H. Abe, M. Wada, K. Kohno, and M. Kuwano, Altered drug sensitivities to anticancer agents in radiation-sensitive DNA repair deficient yeast mutants, Anticancer Research, vol.14, pp.1807-1810, 1994.

A. Z. Al-minawi, Y. Lee, D. Håkansson, F. Johansson, C. Lundin et al., The ERCC1/XPF endonuclease is required for completion of homologous recombination at DNA replication forks stalled by inter-strand cross-links, Nucleic Acids Research, vol.37, issue.19, pp.6400-6413, 2009.
DOI : 10.1093/nar/gkp705

R. Amunugama and R. Fishel, Subunit Interface Residues F129 and H294 of Human RAD51 Are Essential for Recombinase Function, PLoS ONE, vol.277, issue.8, 2011.
DOI : 10.1371/journal.pone.0023071.t002

R. Amunugama, Y. He, S. Willcox, R. Forties, K. Shim et al., RAD51 Protein ATP Cap Regulates Nucleoprotein Filament Stability, Journal of Biological Chemistry, vol.287, issue.12, pp.8724-8736, 2012.
DOI : 10.1074/jbc.M111.239426

S. Arnould, P. Chames, C. Perez, E. Lacroix, A. Duclert et al., Engineering of Large Numbers of Highly Specific Homing Endonucleases that Induce Recombination on Novel DNA Targets, Journal of Molecular Biology, vol.355, issue.3, pp.443-458, 2006.
DOI : 10.1016/j.jmb.2005.10.065

N. Ashton, Analysis of gametophytic developement in the moss, Physcomitrella patens, using auxin and cytokinin resistant mutants, Planta, pp.427-435, 1979.

N. Ashton and D. J. Cove, The isolation and preliminary characterization of auxotrophic and analogue resistant mutants of the moss, Physcomitrella patens, Mol Gen Genet, pp.87-95, 1977.

E. Aslankoohi, K. Voordeckers, H. Sun, A. Sanchez-rodriguez, E. Van-der-zande et al., Nucleosomes affect local transformation efficiency, Nucleic Acids Research, vol.40, issue.19, pp.9506-9512, 2012.
DOI : 10.1093/nar/gks777

Y. Aylon and M. Kupiec, DSB repair: the yeast paradigm, DNA Repair, vol.3, issue.8-9, pp.797-815, 2004.
DOI : 10.1016/j.dnarep.2004.04.013

S. Ayora, J. I. Piruat, R. Luna, B. Reiss, V. E. Russo et al., Characterization of two highly similar rad51 homologs of Physcomitrella patens, Journal of Molecular Biology, vol.316, issue.1, pp.35-49, 2002.
DOI : 10.1006/jmbi.2001.5336

J. Bähler, J. Q. Wu, M. S. Longtine, N. G. Shah, . Mckenzie et al., Heterologous modules for efficient and versatile PCR???based gene targeting in Schizosaccharomyces pombe, Yeast, vol.14, issue.10, pp.943-951, 1998.
DOI : 10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.3.CO;2-P

Y. Bai and L. S. Symington, A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae., Genes & Development, vol.10, issue.16, pp.2025-2037, 1996.
DOI : 10.1101/gad.10.16.2025

Y. Bao and X. Shen, Chromatin remodeling in DNA double-strand break repair, Current Opinion in Genetics & Development, vol.17, issue.2, pp.126-131, 2007.
DOI : 10.1016/j.gde.2007.02.010

W. Baubonis and B. Sauer, Genomic targeting with purified Cre recombinase, Nucleic Acids Research, vol.21, issue.9, pp.2025-2029, 1993.
DOI : 10.1093/nar/21.9.2025

D. Bird and R. Bradshaw, Gene targeting is locus dependent in the filamentous fungus Aspergillus nidulans, Molecular and General Genetics MGG, vol.255, issue.2, pp.219-225, 1997.
DOI : 10.1007/s004380050492

A. Büttner-mainik, J. Parsons, H. Jérôme, A. Hartmann, S. Lamer et al., Production of biologically active recombinant human factor H in Physcomitrella, Plant Biotechnology Journal, vol.43, issue.3, pp.373-383, 2011.
DOI : 10.1111/j.1467-7652.2010.00552.x

J. R. Chapman, M. R. Taylor, and S. J. Boulton, Playing the End Game: DNA Double-Strand Break Repair Pathway Choice, Molecular Cell, vol.47, issue.4, pp.497-510, 2012.
DOI : 10.1016/j.molcel.2012.07.029

C. Charbonnel, E. Allain, M. E. Gallego, and C. I. White, Kinetic analysis of DNA double-strand break repair pathways in Arabidopsis, DNA Repair, vol.10, issue.6, pp.611-619, 2011.
DOI : 10.1016/j.dnarep.2011.04.002

URL : https://hal.archives-ouvertes.fr/inserm-00595841

Q. Cheng, N. Barboule, P. Frit, D. Gomez, O. Bombarde et al., Ku counteracts mobilization of PARP1 and MRN in chromatin damaged with DNA double-strand breaks, Nucleic Acids Research, vol.39, issue.22, pp.9605-9619, 2011.
DOI : 10.1093/nar/gkr656

A. Ciccia and S. J. Elledge, The DNA Damage Response: Making It Safe to Play with Knives, Molecular Cell, vol.40, issue.2, pp.179-204, 2010.
DOI : 10.1016/j.molcel.2010.09.019

A. Ciccia, N. Mcdonald, and S. C. West, Structural and Functional Relationships of the XPF/MUS81 Family of Proteins, Annual Review of Biochemistry, vol.77, issue.1, pp.259-287, 2008.
DOI : 10.1146/annurev.biochem.77.070306.102408

V. Cloud, Y. Chan, J. Grubb, B. Budke, and D. K. Bishop, Rad51 Is an Accessory Factor for Dmc1-Mediated Joint Molecule Formation During Meiosis, Science, vol.337, issue.6099, pp.1222-1225, 2012.
DOI : 10.1126/science.1219379

