A. Arulanandam, P. Moingeon, M. Concino, M. Recny, K. Kato et al., A soluble multimeric recombinant CD2 protein identifies CD48 as a low affinity ligand for human CD2: divergence of CD2 ligands during the evolution of humans and mice, Journal of Experimental Medicine, vol.177, issue.5, pp.1439-50, 1993.
DOI : 10.1084/jem.177.5.1439

D. Atanackovic, J. Panse, Y. Hildebrandt, A. Jadczak, S. Kobold et al., Surface molecule CD229 as a novel target for the diagnosis and treatment of multiple myeloma, Haematologica, vol.96, issue.10, pp.1512-1532, 2011.
DOI : 10.3324/haematol.2010.036814

J. Bao, W. Zhang, and M. Kuo, Adenoviral Delivery of Recombinant DNA into Transgenic Mice Bearing Hepatocellular Carcinomas, Human Gene Therapy, vol.7, issue.3, pp.355-365, 1996.
DOI : 10.1089/hum.1996.7.3-355

B. Bierer, A. Peterson, J. Gorga, S. Herrmann, and S. Burakoff, Synergistic T cell activation via the physiological ligands for CD2 and the T cell receptor, Journal of Experimental Medicine, vol.168, issue.3, pp.1145-56, 1988.
DOI : 10.1084/jem.168.3.1145

S. Blackburn, H. Shin, W. Haining, T. Zou, C. Workman et al., Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection, Nature Immunology, vol.81, issue.1, pp.29-37, 2008.
DOI : 10.1038/ni.1679

K. Boles and P. Mathew, Molecular cloning of CS1, a novel human natural killer cell receptor belonging to the CD2 subset of the immunoglobulin superfamily, Immunogenetics, vol.52, issue.3-4, pp.3-4302, 2001.
DOI : 10.1007/s002510000274

C. Bottino, M. Falco, S. Parolini, E. Marcenaro, R. Augugliaro et al., Gntb-A, a Novel Sh2d1a-Associated Surface Molecule Contributing to the Inability of Natural Killer Cells to Kill Epstein-Barr Virus???Infected B Cells in X-Linked Lymphoproliferative Disease, The Journal of Experimental Medicine, vol.90, issue.3, pp.235-281, 2001.
DOI : 10.1006/smim.2000.0216

A. Bouchon, M. Cella, H. Grierson, J. Cohen, and M. Colonna, Cutting Edge: Activation of NK Cell-Mediated Cytotoxicity by a SAP-Independent Receptor of the CD2 Family, The Journal of Immunology, vol.167, issue.10, pp.5517-5538, 2001.
DOI : 10.4049/jimmunol.167.10.5517

M. Brown, K. Boles, P. Van-der-merwe, V. Kumar, P. Mathew et al., 2B4, the Natural Killer and T Cell Immunoglobulin Superfamily Surface Protein, Is a Ligand for CD48, The Journal of Experimental Medicine, vol.89, issue.11, pp.2083-90, 1998.
DOI : 10.1084/jem.185.3.393

E. Cao, U. Ramagopal, A. Fedorov, E. Fedorov, Q. Yan et al., NTB-A Receptor Crystal Structure: Insights into Homophilic Interactions in the Signaling Lymphocytic Activation Molecule Receptor Family, Immunity, vol.25, issue.4, pp.559-70, 2006.
DOI : 10.1016/j.immuni.2006.06.020

S. Calpe, E. Erdos, G. Liao, N. Wang, S. Rietdijk et al., Identification and characterization of two related murine genes, Eat2a and Eat2b, encoding single SH2-domain adapters, Immunogenetics, vol.105, issue.10, pp.15-25, 2006.
DOI : 10.1007/s00251-005-0056-3

S. Calpe, N. Wang, X. Romero, S. Berger, A. Lanyi et al., The SLAM and SAP Gene Families Control Innate and Adaptive Immune Responses, Adv Immunol, vol.97, pp.177-250, 2008.
DOI : 10.1016/S0065-2776(08)00004-7

