.. Méthodes-d-'analyse-pangénomique and .. Bisulfite-séquençage, 36 6-3-1) RRBS (Reduced Representation Bisulfite Sequencing) 36 6-3-2) Identification des régions immunoprécipitées, p.37

P. Bisulfite-puis, /. Et-clonage, and .. , 38 6-4-3) PCR classique ou quantitative, p.38

?. Quelles-possibilités, 39 6-5-1) Méthodes développées pour l'analyse de la méthylation, p.39, 0396.

.. Extraction-de-l-'adn-génomique-et-quantification, 43 2-1) Extraction de l'ADN génomique, p.43

.. Quantification-de-l-'adn, 45 2-2-1) Quantification par l'absorbance, ., p.45, 0452.

A. Ahmadian, M. Ehn, and S. Hober, Pyrosequencing: History, biochemistry and future, Clinica Chimica Acta, vol.363, issue.1-2, 2006.
DOI : 10.1016/j.cccn.2005.04.038

N. Beaujean, G. Hartshorne, J. Cavilla, J. Taylor, J. Gardner et al., Non-conservation of mammalian preimplantation methylation dynamics, Current Biology, vol.14, issue.7, pp.266-267, 2004.
DOI : 10.1016/j.cub.2004.03.019

P. Bermejo-alvarez, D. Rizos, D. Rath, P. Lonergan, and A. Gutierrez-adan, Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts, Proc. Natl. Acad, 2010.
DOI : 10.1073/pnas.0913843107

P. Bermejo-alvarez, D. Rizos, D. Rath, P. Lonergan, and A. Gutierrez-adan, Epigenetic differences between male and female bovine blastocysts produced in vitro, Physiological Genomics, vol.32, issue.2, pp.264-272, 2007.
DOI : 10.1152/physiolgenomics.00234.2007

T. H. Bestor, The DNA methyltransferases of mammals, Human Molecular Genetics, vol.9, issue.16, pp.2395-2402, 2000.
DOI : 10.1093/hmg/9.16.2395

S. A. Bustin, V. Benes, J. A. Garson, J. Hellemans, J. Huggett et al., The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments, Clinical Chemistry, vol.55, issue.4, pp.611-622112797, 2008.
DOI : 10.1373/clinchem.2008.112797

. Biophys, Acta 1842, pp.1130-1136

P. Chavatte-palmer, S. Camous, H. Jammes, L. Cleac-'h, N. Guillomot et al., Review: Placental perturbations induce the developmental abnormalities often observed in bovine somatic cell nuclear transfer, Placenta, vol.33, pp.99-104, 2012.
DOI : 10.1016/j.placenta.2011.09.012

P. Chavatte-palmer and Y. Heyman, Les bovins clonés sont-ils normaux? Point Vét., Reproduction des ruminants : gestation, néonatalogie et post-partum, pp.40-44, 2006.

P. Chavatte-palmer and Y. Heyman, Les bovins clonés : applications et risques. Point Vét., Reproduction des ruminants : gestation, néonatalogie et post-partum, pp.46-49, 2006.

P. Chavatte-palmer and A. Tarrade, Placentation in different mammalian species, Annales d'Endocrinologie, vol.77, issue.2, 2016.
DOI : 10.1016/j.ando.2016.04.006

Z. Chen, K. M. Robbins, K. D. Wells, and R. M. Rivera, Large offspring syndrome, Epigenetics, vol.8, issue.6, pp.591-601, 2013.
DOI : 10.1093/hmg/ddm280

P. Chomczynski and N. Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction, Analytical Biochemistry, vol.162, issue.1, pp.156-159, 1987.
DOI : 10.1016/0003-2697(87)90021-2

J. B. Cibelli, S. L. Stice, P. J. Golueke, J. J. Kane, J. Jerry et al., Cloned Transgenic Calves Produced from Nonquiescent Fetal Fibroblasts, Science, vol.280, issue.5367, pp.1256-1258, 1998.
DOI : 10.1126/science.280.5367.1256

F. Constant, Large Offspring or Large Placenta Syndrome? Morphometric Analysis of Late Gestation Bovine Placentomes from Somatic Nuclear Transfer Pregnancies Complicated by Hydrallantois, Biology of Reproduction, vol.75, issue.1, 2006.
DOI : 10.1095/biolreprod.106.051581

F. Constant and M. Guillomot, Formation et fonctionnement du placenta des bovidés. Point Vét., Reproduction des ruminants : gestation, néonatalogie et, pp.6-11, 2006.