S. Compton, S. Ozgür, G. , and J. D. , Ring-shaped Rad51 Paralog Protein Complexes Bind Holliday Junctions and Replication Forks as Visualized by Electron Microscopy, Journal of Biological Chemistry, vol.285, issue.18, pp.13349-13356, 2010.
DOI : 10.1074/jbc.M109.074286

C. Couëdel, K. D. Mills, M. Barchi, L. Shen, A. Olshen et al., Collaboration of homologous recombination and nonhomologous end-joining factors for the survival and integrity of mice and cells, Genes & Development, vol.18, issue.11, pp.1293-1304, 2004.
DOI : 10.1101/gad.1209204

F. Daboussi, A. Dumay, F. Delacôte, and B. S. Lopez, DNA double-strand break repair signalling: The case of RAD51 post-translational regulation, Cellular Signalling, vol.14, issue.12, pp.969-975, 2002.
DOI : 10.1016/S0898-6568(02)00052-9

A. W. Debowski, J. C. Gauntlett, H. Li, T. Liao, M. Sehnal et al., : One-step Transformation for the Construction of Markerless Gene Deletions, Helicobacter, vol.14, issue.583, pp.435-443, 2012.
DOI : 10.1111/j.1523-5378.2012.00969.x

E. L. Decker, R. , and R. , Current achievements in the production of complex biopharmaceuticals with moss bioreactors, Bioprocess and Biosystems Engineering, vol.24, issue.1, pp.3-9, 2008.
DOI : 10.1007/s00449-007-0151-y

S. Dubest, M. E. Gallego, and C. I. White, Role of the AtRad1p endonuclease in homologous recombination in plants, EMBO reports, vol.3, issue.11, pp.1049-1054, 2002.
DOI : 10.1093/embo-reports/kvf211

URL : https://hal.archives-ouvertes.fr/inserm-00595819

S. Dubest, M. E. Gallego, and C. I. White, Roles of the AtErcc1 protein in recombination, The Plant Journal, vol.13, issue.3, pp.334-342, 2004.
DOI : 10.1111/j.1365-313X.2004.02136.x

URL : https://hal.archives-ouvertes.fr/inserm-00595817

A. Dudás and M. Chovanec, DNA double-strand break repair by homologous recombination, Mutation Research/Reviews in Mutation Research, vol.566, issue.2, pp.131-167, 2004.
DOI : 10.1016/j.mrrev.2003.07.001

M. Van-duin, J. De-wit, H. Odijk, A. Westerveld, A. Yasui et al., Molecular characterization of the human excision repair gene : cDNA cloning and amino acid homology with the yeast DNA repair gene, Cell, vol.44, issue.6, pp.913-923, 1986.
DOI : 10.1016/0092-8674(86)90014-0

J. Essers, H. Van-steeg, J. De-wit, S. M. Swagemakers, M. Vermeij et al., Homologous and non-homologous recombination differentially affect DNA damage repair in mice, The EMBO Journal, vol.19, issue.7, pp.1703-1710, 2000.
DOI : 10.1093/emboj/19.7.1703

J. Fishman-lobell, N. Rudin, and J. E. Haber, Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated., Molecular and Cellular Biology, vol.12, issue.3, pp.1292-1303, 1992.
DOI : 10.1128/MCB.12.3.1292

S. Flott, C. Alabert, G. W. Toh, R. Toth, N. Sugawara et al., Phosphorylation of Slx4 by Mec1 and Tel1 Regulates the Single-Strand Annealing Mode of DNA Repair in Budding Yeast, Molecular and Cellular Biology, vol.27, issue.18, pp.6433-6445, 2007.
DOI : 10.1128/MCB.00135-07

URL : https://hal.archives-ouvertes.fr/hal-00176432

S. Flott, Y. Kwon, Y. Z. Pigli, P. Rice, P. Sung et al., Regulation of Rad51 function by phosphorylation, EMBO reports, vol.408, issue.8, pp.833-839, 2011.
DOI : 10.1038/embor.2011.127

R. A. Freiberg, E. M. Hammond, M. J. Dorie, S. M. Welford, and A. J. Giaccia, DNA Damage during Reoxygenation Elicits a Chk2-Dependent Checkpoint Response, Molecular and Cellular Biology, vol.26, issue.5, pp.1598-1609, 2006.
DOI : 10.1128/MCB.26.5.1598-1609.2006

T. Fukushima, M. Takata, C. Morrison, R. Araki, . Fujimori et al., Genetic Analysis of the DNA-dependent Protein Kinase Reveals an Inhibitory Role of Ku in Late S-G2 Phase DNA Double-strand Break Repair, Journal of Biological Chemistry, vol.276, issue.48, pp.44413-44418, 2001.
DOI : 10.1074/jbc.M106295200

P. H. Gaillard and R. D. Wood, Activity of individual ERCC1 and XPF subunits in DNA nucleotide excision repair, Nucleic Acids Research, vol.29, issue.4, pp.872-879, 2001.
DOI : 10.1093/nar/29.4.872

J. Game, M. , and R. , A genetic study of X-ray sensitive mutants in yeast, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.24, issue.3, pp.281-292, 1974.
DOI : 10.1016/0027-5107(74)90176-6

A. Gouble, J. Smith, S. Bruneau, C. Perez, V. Guyot et al., Efficientin toto targeted recombination in mouse liver by meganuclease-induced double-strand break, The Journal of Gene Medicine, vol.435, issue.5, pp.616-622, 2006.
DOI : 10.1002/jgm.879

S. Q. Gregg, A. R. Robinson, and L. J. Niedernhofer, Physiological consequences of defects in ERCC1???XPF DNA repair endonuclease, DNA Repair, vol.10, issue.7, pp.781-791, 2011.
DOI : 10.1016/j.dnarep.2011.04.026

J. Guirouilh-barbat, S. Huck, P. Bertrand, L. Pirzio, C. Desmaze et al., Impact of the KU80 Pathway on NHEJ-Induced Genome Rearrangements in Mammalian Cells, Molecular Cell, vol.14, issue.5, pp.611-623, 2004.
DOI : 10.1016/j.molcel.2004.05.008