J. Cannons, S. Tangye, and P. Schwartzberg, SLAM Family Receptors and SAP Adaptors in Immunity, Annual Review of Immunology, vol.29, issue.1, pp.665-705, 2011.
DOI : 10.1146/annurev-immunol-030409-101302

A. Castro, T. Hauser, B. Cocks, J. Abrams, S. Zurawski et al., Molecular and functional characterization of mouse signaling lymphocytic activation molecule (SLAM): differential expression and responsiveness in Th1 and Th2 cells, J Immunol, vol.163, issue.11, pp.5860-70, 1999.

B. Chan, A. Lanyi, H. Song, J. Griesbach, M. Simarro-grande et al., SAP couples Fyn to SLAM immune receptors, Nature Cell Biology, vol.5, issue.2, 2003.
DOI : 10.1038/ncb920

T. Chuang, C. Yu, J. Shih, P. Yang, and S. Kuo, Cytologically Proven Meningeal Carcinomatosis in Patients with Lung Cancer: Clinical Observation of 34 Cases, Journal of the Formosan Medical Association, vol.107, issue.11, 2008.
DOI : 10.1016/S0929-6646(08)60201-6

R. Chen, S. Latour, X. Shi, and A. Veillette, Association between SAP and FynT: Inducible SH3 Domain-Mediated Interaction Controlled by Engagement of the SLAM Receptor, Molecular and Cellular Biology, vol.26, issue.15, pp.5559-68, 2006.
DOI : 10.1128/MCB.00357-06

N. Clarkson and M. Brown, Inhibition and Activation by CD244 Depends on CD2 and Phospholipase C-??1, Journal of Biological Chemistry, vol.284, issue.37, pp.24725-24759, 2009.
DOI : 10.1074/jbc.M109.028209

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757176

B. Cocks, C. Chang, J. Carballido, H. Yssel, J. De-vries et al., A novel receptor involved in T-cell activation. . Nature, pp.260-263, 1995.

A. Coffey, R. Brooksbank, O. Brandau, T. Oohashi, G. Howell et al., Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene, Nature Genetics, vol.20, issue.2, pp.129-164, 1998.
DOI : 10.1038/2424

M. Cruz-munoz, Z. Dong, X. Shi, S. Zhang, and A. Veillette, Influence of CRACC, a SLAM family receptor coupled to the adaptor EAT-2, on natural killer cell function, Nature Immunology, vol.127, issue.3, 2009.
DOI : 10.1038/341746a0

S. Davis and P. Van-der-merwe, The structure and ligand interactions of CD2: implications for T-cell function, Immunology Today, vol.17, issue.4, pp.177-87, 1996.
DOI : 10.1016/0167-5699(96)80617-7

M. De-la-fuente, P. Pizcueta, M. Nadal, J. Bosch, and P. Engel, CD84 leukocyte antigen is a new member of the Ig superfamily. Blood, pp.2398-405, 1997.

M. De-la-fuente, V. Tovar, N. Villamor, N. Zapater, P. Pizcueta et al., Molecular characterization and expression of a novel human leukocyte cell-surface marker homologous to mouse Ly-9, Blood, vol.97, issue.11, pp.3513-3533, 2001.
DOI : 10.1182/blood.V97.11.3513

D. Valle, J. Pablo, E. Martin, and M. , The Cell Surface Expression of SAP-binding Receptor CD229 Is Regulated via Its Interaction with Clathrin-associated Adaptor Complex 2 (AP-2), Journal of Biological Chemistry, vol.278, issue.19, pp.17430-17467, 2003.
DOI : 10.1074/jbc.M301569200

C. Detre, M. Keszei, X. Romero, G. Tsokos, and C. Terhorst, SLAM family receptors and the SLAMassociated protein (SAP) modulate T cell functions, Semin Immunopathol, 2010.