D. Montera, B. Zeihery, D. Müller, S. Jammes, H. Brem et al., Quantification of Leukocyte Genomic 5-Methylcytosine Levels Reveals Epigenetic Plasticity in Healthy Adult Cloned Cattle, Cellular Reprogramming (Formerly "Cloning and Stem Cells"), vol.12, issue.2, pp.175-181, 2010.
DOI : 10.1089/cell.2009.0062

S. V. Dindot, P. W. Farin, C. E. Farin, J. Romano, S. Walker et al., Epigenetic and Genomic Imprinting Analysis in Nuclear Transfer Derived Bos gaurus/Bos taurus Hybrid Fetuses1, Biology of Reproduction, vol.71, issue.2, pp.470-478, 2004.
DOI : 10.1095/biolreprod.103.025775

B. P. Enright, Epigenetic Characteristics and Development of Embryos Cloned from Donor Cells Treated by Trichostatin A or 5-aza-2???-deoxycytidine1, Biology of Reproduction, vol.69, issue.3, pp.896-901, 2003.
DOI : 10.1095/biolreprod.103.017954

M. Frommer, L. E. Mcdonald, D. S. Millar, C. M. Collis, F. Watt et al., A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands., Proc. Natl. Acad. Sci, pp.1827-1831, 1992.
DOI : 10.1073/pnas.89.5.1827

A. Gabory, T. J. Roseboom, T. Moore, L. G. Moore, and C. Junien, Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics, Biology of Sex Differences, vol.4, issue.1, 2013.
DOI : 10.1016/j.cmet.2011.01.011

URL : https://hal.archives-ouvertes.fr/hal-01019141

D. Globisch, M. Münzel, M. Müller, S. Michalakis, M. Wagner et al., Tissue Distribution of 5-Hydroxymethylcytosine and Search for Active Demethylation Intermediates, PLoS ONE, vol.17, issue.12, 2010.
DOI : 10.1371/journal.pone.0015367.s005

M. C. Golding and M. E. Westhusin, Analysis of DNA (cytosine 5) methyltransferase mRNA sequence and expression in bovine preimplantation embryos, fetal and adult tissues, Gene Expression Patterns, vol.3, issue.5, pp.551-558, 2003.
DOI : 10.1016/S1567-133X(03)00121-2

J. Gräff and I. M. Mansuy, Epigenetic codes in cognition and behaviour, Behavioural Brain Research, vol.192, issue.1, pp.70-87, 2008.
DOI : 10.1016/j.bbr.2008.01.021

H. Gu, Z. D. Smith, C. Bock, P. Boyle, A. Gnirke et al., Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling, Nature Protocols, vol.454, issue.4, pp.468-481, 0190.
DOI : 10.1038/nbt1010-1026

J. A. Head, K. Mittal, and N. Basu, Application of the LUminometric Methylation Assay to ecological species: tissue quality requirements and a survey of DNA methylation levels in animals, Molecular Ecology Resources, vol.6, 2014.
DOI : 10.1111/1755-0998.12244

B. T. Heijmans, E. W. Tobi, A. D. Stein, H. Putter, G. J. Blauw et al., Persistent epigenetic differences associated with prenatal exposure to famine in humans, Proc. Natl. Acad. Sci. 105, pp.17046-17049, 2008.
DOI : 10.1073/pnas.0806560105

H. G. Hernández, M. Y. Tse, S. C. Pang, H. Arboleda, and D. A. Forero, Optimizing methodologies for PCR-based DNA methylation analysis, BioTechniques, vol.55, issue.4, 2013.
DOI : 10.2144/000114087

Y. Heyman, Nuclear transfer: a new tool for reproductive biotechnology in cattle, Reproduction Nutrition Development, vol.45, issue.3, 2005.
DOI : 10.1051/rnd:2005026

URL : https://hal.archives-ouvertes.fr/hal-00900566

M. M. Hossain, D. Tesfaye, D. Salilew-wondim, E. Held, M. J. Pröll et al., Massive deregulation of miRNAs from nuclear reprogramming errors during trophoblast differentiation for placentogenesis in cloned pregnancy, BMC Genomics, vol.15, issue.1, pp.43-53, 2014.
DOI : 10.1007/s00441-001-0491-x

K. Ichiyanagi, Inhibition of Msp I cleavage activity by hydroxymethylation of the CpG site: A concern for DNA modification studies using restriction endonucleases, Epigenetics, vol.7, 2012.