S. N. Guzder, Y. Habraken, P. Sung, L. Prakash, and S. Praksh, Reconstitution of Yeast Nucleotide Excision Repair with Purified Rad Proteins, Replication Protein A, and Transcription Factor TFIIH, Journal of Biological Chemistry, vol.270, issue.22, pp.12973-12976, 1995.
DOI : 10.1074/jbc.270.22.12973

S. N. Guzder, P. Sung, L. Prakash, and S. Prakash, Nucleotide Excision Repair in Yeast Is Mediated by Sequential Assembly of Repair Factors and Not by a Pre-assembled Repairosome, Journal of Biological Chemistry, vol.271, issue.15, pp.8903-8910, 1996.
DOI : 10.1074/jbc.271.15.8903

U. Halfter, P. Morris, and L. Willmitzer, Gene targeting in Arabidopsis thaliana, Molecular & General Gentics, vol.231, pp.186-193, 1992.

Y. Hashimoto, A. R. Chaudhuri, M. Lopes, C. , and V. , Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis, Nature Structural & Molecular Biology, vol.174, issue.11, pp.1305-1311, 2010.
DOI : 10.1016/j.molcel.2007.12.020

P. Hasty, J. Rivera-perez, and A. Bradley, The length of homology required for gene targeting in embryonic stem cells., Molecular and Cellular Biology, vol.11, issue.11, 1991.
DOI : 10.1128/MCB.11.11.5586

E. Hefner, S. B. Preuss, and B. , Arabidopsis mutants sensitive to gamma radiation include the homologue of the human repair gene ERCC1, Journal of Experimental Botany, vol.54, issue.383, pp.669-680, 2003.
DOI : 10.1093/jxb/erg069

. Hinnen, J. B. Hicks, and G. R. Fink, Transformation of yeast., Proceedings of the National Academy of Sciences, vol.75, issue.4, pp.1929-1933, 1978.
DOI : 10.1073/pnas.75.4.1929

J. H. Hoeijmakers, DNA Damage, Aging, and Cancer, New England Journal of Medicine, vol.361, issue.15, pp.1475-1485, 2009.
DOI : 10.1056/NEJMra0804615

D. Ichioka, T. Itoh, and Y. Itoh, An Aspergillus nidulans uvsC null mutant is deficient in homologous DNA integration, Molecular and General Genetics MGG, vol.264, issue.5, pp.709-715, 2001.
DOI : 10.1007/s004380000359

G. Ira, A. Pellicioli, A. Balijja, X. Wang, S. Fiorani et al., DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1, Nature, vol.31, issue.7011, pp.1011-1017, 2004.
DOI : 10.1016/S1097-2765(01)00388-4

E. L. Ivanov and J. E. Haber, RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae., Molecular and Cellular Biology, vol.15, issue.4, pp.2245-2251, 1995.
DOI : 10.1128/MCB.15.4.2245

E. L. Ivanov, N. Sugawara, J. Fishman-lobell, and J. E. Haber, Genetic Requirements for the Single-Strand Annealing pathway of double-strand break repair in Saccharomyces cerevisiae, Genetics, vol.142, pp.693-704, 1996.

S. P. Jackson and J. Bartek, The DNA-damage response in human biology and disease, Nature, vol.37, issue.7267, pp.1071-1078, 2009.
DOI : 10.1038/nature08467

A. Jacquier and B. Dujon, An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene, Cell, vol.41, issue.2, pp.383-394, 1985.
DOI : 10.1016/S0092-8674(85)80011-8

R. D. Johnson and L. S. Symington, Functional differences and interactions among the putative RecA homologs Rad51, Rad55, and Rad57., Functional differences and interactions among the putative RecA homologs Rad51, Rad55, and Rad57, pp.4843-4850, 1995.
DOI : 10.1128/MCB.15.9.4843

V. Kaliraman and S. J. Brill, Role of SGS1 and SLX4 in maintaining rDNA structure in Saccharomyces cerevisiae, Current Genetics, vol.41, issue.6, pp.389-400, 2002.
DOI : 10.1007/s00294-002-0319-6

Y. Kamisugi, A. C. Cuming, and D. J. Cove, Parameters determining the efficiency of gene targeting in the moss Physcomitrella patens, Nucleic Acids Research, vol.33, issue.19, p.173, 2005.
DOI : 10.1093/nar/gni172

Y. Kamisugi, K. Schlink, S. Rensing, G. Schween, V. Stackelberg et al., The mechanism of gene targeting in Physcomitrella patens: homologous recombination, concatenation and multiple integration, Nucleic Acids Research, vol.34, issue.21, pp.6205-6214, 2006.
DOI : 10.1093/nar/gkl832

E. M. Kass and M. Jasin, Collaboration and competition between DNA double-strand break repair pathways, FEBS Letters, vol.39, issue.17, pp.3703-3708, 2010.
DOI : 10.1016/j.febslet.2010.07.057

H. L. Klein, Different types of recombination events are controlled by the RAD1 and RAD52 genes of Saccharomyces cerevisiae, Genetics, vol.120, pp.367-377, 1988.

H. L. Klein, The consequences of Rad51 overexpression for normal and tumor cells, DNA Repair, vol.7, issue.5, pp.686-693, 2008.
DOI : 10.1016/j.dnarep.2007.12.008

H. L. Klein and L. S. Symington, Breaking Up Just Got Easier to Do, Cell, vol.138, issue.1, pp.20-22, 2009.
DOI : 10.1016/j.cell.2009.06.039

H. L. Klein and L. S. Symington, Sgs1???The Maestro of Recombination, Cell, vol.149, issue.2, pp.257-259, 2012.
DOI : 10.1016/j.cell.2012.03.020

R. Kostriken, J. Strathern, A. Klar, J. Hicks, and F. Heffron, A site-specific endonuclease essential for mating-type switching in Saccharomyces cerevisiae, Cell, vol.35, issue.1, pp.197-174, 1983.
DOI : 10.1016/0092-8674(83)90219-2

S. C. Kowalczykowski, D. Dixon, K. Eggleston, S. D. Lauder, and W. M. Rehrauer, Biochemistry of homologous recombination in Escherichia coli, Microbiological Reviews, vol.58, pp.401-465, 1994.