X. Duan, J. Ou, Y. Li, J. Su, C. Ou et al., Dynamic expression of apoptosis-related genes during development of laboratory hepatocellular carcinoma and its relation to apoptosis, World Journal of Gastroenterology, vol.11, issue.30, pp.4740-4744, 2005.
DOI : 10.3748/wjg.v11.i30.4740

Z. Dong, M. Cruz-munoz, M. Zhong, R. Chen, S. Latour et al., Essential function for SAP family adaptors in the surveillance of hematopoietic cells by natural killer cells, Nature Immunology, vol.55, issue.9, pp.973-80, 2009.
DOI : 10.1038/ni.1763

S. Egan, B. Giddings, M. Brooks, L. Buday, A. Sizeland et al., Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation, Nature, vol.363, issue.6424, pp.45-51, 1993.
DOI : 10.1038/363045a0

J. Endt, P. Eissmann, S. Hoffmann, S. Meinke, T. Giese et al., Modulation of 2B4 (CD244) activity and regulated SAP expression in human NK cells, European Journal of Immunology, vol.177, issue.1, pp.193-201, 2007.
DOI : 10.1002/eji.200636341

P. Engel, M. Eck, and C. Terhorst, The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease, Nature Reviews Immunology, vol.3, issue.10, pp.813-834, 2003.
DOI : 10.1038/nri1202

M. Elishmereni and F. Levi-schaffer, CD48: A co-stimulatory receptor of immunity, The International Journal of Biochemistry & Cell Biology, vol.43, issue.1, pp.25-33, 2010.
DOI : 10.1016/j.biocel.2010.09.001

M. Falco, . Marcenaroe, and . Romeoe, Homophilic interaction of NTBA, a member of the CD2 molecular family: induction of cytotoxicity and cytokine release in human NK cells, European Journal of Immunology, vol.34, issue.6, pp.1663-72, 2004.
DOI : 10.1002/eji.200424886

P. Farazi and R. Depinho, Hepatocellular carcinoma pathogenesis: from genes to environment, Nature Reviews Cancer, vol.22, issue.9, pp.674-87, 2006.
DOI : 10.1038/nrc1934

J. Fennelly, B. Tiwari, S. Davis, and E. Evans, CD2F-10: a new member of the CD2 subset of the immunoglobulin superfamily, Immunogenetics, vol.53, issue.7, pp.599-602, 2001.
DOI : 10.1007/s002510100364

R. Flaig, S. Stark, and C. Watz, Cutting Edge: NTB-A Activates NK Cells via Homophilic Interaction, The Journal of Immunology, vol.172, issue.11, pp.6524-6531, 2004.
DOI : 10.4049/jimmunol.172.11.6524

C. Fraser, D. Howie, M. Morra, Y. Qiu, C. Murphy et al., Identification and characterization of SF2000 and SF2001, two new members of the immune receptor SLAM/CD2 family, Immunogenetics. Feb, vol.53, 2002.

N. Gao, P. Schwartzberg, J. Wilder, B. Blazar, and D. Yuan, B Cell Induction of IL-13 Expression in NK Cells: Role of CD244 and SLAM-Associated Protein, The Journal of Immunology, vol.176, issue.5, pp.2758-64, 2006.
DOI : 10.4049/jimmunol.176.5.2758

D. Graham, M. Bell, M. Mccausland, C. Huntoon, J. Deursen et al., Ly9 (CD229)-Deficient Mice Exhibit T Cell Defects yet Do Not Share Several Phenotypic Characteristics Associated with SLAM- and SAP-Deficient Mice, The Journal of Immunology, vol.176, issue.1, pp.291-300, 2006.
DOI : 10.4049/jimmunol.176.1.291