H. Jammes, C. Junien, and P. Chavatte-palmer, Epigenetic control of development and expression of quantitative traits, Reproduction, Fertility and Development, vol.23, issue.1, pp.10-1071, 2011.
DOI : 10.1071/RD10259

URL : https://hal.archives-ouvertes.fr/hal-01018986

S. Jin, S. Kadam, and G. P. Pfeifer, Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine, Nucleic Acids Research, vol.38, issue.11, pp.125-125, 2010.
DOI : 10.1093/nar/gkq223

M. Karimi, S. Johansson, D. Stach, M. Corcoran, D. Grandér et al., LUMA (LUminometric Methylation Assay)???A high throughput method to the analysis of genomic DNA methylation, Experimental Cell Research, vol.312, issue.11, 1989.
DOI : 10.1016/j.yexcr.2006.03.006

B. Kinde, H. W. Gabel, C. S. Gilbert, E. C. Griffith, and M. E. Greenberg, Reading the unique DNA methylation landscape of the brain: Non-CpG methylation, hydroxymethylation, and MeCP2, Proceedings of the National Academy of Sciences, vol.112, issue.22, 2015.
DOI : 10.1073/pnas.1411269112

S. M. Kinney, H. G. Chin, R. Vaisvila, J. Bitinaite, Y. Zheng et al., Tissue-specific Distribution and Dynamic Changes of 5-Hydroxymethylcytosine in Mammalian Genomes, Journal of Biological Chemistry, vol.286, issue.28, pp.24685-24693, 2011.
DOI : 10.1074/jbc.M110.217083

S. Kriaucionis and N. Heintz, The Nuclear DNA Base 5-Hydroxymethylcytosine Is Present in Purkinje Neurons and the Brain, Science, vol.324, issue.5929, pp.929-930, 2009.
DOI : 10.1126/science.1169786

M. Kubista, J. M. Andrade, M. Bengtsson, A. Forootan, J. Jonák et al., The real-time polymerase chain reaction, Molecular Aspects of Medicine, vol.27, issue.2-3, pp.95-125, 2006.
DOI : 10.1016/j.mam.2005.12.007

R. Kucharski, J. Maleszka, S. Foret, and R. Maleszka, Nutritional Control of Reproductive Status in Honeybees via DNA Methylation, Science, vol.319, issue.5871, pp.1827-1830, 2008.
DOI : 10.1126/science.1153069

S. Kurdyukov and M. Bullock, DNA Methylation Analysis: Choosing the Right Method, Biology, vol.5, issue.1, 2016.
DOI : 10.3390/biology5010003

P. W. Laird, Principles and challenges of genome-wide DNA methylation analysis, Nature Reviews Genetics, vol.36, issue.3, 2010.
DOI : 10.1038/nrg2732

S. Lisanti, W. A. Omar, B. Tomaszewski, S. De-prins, G. Jacobs et al., Comparison of Methods for Quantification of Global DNA Methylation in Human Cells and Tissues, PLoS ONE, vol.5, issue.11, 2013.
DOI : 10.1371/journal.pone.0079044.s001

H. D. Morgan, H. G. Sutherland, D. I. Martin, and E. Whitelaw, Epigenetic inheritance at the agouti locus in the mouse, Nat. Genet, vol.23, pp.314-318, 1999.

O. Doherty, A. M. O-'shea, L. C. Sandra, O. Lonergan, P. Fair et al., Imprinted and DNA methyltransferase gene expression in the endometrium during the pre-and peri-implantation period in cattle, Reprod. Fertil. Dev, p.10, 1071.

M. Okano, D. W. Bell, D. A. Haber, and E. Li, DNA Methyltransferases Dnmt3a and Dnmt3b Are Essential for De Novo Methylation and Mammalian Development, Cell, vol.99, issue.3, pp.247-257, 1999.
DOI : 10.1016/S0092-8674(00)81656-6

URL : http://doi.org/10.1016/s0092-8674(00)81656-6

N. Peynot, V. Duranthon, and D. R. Khan, Gene Expression Analysis in Early Embryos Through Reverse Transcription Quantitative PCR (RT-qPCR), Nuclear Reprogramming, pp.181-196, 2015.
DOI : 10.1007/978-1-4939-1594-1_14

P. L. Pfeffer and D. J. Pearton, Trophoblast development, Reproduction, vol.143, issue.3, pp.231-24611, 2012.
DOI : 10.1530/REP-11-0374

A. Pichugin, L. Bourhis, D. Adenot, P. Lehmann, G. Audouard et al., Dynamics of constitutive heterochromatin: two contrasted kinetics of genome restructuring in early cloned bovine embryos, Reproduction, vol.139, issue.1, pp.129-137, 2010.
DOI : 10.1530/REP-08-0435

J. Qiu, Epigenetics: Unfinished symphony, Nature, vol.65, issue.7090, pp.143-145, 2006.
DOI : 10.1038/441143a

M. Saitou, S. Kagiwada, and K. Kurimoto, Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells, Development, vol.139, issue.1, pp.15-31, 2012.
DOI : 10.1242/dev.050849