M. Krawchuk and W. Wahls, High-efficiency gene targeting inSchizosaccharomyces pombe using a modular, PCR-based approach with long tracts of flanking homology, Yeast, vol.10, issue.13, pp.1419-1427, 1999.
DOI : 10.1002/(SICI)1097-0061(19990930)15:13<1419::AID-YEA466>3.0.CO;2-Q

L. Krejci, V. Altmannova, M. Spirek, and X. Zhao, Homologous recombination and its regulation, Nucleic Acids Research, vol.40, issue.13, pp.5795-5818, 2012.
DOI : 10.1093/nar/gks270

B. O. Krogh and L. S. Symington, Recombination Proteins in Yeast, Annual Review of Genetics, vol.38, issue.1, pp.233-271, 2004.
DOI : 10.1146/annurev.genet.38.072902.091500

D. Laat, W. L. Sijbers, M. Odijk, H. Jaspers, N. G. Hoeijmakers et al., Mapping of interaction domains between human repair proteins ERCC1 and XPF, Nucleic Acids Research, vol.26, issue.18, pp.4146-4152, 1998.
DOI : 10.1093/nar/26.18.4146

S. Lambert, B. Froget, and A. M. Carr, Arrested replication fork processing: Interplay between checkpoints and recombination, DNA Repair, vol.6, issue.7, pp.1042-1061, 2007.
DOI : 10.1016/j.dnarep.2007.02.024

D. Lang, A. D. Zimmer, S. Rensing, R. , and R. , Exploring plant biodiversity: the Physcomitrella genome and beyond, Trends in Plant Science, vol.13, issue.10, pp.542-549, 2008.
DOI : 10.1016/j.tplants.2008.07.002

L. D. Langston and L. S. Symington, Gene targeting in yeast is initiated by two independent strand invasions, Proceedings of the National Academy of Sciences, vol.101, issue.43, pp.15392-15397, 2004.
DOI : 10.1073/pnas.0403748101

L. D. Langston and L. S. Symington, Opposing roles for DNA structure-specific proteins Rad1, Msh2, Msh3, and Sgs1 in yeast gene targeting, The EMBO Journal, vol.272, issue.12, pp.2214-2223, 2005.
DOI : 10.1093/emboj/19.13.3428

I. Lazaro-trueba, C. Arias, and A. Silva, Double Bolt Regulation of Rad51 by p53: A Role for Transcriptional Repression, Cell Cycle, vol.5, issue.10, pp.1062-1065, 2006.
DOI : 10.4161/cc.5.10.2764

J. Li, L. C. Harper, I. Golubovskaya, C. R. Wang, D. Weber et al., Functional Analysis of Maize RAD51 in Meiosis and Double-Strand Break Repair, Genetics, vol.176, issue.3, pp.1469-1482, 2007.
DOI : 10.1534/genetics.106.062604

J. Li and L. R. Read, The Mechanism of Mammalian Gene Replacement Is Consistent with the Formation of Long Regions of Heteroduplex DNA Associated with Two Crossing-Over Events, Molecular and Cellular Biology, vol.21, issue.2, pp.501-510, 2001.
DOI : 10.1128/MCB.21.2.501-510.2001

W. Li, C. Chen, U. Markmann-mulisch, L. Timofejeva, E. Schmelzer et al., The Arabidopsis AtRAD51 gene is dispensable for vegetative development but required for meiosis, Proceedings of the National Academy of Sciences, vol.101, issue.29, pp.10596-10601, 2004.
DOI : 10.1073/pnas.0404110101

X. Liu, Z. Yan, M. Luo, R. Zak, Z. Li et al., Targeted Correction of Single-Base-Pair Mutations with Adeno-Associated Virus Vectors under Nonselective Conditions, Journal of Virology, vol.78, issue.8, pp.4165-4175, 2004.
DOI : 10.1128/JVI.78.8.4165-4175.2004

Y. Liu, M. Tarsounas, P. O-'regan, and S. C. West, Role of RAD51C and XRCC3 in Genetic Recombination and DNA Repair, Journal of Biological Chemistry, vol.282, issue.3, 1973.
DOI : 10.1074/jbc.M609066200

Z. Liu, G. S. Hossain, M. Islas-osuna, D. L. Mitchell, and D. W. Mount, Repair of UV damage in plants by nucleotide excision repair: Arabidopsis UVH1 DNA repair gene is a homolog of Saccharomyces cerevisiae Rad1, The Plant Journal, vol.22, issue.6, pp.519-528, 2000.
DOI : 10.1046/j.1365-313X.1998.00081.x

A. Lloyd, C. L. Plaisier, D. Carroll, and G. N. Drews, Targeted mutagenesis using zinc-finger nucleases in Arabidopsis, Proceedings of the National Academy of Sciences, vol.102, issue.6, pp.2232-2237, 2005.
DOI : 10.1073/pnas.0409339102

C. J. Lord and A. Ashworth, The DNA damage response and cancer therapy, Nature, vol.146, issue.7381, pp.287-294, 2012.
DOI : 10.1038/nature10760

A. M. Lyndaker, A. , and E. , A tale of tails: insights into the coordination of 3??? end processing during homologous recombination, BioEssays, vol.279, issue.3, pp.315-321, 2009.
DOI : 10.1002/bies.200800195

J. Ma, E. M. Kim, J. E. Haber, L. , and S. E. , Yeast Mre11 and Rad1 Proteins Define a Ku-Independent Mechanism To Repair Double-Strand Breaks Lacking Overlapping End Sequences, Molecular and Cellular Biology, vol.23, issue.23, pp.8820-8828, 2003.
DOI : 10.1128/MCB.23.23.8820-8828.2003

U. Markmann-mulisch, M. Z. Hadi, K. Koepchen, J. C. Alonso, V. E. Russo et al., The organization of Physcomitrella patens RAD51 genes is unique among eukaryotic organisms, Proceedings of the National Academy of Sciences of the United States of America 99, pp.2959-2964, 2002.
DOI : 10.1073/pnas.032668199