G. Henning, M. Kraft, T. Derfuss, R. Pirzer, G. De-saint-basile et al., Signaling lymphocytic activation molecule (SLAM) regulates T cellular cytotoxicity, European Journal of Immunology, vol.193, issue.9, pp.2741-50, 2001.
DOI : 10.1002/1521-4141(200109)31:9<2741::AID-IMMU2741>3.0.CO;2-6

D. Howie, S. Okamoto, S. Rietdijk, K. Clarke, N. Wang et al., The role of SAP in murine CD150 (SLAM)-mediated T-cell proliferation and interferon gamma production, Blood, vol.100, issue.8, pp.2899-907, 2002.
DOI : 10.1182/blood-2002-02-0445

M. Kiel, O. Yilmaz, T. Iwashita, O. Yilmaz, C. Terhorst et al., SLAM Family Receptors Distinguish Hematopoietic Stem and Progenitor Cells and Reveal Endothelial Niches for Stem Cells, Cell, vol.121, issue.7, pp.1109-1130, 2005.
DOI : 10.1016/j.cell.2005.05.026

URL : http://doi.org/10.1016/j.cell.2005.05.026

G. Kingsbury, L. Feeney, Y. Nong, S. Calandra, C. Murphy et al., Cloning, Expression, and Function of BLAME, a Novel Member of the CD2 Family, The Journal of Immunology, vol.166, issue.9, pp.5675-80, 2001.
DOI : 10.4049/jimmunol.166.9.5675

S. Kingsmore, C. Souryal, M. Watson, D. Patel, and M. Seldin, Physical and genetic linkage of the genes encoding Ly-9 and CD48 on mouse and human chromosomes 1, Immunogenetics, vol.171, issue.1, pp.59-62, 1995.
DOI : 10.1007/BF00164988

W. Korver, S. Singh, S. Liu, X. Zhao, S. Yonkovich et al., The lymphoid cell surface receptor NTB-A: a novel monoclonal antibody target for leukaemia and lymphoma therapeutics, British Journal of Haematology, vol.16, issue.2, pp.307-325, 2007.
DOI : 10.1038/nri1761

S. Krause, M. Rehli, S. Heinz, R. Ebner, and R. Andreesen, Characterization of MAX.3 antigen, a glycoprotein expressed on mature macrophages, dendritic cells and blood platelets: identity with CD84, Biochemical Journal, vol.346, issue.3, pp.729-765, 2000.
DOI : 10.1042/bj3460729

S. Latour, G. Gish, and C. Helgason, Regulation of SLAM-mediated signal transduction by SAP, the X-linked lymphoproliferative gene product, Nature Immunology, vol.8, issue.8, pp.681-90, 2001.
DOI : 10.1038/90615

S. Latour, R. Roncogalli, and R. Chen, Binding of SAP SH2 domain to FynT SH3 domain reveals a novel mechanism of receptor signalling in immune regulation, Nature Cell Biology, vol.5, issue.2, pp.149-54, 2003.
DOI : 10.1038/ncb919

S. Latour and A. Veillette, The SAP family of adaptors in immune regulation, Seminars in Immunology, vol.16, issue.6, 2004.
DOI : 10.1016/j.smim.2004.08.020

K. Lee, M. Mcnerney, S. Stepp, P. Mathew, J. Schatzle et al., 2B4 Acts As a Non???Major Histocompatibility Complex Binding Inhibitory Receptor on Mouse Natural Killer Cells, The Journal of Experimental Medicine, vol.142, issue.9, pp.1245-54, 2004.
DOI : 10.1089/jir.1997.17.17

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2211902

K. Lee, J. Forman, M. Mcnerney, S. Stepp, S. Kuppireddi et al., Requirement of homotypic NK-cell interactions through 2B4(CD244)/CD48 in the generation of NK effector functions, Blood, vol.107, issue.8, pp.3181-3189, 2005.
DOI : 10.1182/blood-2005-01-0185

