 10.1016/j.pep.2005.01.016

K. Tanaka, Molecular biology of proteasomes, Molecular Biology Reports, vol.348, issue.1, pp.21-26, 1995.
DOI : 10.1007/BF00990966

Y. Tang, Construction and Expression of Single-Chain Antibody Derived from a New Clone of Monoclonal Antibody Against Human CD14 in CHO Cells, Immunopharmacology and Immunotoxicology, vol.32, issue.4, pp.3-4375, 2007.
DOI : 10.1080/08923970701619927

P. C. Taylor, Antibody therapy for rheumatoid arthritis, Current Opinion in Pharmacology, vol.3, issue.3, pp.323-328, 2003.
DOI : 10.1016/S1471-4892(03)00032-8

E. Tse and T. H. Rabbitts, Intracellular antibody-caspase-mediated cell killing: An approach for application in cancer therapy, Proceedings of the National Academy of Sciences, vol.97, issue.22, pp.12266-12271, 2000.
DOI : 10.1073/pnas.97.22.12266

J. K. Tunggal, Penetration of anticancer drugs through solid tissue: a factor that limits the effectiveness of chemotherapy for solid tumors, Clinical Cancer Research, vol.5, issue.6, pp.1583-1586, 1999.

W. J. Urba, Anti-CD3 monoclonal antibody treatment of patients with CD3-negative tumors: a phase IA/B study, Cancer Research, vol.52, issue.9, pp.2394-2401, 1992.

J. P. Van-wauwe, J. R. De-mey, and J. G. Goossens, OKT3: a monoclonal anti-human T lymphocyte antibody with potent mitogenic properties, The Journal of Immunology, vol.124, issue.6, pp.2708-2713, 1980.

C. Vincke, General Strategy to Humanize a Camelid Single-domain Antibody and Identification of a Universal Humanized Nanobody Scaffold, Journal of Biological Chemistry, vol.284, issue.5, pp.3273-3284, 2009.
DOI : 10.1074/jbc.M806889200

N. E. Weisser and J. C. Hall, Applications of single-chain variable fragment antibodies in therapeutics and diagnostics, Biotechnology Advances, vol.27, issue.4, pp.502-520, 2009.
DOI : 10.1016/j.biotechadv.2009.04.004

J. Wesolowski, Single domain antibodies: promising experimental and therapeutic tools in infection and immunity, Medical Microbiology and Immunology, vol.7, issue.2, pp.157-74, 2009.
DOI : 10.1007/s00430-009-0116-7

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714450

U. A. Wittel, The in vivo characteristics of genetically engineered divalent and tetravalent single-chain antibody constructs, Nuclear Medicine and Biology, vol.32, issue.2, pp.157-164, 2005.
DOI : 10.1016/j.nucmedbio.2004.11.003

W. J. Wolfgang, Suppression of Huntington_s disease pathology in Drosophila by human single-chain Fv antibodies, Proceedings of the National Academy of Sciences of the United States of America, pp.11563-11568, 2005.

S. Wu, Construction and characterization of a Fab recombinant protein for Japanese encephalitis virus neutralization, Vaccine, vol.23, issue.2, pp.163-171, 2004.
DOI : 10.1016/j.vaccine.2004.05.016

D. E. Yelton and M. D. Scharff, Monoclonal Antibodies: A Powerful New Tool in Biology and Medicine, Annual Review of Biochemistry, vol.50, issue.1, pp.657-680, 1981.
DOI : 10.1146/annurev.bi.50.070181.003301

C. Zhou, A human single-chain Fv intrabody blocks aberrant cellular effects of overexpressed ??-synuclein, Molecular Therapy, vol.10, issue.6, pp.1023-1031, 2004.
DOI : 10.1016/j.ymthe.2004.08.019

P. Zhou, Cells transfected with a non-neutralizing antibody gene are resistant to HIV infection: targeting the endoplasmic reticulum and trans-Golgi network, The Journal of Immunology, vol.160, issue.3, pp.1489-1496, 1998.

M. Zeng, Human Papilloma Virus 16 E6 Oncoprotein Inhibits Retinoic X Receptor-mediated Transactivation by Targeting Human ADA3 Coactivator, Journal of Biological Chemistry, vol.277, issue.47, pp.45611-45618, 2002.
DOI : 10.1074/jbc.M208447200