U. Markmann-mulisch, E. Wendeler, O. Zobell, G. Schween, H. Steinbiss et al., Development and DNA Damage Repair, The Plant Cell, vol.19, issue.10, pp.3080-3089, 2007.
DOI : 10.1105/tpc.107.054049

G. R. Martin, Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells Developmental Biology, pp.78-7634, 1981.

J. Y. Masson, Z. Stasiak, . Stasiak, F. E. Benson, and S. C. West, Complex formation by the human RAD51C and XRCC3 recombination repair proteins, Proceedings of the National Academy of Sciences of the United States of America 98, pp.8440-8446, 2001.
DOI : 10.1073/pnas.111005698

J. Y. Masson, M. C. Tarsounas, Z. Stasiak, . Stasiak, R. Shah et al., Identification and purification of two distinct complexes containing the five RAD51 paralogs, Genes & Development, vol.15, issue.24, pp.3296-3307, 2001.
DOI : 10.1101/gad.947001

J. Y. Masson and S. C. West, The Rad51 and Dmc1 recombinases: a non-identical twin relationship, Trends in Biochemical Sciences, vol.26, issue.2, pp.131-136, 2001.
DOI : 10.1016/S0968-0004(00)01742-4

A. Mazin, O. Mazina, D. Bugreev, and M. Rossi, Rad54, the motor of homologous recombination, DNA Repair, vol.9, issue.3, pp.286-302, 2010.
DOI : 10.1016/j.dnarep.2009.12.006

G. Mazón, E. P. Mimitou, and L. S. Symington, SnapShot: Homologous Recombination in DNA Double-Strand Break Repair, Cell, vol.142, issue.4, pp.646-647, 2010.
DOI : 10.1016/j.cell.2010.08.006

D. Mcelroy, M. Rothenberg, K. Reece, and R. Wu, Characterization of the rice (Oryza sativa) actin gene family, Plant Molecular Biology, vol.152, issue.2, pp.257-268, 1990.
DOI : 10.1007/BF00036912

J. Mcwhir, J. Selfridge, D. Harrison, S. Squires, and D. Melton, Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning, Nature Genetics, vol.13, issue.3, pp.217-224, 1993.
DOI : 10.1016/0092-8674(89)90905-7

M. Meyer, M. H. De-angelis, W. Wurst, and R. Kühn, Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases, Proceedings of the National Academy of Sciences of the United States of America, pp.15022-15026, 2010.
DOI : 10.1073/pnas.1009424107

E. P. Mimitou and L. S. Symington, Nucleases and helicases take center stage in homologous recombination, Trends in Biochemical Sciences, vol.34, issue.5, pp.264-272, 2009.
DOI : 10.1016/j.tibs.2009.01.010

E. P. Mimitou and L. S. Symington, DNA end resection???Unraveling the tail, DNA Repair, vol.10, issue.3, pp.344-348, 2011.
DOI : 10.1016/j.dnarep.2010.12.004

E. Mladenov and G. Iliakis, Induction and repair of DNA double strand breaks: The increasing spectrum of non-homologous end joining pathways, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.711, issue.1-2, pp.61-72, 2011.
DOI : 10.1016/j.mrfmmm.2011.02.005

C. Morrison, A. Shinohara, E. Sonoda, M. Takata, and R. R. Weichselbaum, The Essential Functions of Human Rad51 Are Independent of ATP Hydrolysis, Molecular and Cellular Biology, vol.19, issue.10, pp.6891-6897, 1999.
DOI : 10.1128/MCB.19.10.6891

T. Motycka, T. Bessho, S. M. Post, P. Sung, and A. E. Tomkinson, Physical and Functional Interaction between the XPF/ERCC1 Endonuclease and hRad52, Journal of Biological Chemistry, vol.279, issue.14, pp.13634-13639, 2004.
DOI : 10.1074/jbc.M313779200

M. E. Moynahan and M. Jasin, Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis, Nature Reviews Molecular Cell Biology, vol.8, issue.3, pp.196-207, 2010.
DOI : 10.1038/nrm2851

S. Muñoz-galván, C. Tous, M. G. Blanco, E. K. Schwartz, K. T. Ehmsen et al., Distinct Roles of Mus81, Yen1, Slx1-Slx4, and Rad1 Nucleases in the Repair of Replication-Born Double-Strand Breaks by Sister Chromatid Exchange, Molecular and Cellular Biology, vol.32, issue.9, pp.1592-1603, 2012.
DOI : 10.1128/MCB.00111-12

L. J. Niedernhofer, J. Essers, G. Weeda, B. Beverloo, J. De-wit et al., The structure-specific endonuclease Ercc1-Xpf is required for targeted gene replacement in embryonic stem cells, The EMBO Journal, vol.20, issue.22, pp.6540-6549, 2001.
DOI : 10.1093/emboj/20.22.6540

J. De, G. J. Beverloo, H. B. Hoeijmakers, and J. H. , The Structure-Specific Endonuclease Ercc1-Xpf Is Required To Resolve DNA Interstrand Cross-Link-Induced Double- Strand Breaks, Mol Gen Genet, vol.24, pp.5776-5787, 2004.