C. Li, C. Iosef, C. Jia, V. Han, and S. Li, Dual Functional Roles for the X-linked Lymphoproliferative Syndrome Gene Product SAP/SH2D1A in Signaling through the Signaling Lymphocyte Activation Molecule (SLAM) Family of Immune Receptors, Journal of Biological Chemistry, vol.278, issue.6, pp.3852-3861, 2003.
DOI : 10.1074/jbc.M206649200

J. Llovet, A. Burroughs, J. Bruix, and . Hepatocellular-carcinoma, Hepatocellular carcinoma, The Lancet, vol.362, issue.9399, pp.1907-1924, 2003.
DOI : 10.1016/S0140-6736(03)14964-1

J. Llovet, Y. Chen, E. Wurmbach, S. Roayaie, M. Fiel et al., A Molecular Signature to Discriminate Dysplastic Nodules From Early Hepatocellular Carcinoma in HCV Cirrhosis, Gastroenterology, vol.131, issue.6, pp.1758-1767, 2006.
DOI : 10.1053/j.gastro.2006.09.014

J. Lippincott-schwartz, L. Yuan, C. Tipper, M. Amherdt, L. Orci et al., Brefeldin A's effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic, Cell, vol.67, issue.3, pp.601-616, 1991.
DOI : 10.1016/0092-8674(91)90534-6

D. Sagi and J. Schlessinger, The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling, Cell, vol.70, issue.3, pp.431-473, 1992.

C. Ma and K. Nichols, Regulation of Cellular and Humoral Immune Responses by the SLAM and SAP Families of Molecules, Annual Review of Immunology, vol.25, issue.1, pp.337-79, 2007.
DOI : 10.1146/annurev.immunol.25.022106.141651

K. Mcglynn and W. London, Epidemiology and natural history of hepatocellular carcinoma, Best Practice & Research Clinical Gastroenterology, vol.19, issue.1, pp.3-23, 2005.
DOI : 10.1016/j.bpg.2004.10.004

S. Margraf-schönfeld, C. Böhm, and C. Watzl, Glycosylation Affects Ligand Binding and Function of the Activating Natural Killer Cell Receptor 2B4 (CD244) Protein, Journal of Biological Chemistry, vol.286, issue.27, pp.24142-24151, 2011.
DOI : 10.1074/jbc.M111.225334

P. Mathew, B. Garni-wagner, K. Land, A. Takashima, E. Stoneman et al., Cloning and characterization of the 2B4 gene encoding a molecule associated with non-MHCrestricted killing mediated by activated natural killer cells and T cells, J Immunol, vol.151, issue.10, pp.5328-5365, 1993.

M. Martin, . Romerox, and M. Angel, CD84 Functions as a Homophilic Adhesion Molecule and Enhances IFN-?? Secretion: Adhesion Is Mediated by Ig-Like Domain 1, The Journal of Immunology, vol.167, issue.7, pp.3668-76, 2001.
DOI : 10.4049/jimmunol.167.7.3668

M. Martin, D. Valle, J. Saborit, I. Engel, and P. , Identification of Grb2 As a Novel Binding Partner of the Signaling Lymphocytic Activation Molecule-Associated Protein Binding Receptor CD229, The Journal of Immunology, vol.174, issue.10, pp.5977-86, 2005.
DOI : 10.4049/jimmunol.174.10.5977

S. Mikhalap, L. Shlapatska, A. Berdova, C. Law, E. Clark et al., CDw150 associates with src-homology 2-containing inositol phosphatase and modulates CD95-mediated apoptosis, J Immunol, vol.162, issue.10, pp.5719-5746, 1999.