F. Santos, V. Zakhartchenko, M. Stojkovic, A. Peters, T. Jenuwein et al., Epigenetic Marking Correlates with Developmental Potential in Cloned Bovine Preimplantation Embryos, Current Biology, vol.13, issue.13, pp.1116-1121, 2003.
DOI : 10.1016/S0960-9822(03)00419-6

S. A. Smallwood and G. Kelsey, De novo DNA methylation: a germ cell perspective, Trends in Genetics, vol.28, issue.1, pp.33-42, 2012.
DOI : 10.1016/j.tig.2011.09.004

L. C. Smith, J. Suzuki, A. K. Goff, F. Filion, J. Therrien et al., Developmental and Epigenetic Anomalies in Cloned Cattle, Reproduction in Domestic Animals, vol.27, issue.Suppl. 8, pp.107-114, 2012.
DOI : 10.1111/j.1439-0531.2012.02063.x

B. D. Strahl and C. D. Allis, The language of covalent histone modifications, Nature, vol.96, issue.6765, pp.41-45, 2000.
DOI : 10.1038/47412

J. Su, Y. Wang, X. Xing, J. Liu, and Y. Zhang, Genome-wide analysis of DNA methylation in bovine placentas, BMC Genomics, vol.15, issue.1, pp.12-22, 2014.
DOI : 10.1093/bioinformatics/bti652

M. Tahiliani, K. P. Koh, Y. Shen, W. A. Pastor, H. Bandukwala et al., Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1, Science, vol.324, issue.5929, pp.930-935, 2009.
DOI : 10.1126/science.1170116

S. Tanaka, M. O. Nakanishi, and K. Shiota, DNA methylation and its role in the trophoblast cell lineage, The International Journal of Developmental Biology, vol.58, issue.2-3-4, pp.231-238, 2014.
DOI : 10.1387/ijdb.140053st

G. V. Tarasova, T. N. Nayakshina, and S. K. Degtyarev, Substrate specificity of new methyldirected DNA endonuclease GlaI, BMC Mol. Biol, pp.1471-2199, 2008.

P. Tessarz and T. Kouzarides, Histone core modifications regulating nucleosome structure and dynamics, Nature Reviews Molecular Cell Biology, vol.4, issue.11, pp.703-708, 2014.
DOI : 10.1038/nrm3890

URL : http://hdl.handle.net/11858/00-001M-0000-0028-59DB-8

E. Touzard, P. Reinaud, O. Dubois, C. Guyader-joly, P. Humblot et al., Specific expression patterns and cell distribution of ancient and modern PAG in bovine placenta during pregnancy, Reproduction, vol.146, issue.4, pp.347-362, 2013.
DOI : 10.1530/REP-13-0143

URL : https://hal.archives-ouvertes.fr/hal-01004079

X. Vignon, P. Chesné, L. Bourhis, D. Fléchon, J. E. Heyman et al., Developmental potential of bovine embryos reconstructed from enucleated matured oocytes fused with cultured somatic cells, Comptes Rendus de l'Acad??mie des Sciences - Series III - Sciences de la Vie, vol.321, issue.9, pp.735-745, 1998.
DOI : 10.1016/S0764-4469(98)80014-0

N. Vilahur, A. A. Baccarelli, M. Bustamante, S. Agramunt, H. Byun et al., Storage conditions and stability of global DNA methylation in placental tissue, Epigenomics, vol.5, issue.3, pp.341-348, 2013.
DOI : 10.2217/epi.13.29

J. Wang, K. Zhang, L. Xu, and E. Wang, Quantifying the Waddington landscape and biological paths for development and differentiation, Proc. Natl. Acad. Sci, pp.8257-8262, 2011.
DOI : 10.1073/pnas.1017017108

D. Watanabe, I. Suetake, T. Tada, and S. Tajima, Stage- and cell-specific expression of Dnmt3a and Dnmt3b during embryogenesis, Mechanisms of Development, vol.118, issue.1-2, pp.187-190, 2002.
DOI : 10.1016/S0925-4773(02)00242-3

I. Wilmut, A. E. Schnieke, J. Mcwhir, A. J. Kind, and K. H. Campbell, Viable offspring derived from fetal and adult mammalian cells, Nature, vol.385, issue.6619, pp.810-81310385810, 1038.
DOI : 10.1038/385810a0

W. Yong, F. Hsu, and P. Chen, Profiling genome-wide DNA methylation, Epigenetics & Chromatin, vol.56, issue.Suppl 12, 2016.
DOI : 10.3390/biology5010003

URL : http://doi.org/10.1186/s13072-016-0075-3

S. Zhang, X. Chen, F. Wang, X. An, B. Tang et al., Aberrant DNA methylation reprogramming in bovine SCNT preimplantation embryos, Scientific Reports, vol.51, issue.1, pp.3034510-30345, 1038.
DOI : 10.1086/655143