Y. Ninomiya, K. Suzuki, C. Ishii, and H. Inoue, From The Cover: Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining, Proceedings of the National Academy of Sciences, vol.101, issue.33, pp.12248-12253, 2004.
DOI : 10.1073/pnas.0402780101

T. L. Orr-weaver, J. W. Szostak, and R. J. And-rothstein, Yeast transformation: a model system for the study of recombination., Proceedings of the National Academy of Sciences, vol.78, issue.10, pp.6354-6358, 1981.
DOI : 10.1073/pnas.78.10.6354

F. Pâques and P. Duchateau, Meganucleases and DNA Double-Strand Break-Induced Recombination: Perspectives for Gene Therapy, Current Gene Therapy, vol.7, issue.1, pp.49-66, 2007.
DOI : 10.2174/156652307779940216

B. Pardo, B. Gómez-gonzález, and A. , DNA Repair in Mammalian Cells, Cellular and Molecular Life Sciences, vol.66, issue.6, pp.1039-1056, 2009.
DOI : 10.1007/s00018-009-8740-3

J. Paszkowski, M. Baur, . Bogucki, and I. Potrykus, Gene Targeting in Plants, The EMBO Journal, vol.7, pp.4021-4026, 1988.
DOI : 10.1007/978-1-4615-7598-6_96

W. P. Pawlowski, I. N. Golubovskaya, C. , and W. Z. , Altered Nuclear Distribution of Recombination Protein RAD51 in Maize Mutants Suggests the Involvement of RAD51 in Meiotic Homology Recognition, THE PLANT CELL ONLINE, vol.15, issue.8, pp.1807-1816, 2003.
DOI : 10.1105/tpc.012898

L. Pellegrini, D. S. Yu, T. Lo, S. Anand, M. Lee et al., Insights into DNA recombination from the structure of a RAD51???BRCA2 complex, Nature, vol.277, issue.6913, pp.287-293, 2002.
DOI : 10.1107/S0021889891004399

M. H. Porteus, J. P. Connelly, and S. M. Pruett, A Look to Future Directions in Gene Therapy Research for Monogenic Diseases, PLoS Genetics, vol.109, issue.9, p.133, 2006.
DOI : 0092-8674(2002)109[0017:COAGDB]2.0.CO;2

F. Prado and A. Aguilera, Role of reciprocal exchange, one-ended invasion crossover and Single-Strand Annealing on inverted and direct repeat recombination in yeast : different requirements for the RAD1, RAD10 and RAD52 gens, Genetics, vol.139, pp.109-123, 1995.

H. Puchta, B. Dujon, and B. Hohn, Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination., Proceedings of the National Academy of Sciences of the United States of America 93, pp.5055-5060, 1996.
DOI : 10.1073/pnas.93.10.5055

E. Rass, . Grabarz, P. Bertrand, and B. Lopez, [Double strand break repair, one mechanism can hide another: alternative non-homologous end joining, Cancer Radiothérapie : Journal De La Société Française De Radiothérapie Oncologique, pp.1-10, 2012.

E. Rass, A. Grabarz, I. Plo, J. Gautier, P. Bertrand et al., Role of Mre11 in chromosomal nonhomologous end joining in mammalian cells, Nature Structural & Molecular Biology, vol.24, issue.8, pp.819-824, 2009.
DOI : 10.1038/nsmb.1641

URL : https://hal.archives-ouvertes.fr/hal-00413788

S. Rensing, D. Lang, A. D. Zimmer, A. Terry, A. Salamov et al., The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants, Science, vol.319, issue.5859, pp.64-69, 2008.
DOI : 10.1126/science.1150646

R. Reski, Development, Genetics and Molecular Biology of Mosses, Botanica Acta, vol.30, issue.1, pp.1-15, 1998.
DOI : 10.1111/j.1438-8677.1998.tb00670.x

R. Reski and D. J. Cove, Physcomitrella patens, Current Biology, vol.14, issue.7, pp.261-262, 2004.
DOI : 10.1016/j.cub.2004.03.016

C. Rinaldo, P. Bazzicalupo, S. Ederle, M. Hilliard, A. Volpe et al., Radiation During Development, pp.471-479, 2002.

C. Rödel, S. Kirchhoff, and H. Schmidt, and the human excision repair gene ERCC1, Nucleic Acids Research, vol.20, issue.23, pp.6347-6353, 1992.
DOI : 10.1093/nar/20.23.6347

Y. S. Rong and K. G. Golic, Gene Targeting by Homologous Recombination in Drosophila, Science, vol.288, issue.5473, pp.2013-2018, 2000.
DOI : 10.1126/science.288.5473.2013

Y. S. Rong, S. W. Titen, H. B. Xie, M. M. Golic, M. Bastiani et al., Targeted mutagenesis by homologous recombination in D. melanogaster, Genes & Development, vol.16, issue.12, pp.1568-1581, 2002.
DOI : 10.1101/gad.986602

A. Ruk??, E. Birmingham, and M. Baker, Altered DNA repair and recombination responses in mouse cells expressing wildtype or mutant forms of RAD51, DNA Repair, vol.6, issue.12, pp.1876-1889, 2007.
DOI : 10.1016/j.dnarep.2007.07.006

S. Filippo, J. Sung, P. Klein, and H. , Mechanism of Eukaryotic Homologous Recombination, Annual Review of Biochemistry, vol.77, issue.1, pp.229-257, 2008.
DOI : 10.1146/annurev.biochem.77.061306.125255

F. Sanger, G. Air, B. Barrell, N. Brown, A. Coulson et al., Nucleotide sequence of bacteriophage ??X174 DNA, Nature, vol.3, issue.5596, pp.687-695, 1977.
DOI : 10.1016/0042-6822(75)90198-1

R. G. Sargent, J. L. Meservy, B. D. Perkins, E. Kilburn, Z. Intody et al., Role of the nucleotide excision repair gene ERCC1 in formation of recombination-dependent rearrangements in mammalian cells, Nucleic Acids Research, vol.28, issue.19, pp.3771-3778, 2000.
DOI : 10.1093/nar/28.19.3771

B. Sauer, Inducible Gene Targeting in Mice Using the Cre/loxSystem, Methods, vol.14, issue.4, pp.381-392, 1998.
DOI : 10.1006/meth.1998.0593

D. G. Schaefer, Gene targeting in Physcomitrella patens, Current Opinion in Plant Biology, vol.4, issue.2, pp.143-150, 2001.
DOI : 10.1016/S1369-5266(00)00150-3

URL : https://hal.archives-ouvertes.fr/hal-01203895

D. G. Schaefer, F. Delacote, F. Charlot, N. Vrielynck, L. Guyon-debast et al., RAD51 loss of function abolishes gene targeting and de-represses illegitimate integration in the moss Physcomitrella patens, DNA Repair, vol.9, issue.5, pp.526-533, 2010.
DOI : 10.1016/j.dnarep.2010.02.001