M. Morra, J. Lu, F. Poy, M. Martin, J. Sayos et al., Structural basis for the interaction of the free SH2 domain EAT-2 with SLAM receptors in hematopoietic cells, The EMBO Journal, vol.20, issue.21, pp.5840-52, 2001.
DOI : 10.1093/emboj/20.21.5840

A. Munitz, I. Bachelet, S. Fraenkel, G. Katz, O. Mandelboim et al., 2B4 (CD244) Is Expressed and Functional on Human Eosinophils, The Journal of Immunology, vol.174, issue.1, pp.110-118, 2005.
DOI : 10.4049/jimmunol.174.1.110

N. Nanda, P. Andre, M. Bao, K. Clauser, F. Deguzman et al., Platelet aggregation induces platelet aggregate stability via SLAM family receptor signaling. Blood, pp.3028-3062, 2005.
DOI : 10.1182/blood-2005-01-0333

K. Nichols, D. Harkin, S. Levitz, M. Krainer, K. Kolquist et al., Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome, Proceedings of the National Academy of Sciences, vol.95, issue.23, pp.13765-70, 1998.
DOI : 10.1073/pnas.95.23.13765

H. Ohno, Physiological Roles of Clathrin Adaptor AP Complexes: Lessons from Mutant Animals, Journal of Biochemistry, vol.139, issue.6, pp.943-951, 2006.
DOI : 10.1093/jb/mvj120

S. Parolini, C. Bottino, M. Falco, R. Augugliaro, S. Giliani et al., X-Linked Lymphoproliferative Disease, The Journal of Experimental Medicine, vol.90, issue.3, pp.337-383, 2000.
DOI : 10.1002/eji.1830250536

F. Peers, X. Bosch, J. Kaldor, A. Linsell, and M. Pluijmen, Aflatoxin exposure, hepatitis b virus infection and liver cancer in swaziland, International Journal of Cancer, vol.43, issue.5, pp.545-53, 1987.
DOI : 10.1002/ijc.2910390502

J. Punnonen, B. Cocks, J. Carballido, B. Bennett, D. Peterson et al., Soluble and Membrane-bound Forms of Signaling Lymphocytic Activation Molecule (SLAM) Induce Proliferation and Ig Synthesis by Activated Human B Lymphocytes, The Journal of Experimental Medicine, vol.155, issue.6, pp.993-1004, 1997.
DOI : 10.1073/pnas.91.18.8562

B. Rehermann and M. Nascimbeni, Immunology of hepatitis B virus and hepatitis C virus infection, Nature Reviews Immunology, vol.24, issue.3, pp.215-244, 2005.
DOI : 10.1172/JCI200318509

. Romerox, D. Benitez, S. March, R. Vilella, M. Miralpeix et al., Differential expression of SAP and EAT-2-binding leukocyte cell-surface molecules CD84, CD150 (SLAM), CD229 (Ly9) and CD244 (2B4), CD150 (SLAM), CD229 (Ly9) and CD244 (2B4), pp.132-144, 2004.
DOI : 10.1146/annurev.immunol.19.1.197

X. Romero, N. Zapater, and M. Calvo, CD229 (Ly9) Lymphocyte Cell Surface Receptor Interacts Homophilically through Its N-Terminal Domain and Relocalizes to the Immunological Synapse, The Journal of Immunology, vol.174, issue.11, pp.7033-7075, 2005.
DOI : 10.4049/jimmunol.174.11.7033

R. Roncagalli, J. Taylor, S. Zhang, X. Shi, R. Chen et al., Negative regulation of natural killer cell function by EAT-2, a SAP-related adaptor, Nature Immunology, vol.13, issue.10, pp.1002-1012, 2005.
DOI : 10.1016/0092-8674(88)90053-0

M. Sandrin, M. Henning, and M. Lo, Isolation and characterization of cDNA clones for Humly9: the human homologue of mouse Ly9, Immunogenetics, vol.43, issue.1-2, pp.13-22, 1996.
DOI : 10.1007/BF00186599

J. Sayos, C. Wu, M. Morra, N. Wang, X. Zhang et al., The X-linked lymphoproliferativedisease gene product SAP regulates signals induced through the co-receptor SLAM, Nature, vol.395, issue.6701, pp.462-471, 1998.
DOI : 10.1038/26683

P. Sayre, R. Hussey, H. Chang, D. Ciardelli, and E. Reinherz, Structural and binding analysis of a two domain extracellular CD2 molecule, Journal of Experimental Medicine, vol.169, issue.3, pp.995-1009, 1989.
DOI : 10.1084/jem.169.3.995

L. Shlapatska, S. Mikhalap, A. Berdova, O. Zelensky, T. Yun et al., CD150 Association with Either the SH2-Containing Inositol Phosphatase or the SH2-Containing Protein Tyrosine Phosphatase Is Regulated by the Adaptor Protein SH2D1A, The Journal of Immunology, vol.166, issue.9, pp.5480-5487, 2001.
DOI : 10.4049/jimmunol.166.9.5480

P. Schwartzberg, K. Mueller, H. Qi, and J. Cannons, SLAM receptors and SAP influence lymphocyte interactions, development and function, Nature Reviews Immunology, vol.174, issue.1, pp.39-46, 2009.
DOI : 10.1038/nature05257

S. Sidorenko and E. Clark, The dual-function CD150 receptor subfamily: the viral attraction, Nature Immunology, vol.4, issue.1, pp.19-24, 2003.
DOI : 10.1038/ni0103-19

M. Simarro, A. Lanyi, D. Howie, F. Poy, J. Bruggeman et al., SAP increases FynT kinase activity and is required for phosphorylation of SLAM and Ly9, International Immunology, vol.16, issue.5, pp.727-763, 2004.
DOI : 10.1093/intimm/dxh074

J. Sintes, M. Vidal-laliena, X. Romero, V. Tovar, and P. Engel, Characterization of mouse CD229 (Ly9), a leukocyte cell surface molecule of the CD150 (SLAM) family. Tissue Antigens, 2007.

J. Sintes, X. Romero, P. Marin, C. Terhorst, and P. Engel, Differential expression of CD150 (SLAM) family receptors by human hematopoietic stem and progenitor cells, Experimental Hematology, vol.36, issue.9, 2008.
DOI : 10.1016/j.exphem.2008.03.015

D. Speiser, M. Colonna, M. Ayyoub, M. Cella, M. Pittet et al., The Activatory Receptor 2B4 Is Expressed In Vivo by Human CD8+ Effector ???? T Cells, The Journal of Immunology, vol.167, issue.11, pp.6165-70, 2001.
DOI : 10.4049/jimmunol.167.11.6165

S. Tanaka and S. Arii, Molecularly targeted therapy for hepatocellular carcinoma, Cancer Sci, 2009.
DOI : 10.1111/j.1349-7006.2008.01006.x

URL : http://doi.org/10.1111/j.1349-7006.2008.01006.x

S. Tangye, S. Lazetic, E. Woollatt, G. Sutherland, L. Lanier et al., Cutting edge: human 2B4, an activating NK cell receptor, recruits the protein tyrosine phosphatase SHP-2 and the adaptor signaling protein SAP, J Immunol Jun, vol.15162, issue.12, pp.6981-6986, 1999.

S. Tangye, H. Cherwinski, L. Lanier, and J. Phillips, 2B4-mediated activation of human natural killer cells, Molecular Immunology, vol.37, issue.9, pp.493-501, 2000.
DOI : 10.1016/S0161-5890(00)00076-6

S. Tangye, K. Nichols, N. Hare, and B. Van-de-weerdt, Functional Requirements for Interactions Between CD84 and Src Homology 2 Domain-Containing Proteins and Their Contribution to Human T Cell Activation, The Journal of Immunology, vol.171, issue.5, pp.2485-95, 2003.
DOI : 10.4049/jimmunol.171.5.2485

I. Tassi and M. Colonna, The Cytotoxicity Receptor CRACC (CS-1) Recruits EAT-2 and Activates the PI3K and Phospholipase C?? Signaling Pathways in Human NK Cells, The Journal of Immunology, vol.175, issue.12, pp.7996-8002, 2005.
DOI : 10.4049/jimmunol.175.12.7996

H. Tatsuo, N. Ono, K. Tanaka, and Y. Yanagi, SLAM (CDw150) is a cellular receptor for measles virus, Nature, vol.406, issue.6798, pp.893-900, 2000.