URL : https://hal.archives-ouvertes.fr/hal-01203895

D. Schaefer and J. Zÿrd, Efficient gene targeting in the moss Physcomitrella patens, The Plant Journal, vol.11, issue.6, pp.115-1206, 1997.
DOI : 10.1046/j.1365-313X.1997.11061195.x

R. H. Schiestl, RAD1, an excision repair gene of Saccharomyces cerevisiae, is also involved in recombination., Molecular and Cellular Biology, vol.8, issue.9, pp.3619-3626, 1988.
DOI : 10.1128/MCB.8.9.3619

R. H. Schiestl and S. Prakash, RAD10, an excision repair gene of Saccharomyces cerevisiae, is involved in the RAD1 pathway of mitotic recombination., Molecular and Cellular Biology, vol.10, issue.6, pp.2485-2491, 1990.
DOI : 10.1128/MCB.10.6.2485

R. H. Schiestl, J. I. Zhu, and T. D. Petes, Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae., Molecular and Cellular Biology, vol.14, issue.7, pp.4493-4500, 1994.
DOI : 10.1128/MCB.14.7.4493

E. K. Schwartz and W. Heyer, Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes, Chromosoma, vol.5, issue.3, pp.109-127, 2011.
DOI : 10.1007/s00412-010-0304-7

J. J. Sekelsky, K. S. Mckim, G. M. Chin, and R. S. Hawley, The Drosophila meiotic recombination gene mei-9 encodes a homologue of the yeast excision repair protein Rad1, Genetics, vol.141, pp.619-627, 1995.

J. Selfridge, A. Pow, J. Mcwhir, T. Magin, and D. Melton, Gene targeting using a mouse HPRT minigene/HPRT-deficient embryonic stem cell system: Inactivation of the mouseERCC-1 gene, Somatic Cell and Molecular Genetics, vol.105, issue.4, pp.325-336, 1992.
DOI : 10.1007/BF01235756

K. Seong, S. Chae, and H. Kang, Cloning of an E. coli RecA and yeast RAD51 homolog, radA, an allele of the uvsC in Aspergillus nidulans and its mutator effects, Mol Cells, vol.7, pp.284-289, 1997.

D. Sharma, A. F. Say, L. L. Ledford, A. J. Hughes, H. Sehorn et al., Role of the conserved lysine within the Walker A motif of human DMC1, DNA Repair, vol.12, issue.1, pp.53-62, 2013.
DOI : 10.1016/j.dnarep.2012.10.005

R. D. Shereda, A. G. Kozlov, T. M. Lohman, M. M. Cox, and J. L. Keck, SSB as an Organizer/Mobilizer of Genome Maintenance Complexes, Critical Reviews in Biochemistry and Molecular Biology, vol.208, issue.5085, pp.289-318, 2008.
DOI : 10.1073/pnas.82.12.3954

. Shinohara and T. Ogawa, Rad51/RecA protein families and the associated proteins in eukaryotes, Mutation Research/DNA Repair, vol.435, issue.1, pp.13-21, 1999.
DOI : 10.1016/S0921-8777(99)00033-6

N. Siaud, E. Dray, I. Gy, E. Gérard, N. Takvorian et al., Brca2 is involved in meiosis in Arabidopsis thaliana as suggested by its interaction with Dmc1, The EMBO Journal, vol.23, issue.6, pp.1392-1401, 2004.
DOI : 10.1038/sj.emboj.7600146

M. Sijbers, P. J. Van-der-spek, H. Odijk, J. Van-den-berg, M. Van-duin et al., Mutational analysis of the human nucleotide excision repair gene ERCC1, Nucleic Acids Research, vol.24, issue.17, pp.3370-3380, 1996.
DOI : 10.1093/nar/24.17.3370

D. Simsek, E. Brunet, S. Y. Wong, S. Katyal, Y. Gao et al., DNA Ligase III Promotes Alternative Nonhomologous End-Joining during Chromosomal Translocation Formation, PLoS Genetics, vol.140, issue.6, 2011.
DOI : 10.1371/journal.pgen.1002080.s007

URL : https://hal.archives-ouvertes.fr/inserm-00715279

O. Smithies, R. Gregg, S. Boggs, M. Koralewski, and R. Kucherlapati, Insertion of DNA sequences into the human chromosomal ??-globin locus by homologous recombination, Nature, vol.68, issue.6034, pp.230-234, 1985.
DOI : 10.1038/317230a0

E. Sonoda, M. S. Sasaki, J. M. Buerstedde, O. Bezzubova, . Shinohara et al., Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death, The EMBO Journal, vol.17, issue.2, pp.598-608, 1998.
DOI : 10.1093/emboj/17.2.598

E. Staeva-vieira, S. Yoo, and R. Lehmann, An essential role of DmRad51/SpnA in DNA repair and meiotic checkpoint control, The EMBO Journal, vol.22, issue.21, pp.5863-5874, 2003.
DOI : 10.1093/emboj/cdg564

P. Stankiewicz and J. R. Lupski, Genome architecture, rearrangements and genomic disorders, Trends in Genetics, vol.18, issue.2, pp.74-82, 2002.
DOI : 10.1016/S0168-9525(02)02592-1

J. M. Stark, P. Hu, A. J. Pierce, M. E. Moynahan, N. Ellis et al., ATP Hydrolysis by Mammalian RAD51 Has a Key Role during Homology-directed DNA Repair, Journal of Biological Chemistry, vol.277, issue.23, pp.20185-20194, 2002.
DOI : 10.1074/jbc.M112132200

P. J. Stephens, D. J. Mcbride, M. Lin, I. Varela, E. D. Pleasance et al., Complex landscapes of somatic rearrangement in human breast cancer genomes, Nature, vol.82, issue.7276, pp.1005-1010, 2009.
DOI : 10.1038/nature08645

N. Sugawara, G. Ira, and J. E. Haber, DNA Length Dependence of the Single-Strand Annealing Pathway and the Role of Saccharomyces cerevisiae RAD59 in Double-Strand Break Repair, Molecular and Cellular Biology, vol.20, issue.14, pp.5300-5309, 2000.
DOI : 10.1128/MCB.20.14.5300-5309.2000