A. Thompson, B. Braun, A. Arvand, S. Stewart, W. May et al., EAT-2 is a novel SH2 domain containing protein that is up regulated by Ewing's sarcoma EWS/FLI1 fusion gene, Oncogene, vol.13, issue.12, pp.2649-58, 1996.

D. Thorley-lawson and E. Israelsohn, Generation of specific cytotoxic T cells with a fragment of the Epstein-Barr virus-encoded p63/latent membrane protein., Proceedings of the National Academy of Sciences, vol.84, issue.15, 1987.
DOI : 10.1073/pnas.84.15.5384

D. Thorley-lawson, Immunological responses to Epstein-barr virus infection and the pathogenesis of EBV-induced diseases, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.948, issue.3, pp.263-86, 1989.
DOI : 10.1016/0304-419X(89)90002-4

V. Tovar, J. Del-valle, N. Zapater, M. Martin, X. Romero et al., Mouse novel Ly9: a new member of the expanding CD150 (SLAM) family of leukocyte cell-surface receptors, Immunogenetics, vol.54, issue.6, pp.394-402, 2002.
DOI : 10.1007/s00251-002-0483-3

R. Hermann, Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor beta 1, Proc Natl Acad Sci, vol.89, pp.5408-5412, 1992.

A. Veillette, Immune regulation by SLAM family receptors and SAP-related adaptors, Nature Reviews Immunology, vol.181, issue.1
DOI : 10.1038/nri1761

A. Veillette, M. Cruz-munoz, and M. Zhong, SLAM family receptors and SAP-related adaptors: matters arising, Trends in Immunology, vol.27, issue.5, pp.228-262, 2006.
DOI : 10.1016/j.it.2006.03.003

A. Veillette, NK cell regulation by SLAM family receptors and SAP-related adapters, Immunological Reviews, vol.172, issue.1, pp.22-34, 2006.
DOI : 10.1084/jem.194.8.1111

A. Veillette, Z. Dong, and S. Latour, Consequence of the SLAM-SAP signaling pathway in innate-like and conventional lymphocytes. Immunity, pp.698-710, 2007.

A. Veillette, SLAM-Family Receptors: Immune Regulators with or without SAP-Family Adaptors, Cold Spring Harbor Perspectives in Biology, vol.2, issue.3, p.2469, 2010.
DOI : 10.1101/cshperspect.a002469

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2829957

C. Velikovsky, L. Deng, L. Chlewicki, M. Fernández, V. Kumar et al., Structure of Natural Killer Receptor 2B4 Bound to CD48 Reveals Basis for Heterophilic Recognition in Signaling Lymphocyte Activation Molecule Family, Immunity, vol.27, issue.4, pp.572-84, 2007.
DOI : 10.1016/j.immuni.2007.08.019

N. Wang, M. Morra, C. Wu, C. Gullo, D. Howie et al., CD150 is a member of a family of genes that encode glycoproteins on the surface of hematopoietic cells, Immunogenetics, vol.53, issue.5, pp.382-94, 2001.
DOI : 10.1007/s002510100337

Y. Wong, A. Williams, S. Kingsmore, and M. Seldin, Structure, expression, and genetic linkage of the mouse BCM1 (OX45 or Blast-1) antigen. Evidence for genetic duplication giving rise to the BCM1 region on mouse chromosome 1 and the CD2/LFA3 region on mouse chromosome 3, Journal of Experimental Medicine, vol.171, issue.6, pp.2115-2145, 1990.
DOI : 10.1084/jem.171.6.2115