N. Sun, Z. Abil, and H. Zhao, Recent advances in targeted genome engineering in mammalian systems, Biotechnology Journal, vol.3, issue.1, pp.1074-1087, 2012.
DOI : 10.1002/biot.201200038

P. Sung, Function of Yeast Rad52 Protein as a Mediator between Replication Protein A and the Rad51 Recombinase, Journal of Biological Chemistry, vol.272, issue.45, pp.28194-28197, 1997.
DOI : 10.1074/jbc.272.45.28194

P. Sung and S. A. Stratton, Yeast Rad51 Recombinase Mediates Polar DNA Strand Exchange in the Absence of ATP Hydrolysis, Journal of Biological Chemistry, vol.271, issue.45, pp.27983-27986, 1996.
DOI : 10.1074/jbc.271.45.27983

J. M. Svendsen and J. W. Harper, GEN1/Yen1 and the SLX4 complex: solutions to the problem of Holliday junction resolution, Genes & Development, vol.24, issue.6, pp.521-536, 2010.
DOI : 10.1101/gad.1903510

J. M. Svendsen, A. Smogorzewska, M. E. Sowa, B. C. Connell, S. P. Gygi et al., Mammalian BTBD12/SLX4 Assembles A Holliday Junction Resolvase and Is Required for DNA Repair, Cell, vol.138, issue.1, pp.63-77, 2009.
DOI : 10.1016/j.cell.2009.06.030

L. S. Symington, Role of RAD52 Epistasis Group Genes in Homologous Recombination and Double-Strand Break Repair, Microbiology and Molecular Biology Reviews, vol.66, issue.4, pp.630-670, 2002.
DOI : 10.1128/MMBR.66.4.630-670.2002

L. S. Symington and J. Gautier, Double-Strand Break End Resection and Repair Pathway Choice, Annual Review of Genetics, vol.45, issue.1, pp.247-271, 2011.
DOI : 10.1146/annurev-genet-110410-132435

Y. Iwai, . Shinohara, and S. Takeda, Homologous recombination and non-homologous endjoining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells, The EMBO Journal, vol.17, pp.5497-5508, 1998.

R. Terada, H. Urawa, Y. Inagaki, K. Tsugane, and S. Iida, Efficient gene targeting by homologous recombination in rice, Nature Biotechnology, vol.20, issue.10, pp.1030-1034, 2002.
DOI : 10.1038/nbt737

H. Tourrière and P. Pasero, Maintenance of fork integrity at damaged DNA and natural pause sites, DNA Repair, vol.6, issue.7, pp.900-913, 2007.
DOI : 10.1016/j.dnarep.2007.02.004

B. Trouiller, D. G. Schaefer, F. Charlot, and F. Nogué, MSH2 is essential for the preservation of genome integrity and prevents homeologous recombination in the moss Physcomitrella patens, Nucleic Acids Research, vol.34, issue.1, pp.232-242, 2006.
DOI : 10.1093/nar/gkj423

T. Tsuzuki, Y. Fujii, K. Sakumi, Y. Tominaga, K. Nakao et al., Targeted disruption of the Rad51 gene leads to lethality in embryonic mice., Proceedings of the National Academy of Sciences of the United States of America 93, pp.6236-6240, 1996.
DOI : 10.1073/pnas.93.13.6236

F. D. Urnov, J. C. Miller, Y. Lee, C. M. Beausejour, J. M. Rock et al., Highly efficient endogenous human gene correction using designed zinc-finger nucleases, Nature, vol.161, issue.7042, pp.646-651, 2005.
DOI : 10.1073/pnas.2035056100

L. Vidali and M. Bezanilla, Physcomitrella patens: a model for tip cell growth and differentiation, Current Opinion in Plant Biology, vol.15, issue.6, pp.625-631, 2012.
DOI : 10.1016/j.pbi.2012.09.008

W. Waterworth, G. Drury, C. Bray, and C. West, Repairing breaks in the plant genome: the importance of keeping it together, New Phytologist, vol.300, issue.4, pp.802-822, 2011.
DOI : 10.1111/j.1469-8137.2011.03926.x

G. Weeda, I. Donker, J. De-wit, H. Morreau, R. Janssens et al., Disruption of mouse ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence, Current Biology, vol.7, issue.6, pp.427-439, 1997.
DOI : 10.1016/S0960-9822(06)00190-4

A. Westerveld, J. Hoeijmakers, M. Van-duin, J. De-wit, H. Odijk et al., Molecular cloning of a human DNA repair gene, Nature, vol.98, issue.5976, pp.425-429, 1984.
DOI : 10.1038/310425a0

P. Winding and M. W. Berchtold, The chicken B cell line DT40: a novel tool for gene disruption experiments, Journal of Immunological Methods, vol.249, issue.1-2, pp.1-16, 2001.
DOI : 10.1016/S0022-1759(00)00333-1

S. Wirt and M. Porteus, Development of nuclease-mediated site-specific genome modification, Current Opinion in Immunology, vol.24, issue.5, pp.609-615, 2012.
DOI : 10.1016/j.coi.2012.08.005

J. G. Wood, S. Hillenmeyer, C. Lawrence, C. Chang, S. Hosier et al., Chromatin remodeling in the aging genome of Drosophila, Aging Cell, vol.4, issue.6, pp.971-978, 2011.
DOI : 10.1111/j.1474-9726.2010.00624.x

F. Zhang, M. L. Maeder, E. Unger-wallace, J. P. Hoshaw, D. Reyon et al., High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases, Proceedings of the National Academy of Sciences of the United States of America, pp.12028-12033, 2010.
DOI : 10.1073/pnas.0914991107

Y. Zhang, F. Zhang, X. Li, J. Baller, Y. Qi et al., Transcription Activator-Like Effector Nucleases Enable Efficient Plant Genome Engineering, PLANT PHYSIOLOGY, vol.161, issue.1, pp.20-27, 2012.
DOI : 10.1104/pp.112.205179